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Abstract

This paper addresses the problem of capturing the dy-
namics for exemplar-based recognition systems. Tradi-
tional HMM provides a probabilistic tool to capture sys-
tem dynamics and in exemplar paradigm, HMM states are
typically coupled with the exemplars. Alternatively, we pro-
pose a non-parametric HMM approach that uses a discrete
HMM with arbitrary states (decoupled from exemplars) to
capture the dynamics over a large exemplar space where a
nonparametric estimation approach is used to model the ex-
emplar distribution. This reduces the need for lengthy and
non-optimal training of the HMM observation model. We
used the proposed approach for view-based recognition of
gestures. The approach is based on representing each ges-
ture as a sequence of learned body poses (exemplars). The
gestures are recognized through a probabilistic framework
for matching these body poses and for imposing temporal
constraints between different poses using the proposed non-
parametric HMM.

1 Introduction

The recognition of human gestures has many applica-
tions in human computer interaction, virtual reality and in
robotics. In the last decade there has been a notable ex-
tensive interest in gesture recognition in the computer vi-
sion community [5, 6, 21, 23, 24, 2] as part of a wider
interest in the analysis of human motion in general. The
approaches used for gesture recognition and analysis of hu-
man motion in general can be classified into three major
categories: model-based, appearance-based, and motion-
based. Model-based approaches focus on recovering three-
dimensional configuration of articulated body parts, e.g.,
[17]. Appearance-based approaches uses two dimensional
information such as gray scale images or body silhouettes
and edges, e.g., [21]. In contrast, motion based approaches
attempt to recognize the gesture directly from the motion
without any structural information about the physical body,
e.g., [15, 2]. In all these approaches, the temporal prop-
erties of the gesture are typically handled using Dynamic
Time Warping (DTW) or statistically using Hidden Markov

Models (HMM) such as [21, 3, 11, 24, 23]
This paper presents an exemplar-based approach for

view-based recognition of gestures. The approach is based
on representing each gesture as a sequence of body poses
(exemplars) through a probabilistic framework for matching
these body poses to the the image data. Previous exemplar-
based approaches, such as [7, 22], couple the system dy-
namics with the exemplars where training data are used to
learn both the system dynamics and the exemplar represen-
tation. Alternatively, we use a model where the dynamics
of the system is decoupled from the exemplars in order to
achieve orthogonality between the spatial and temporal do-
mains. The main contribution of the paper is introducing
a non-parametric estimation approach for learning the dy-
namics from large exemplar spaces where the exemplars
are decoupled from the dynamics. This approach has ad-
vantages that will be pointed out through the paper.

The paper is organized as follows: Section 2 review the
exemplar-based tracking paradigm and emphasizes some of
the draw backs that arises when using it for gesture recogni-
tion. Section 3 introduced the decoupled model and the pro-
posed learning approach. Sections 4 and 5 present details
about the observation model and the gesture classification.
Section 6 contains some experimental results with simula-
tion data and results of the proposed approach for recogniz-
ing arm gestures.

2 Exemplar-based Model

We use the definition of [8, 7]: An exemplar space is
specified by a set of “exemplars”, X = {xk, k = 1 · · ·K},
containing representatives of the training data, and a dis-
tance function ρ that measures the distortion between any
two points in the space. The work of [7] was a major step to-
wards learning probabilistic models for exemplars and their
spatial transformations where exemplars are considered to
be centers of a probabilistic mixture. The work of [22] was
another major step that introduces the use of exemplars in
a metric space within the same framework. Figure 1 shows
the probabilistic graphical model for exemplar-based track-
ing as introduced by [7, 22]. The observation zt at time t
is considered to be drawn from a probabilistic mixture, i.e.,
zt ≈ Tαxt where xt ∈ X is the exemplar at time t and Tα is
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Figure 1. Graphical model for exemplar-based
tracking

a geometric transformation with parameter α. In this model,
kt is the exemplar index at time t and αt is the transforma-
tion parameter at time t for the geometric transformation
Tα. Therefore the system state Xt = (kt, αt) at time t is
both the exemplar index kt and transformation parameters
αt. Learning this probabilistic model involves learning the
exemplars as a small set of representatives from the train-
ing set, learning the dynamics in the form of P (Xt|Xt−1)
which, typically, is assumed to be a Markovian process.

In gesture recognition, in general, there are two orthog-
onal types of style variability of performing the actions:

1. Temporal style variation: variations due to how fast
or how slow individuals perform different parts of the
gesture.

2. Spatial style variation: due to the physical constraints
of the body, the appearance of the body at correspond-
ing points of time is different between different indi-
viduals. Here we are concerned with the spatial varia-
tions that can not be modelled by the geometric trans-
formation parameter α.

The way the exemplar-based paradigm, as defined in [22,
7], handles this problem is to cluster the training data into
representative exemplars in the spatial domain, assuming
that the transformation parameters α will take care of the
different spatial styles and that the learning will lead to
compact clusters. The dynamics is learned through learn-
ing the transition P (xt|xt−1) between different exemplars.
So, learning the dynamics is coupled with the exemplars,
which are driven by spatial similarity, i.e., the orthogonality
between the spatial domain and the temporal domain is not
met. This presents a major draw back in the probabilistic
model introduced by [22, 7] when used in recognition.

In order to solve this problem, we use an alternative
probabilistic model that decouples the state variables from
the exemplars as shown in figure 2. In this case, the state
variable qt at time t is an abstract variable that is indepen-
dent of the exemplars as in the traditional sense of an Hid-
den Markov model state while the exemplars are interme-
diate observations that are being emitted by the underlying

process. The final observation, zt, remains as a probabilis-
tic mixture of the exemplars. This way, the orthogonality
between the spatial domain (the exemplars) and the tem-
poral domain (the states) can be achieved. At each point
of time, the system state is an independent abstract concept
and therefore at certain point of time during the time span of
the gesture different clusters (exemplars) might occur. On
the other hand, the same cluster might occur at different
points in time.

Given this decoupled model, a leaning approach is
needed to learn P (xt|qt), i.e., the intermediate observation
(exemplar) probability given the state, and the dynamics
P (qt|qt−1). If the number of exemplars is small, then this is
the same as the traditional discrete output HMM learning,
where each exemplar can be treated as a discrete symbol
and the learning is done using the tradition Baum-Welch
approach. Unfortunately, this is not the case that we are in-
terested in. Instead, we are interested in the case where the
number of exemplars is large for the reasons pointed below.
This requires an alternative approach to learn the interme-
diate observation probabilities. This will be introduced in
Section 3.2

Here we introduce three motivating scenarios for which
our approach will be advantageous:
Large Number of Clusters: Consider the case where there
are many different spatial styles of performing a gesture,
where these variations in style can not be captured by the
geometric transformation Tα. This will leads to many ex-
emplars, i.e., K is large. Learning the dynamics in the form
of P (Xt|Xt−1) or P (xt|xt−1) will be problematic because
we will not have enough data per cluster to learn the tran-
sitions. Therefore the learned model of the dynamics is ex-
pected to specialize to the training sequences and to have
poor generalization. The approach we propose is advan-
tageous in this case because system state, qt is decoupled
from the exemplars and therefore the number of possible
states can be limited which will lead to better generaliza-
tion.
Data-driven Dynamics: Consider the case where we want
to learn the dynamics from the training data directly, i.e.,
no clustering is performed. This is necessary if it is not
possible to cluster the data in a meaningful way due to the
high dimensionality of the data. For example, in the metric
mixture case [22], a one dimensional distance function ρ is
used to compute the exemplar distance in spite of the fact
that the underlying dimensionality is high. This is because
clustering the data in the original space will require complex
intermediate representations such as parameterized contour
models or a 3D articulated model as was indicated by [22].
As a result of using such a low dimensional function, clus-
ters will not necessarily correspond to the real clusters in the
original high dimensional space, specially if we have high
variability in the data. So the approach provided in this pa-
per moves one step forward to learn the dynamics from the
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Figure 2. Graphical model with hidden state
decoupled from exemplars

training data directly, without the need for clustering. We
will use a low dimensional distance function, ρ, but in this
case, since no clustering is needed, the effect of this func-
tion on learning the dynamics is minimal.
Imposing Constraints on the Dynamics: Dynamics in
the form of P (Xt|Xt−1), as used in the exemplar-based
paradigm as presented in [22], do not facilitate imposing
constraints on the learned dynamics. For example, in many
gestures, the progress of the gesture is moving forward in
time and there is no meaning to going backward. To impose
such a constraint, certain HMM topologies might be better.
For example, a left-right model as shown in figure 5 or other
topologies. By decoupling the states from the exemplars,
this can be achieved as traditionally done in HMMs

3 Model Dynamics
3.1 Probabilistic Model

As illustrated in figure 2, at each discrete time, t, the
system state is denoted by the pair (qt, αt) and xt denotes
the exemplar at time t. The hidden variable qt, represent-
ing a Markov stochastic process, can take any value from
a set of M distinct abstract states, S = {s1, s2, · · · , sM}, .
The R.V. xt can be any exemplar from the set of exemplars
X = {xk, k = 1, · · ·K}. So, there is no coupling between
the states and the exemplars. The system dynamics is now
defined by the transitions P (qt|qt−1) and P (αt|αt−1).

The observation zt at time t is a probabilistic mixture
from all the exemplars and can be calculated using

P (zt|qt, αt) =
K∑

k=1

P (zt|xt = xk, αt)P (xt = xk|qt, αt)

(1)
We will drop the transformation parameter α from the equa-
tions since handling this parameter is well studied by the
work of [7]. So the observation at time zt is

P (zt|qt) =
K∑

k=1

P (zt|xt = xk)P (xt = xk|qt) (2)

We will call the term P (xt = xk|qt) the intermediate obser-
vation probability.

3.2 Nonparametric Exemplar Density Estimation

Learning involves learning the transition matrix, i.e,
P (qt|qt−1), learning the initial state distribution and learn-
ing the intermediate observation probabilities P (xt =
xk|qt). If the number of exemplars are small then this is
the same setting as the traditional discrete output HMM and
learning can be done using Baum-Welch method [16]. As
was discussed above we are not interested in this case. In-
stead, we are interested in learning the dynamics directly
from the whole training set, i.e., the set of exemplars is
the whole set of training examples. There is one funda-
mental issue that needs to be addressed: In this case, the
number of exemplars (discrete symbols) K is much larger
than the number of states N , i.e, K � N . In fact, if
we use the whole training data as the exemplars set X,
then during the training each exemplar will be seen exactly
once each iteration, i.e., the intermediate observation matrix
B = {bkj = P (xt = xk|qt = j)} will have only one entry
across each row. In general, if K � N the probability of
observing certain exemplar xi might be very small although
the probability of observing another exemplar xk which is
very similar might be high. This is because the exemplars
are treated as discrete symbols without any similarity metric
imposed.

This problem arises because of the discrete manipulation
of the data. In fact, the actual observation is a continuous
function. Treating the output as continuous requires esti-
mating the pdf of the state output (observation model). Tra-
ditionally, continuous output HMM has been used to model
speech signal for speech recognition and image signals for
gesture recognition. Most of these systems use parametric
forms for the observation model pdf. Typically a mixture
of gaussian is used to model this density where the training
data is used to estimate the Gaussian mixture parameters.
This process in not optimal since both the Markovian as-
sumption as well as the pdf form are not good models of the
gesture. The same applies for speech signal as was noted
by [18]

To overcome the problem of estimating observation
model pdf, non-parametric density estimation can be used,
given that large sets of observations can be obtained. In this
case, the training data is not used to estimate pdf parame-
ters, instead the data is used to obtain an estimate of the pdf
directly. One main advantage of this approach is that new
estimates of the pdf can obtained as more data is obtained.
Different Non-parametric approaches have been used to es-
timate state output pdf in speech recognition as in the work
of [20, 4]

Given the set of all training data X = {xk, k = 1 · · ·K}
an estimate of any data point, x , (exemplar) can be obtained
using the estimator

P̂ (x) =
1
K

K∑

i=1

ψh(ρ(x, xi))
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where ψh is a kernel function with bandwidth h applied on
the exemplar distance function ρ. Let ξ(j, i) be the expected
number of times in state j and observing exemplar i, and
ξ(j) be the expected number of times in state j during one
cycle of the training and let M be the total number of obser-
vations 1. We can obtain an estimate of the joint distribution
as

P̂ (xt = xk, qt = j) =
1
M

K∑

i=1

ψh(ρ(xk, xi))) · ξ(j, i)

Therefore we can obtain an estimate for the exemplar ob-
servation probability b̂kj using

b̂kj = P̂ (xt = xk|qt = j) =
P̂ (xt = xk, qt = j)

P̂ (qt = j)

=
1
M

∑K
i=1 ψh(ρ(xk, xi))) · ξ(j, i)

ξ(j)
M

=
K∑

i=1

Cji · ψh(ρ(xk, xi))) (3)

We call Cji the occupancy coefficients which can be com-
puted during the training as:

Cji =
ξ(j, i)
ξ(j)

(4)

Simply, the occupancy coefficients are the traditional dis-
crete HMM observation probabilities.

We need to modify the Baum-Welch learning approach
as follows:

Expectation Step use the estimate P̂ (xt = xk|qt = j)
from equation 3 to evaluate the observation probabili-
ties of the training sequences.

Maximization Step update only the coefficient matrix
C = {Cji} as in the traditional Baum-Welch using
equation 4.

If we take a closer look at Equation 3 we can see that
it resembles the observation probability of the continuous
output HMM model, which is computed as a mixture of m
distributions

bj(O) =
M∑

m=1

Cjmφ(O; µm, Σm) (5)

where φ is typically a Guassian with mean µm and covari-
ance Σm for the mth mixture and Cjm is the mixture coef-
ficient for the mth mixture in state j2. This form of HMM

1M = K if we use the whole training data as the exemplars
2This particular case of HMM where the mixture is shared among all

states is called semi-continuous HMM

requires estimation of the parameters µm and Σm for each
of the distributions as part of the training process, which is
a lengthy and non-optimal process [18]. Instead, the non-
parametric formalization of equation 3 avoids this parame-
ter estimation process.

4 Observation Model

4.1 Pose Likelihood

Figure 3. Pose exemplars registered to an im-
age

We represent each gesture as a sequence of body poses
(exemplars). The temporal relation between these body
poses is enforced using the probabilistic model presented
in section 3. This section focuses on matching individual
body poses. The objective is to evaluate all different exem-
plars with respect to each new frame at time t in order to
obtain estimate of observation likelihood given each pose
exemplar P (zt|xt = xk).

Let the set of shape exemplars be X = {xk, k =
1, · · · , K} which contains all learned body poses for all the
gestures to be recognized. Each pose (exemplar) is an edge
template representing the body silhouette, i.e., each pose is
represented as a finite set of contour points image coordi-
nates.

xk = {yk
1 , yk

2 , · · · , yk
mk},

where yk
i ∈ R2 and mk is the number of points along

the contour for pose exemplar k. Figure 4 shows example
pose templates for two different gestures. All the poses are
aligned to each other during the learning so aligning one
pose to any new image will therefore align the rest of the
poses. Registering these poses to the images is done while
the person is not performing any gesture (idle). In this case,
the matching is performed using an idle pose (shown in fig-
ure 4, first pose on top) through a coarse to fine search using
an image pyramid. Figure 3 shows the registered poses to a
new frame.

At each new image, I , it is desired to find a probabilistic
matching score for each pose. Let dF (x) be the distance
transformed image at image location, x, given the set of
edge features, F , detected at image I . For each edge fea-
ture yk

i in pose model xk, the measurement Dk
i = dF (yk

i )
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Figure 4. Example body poses from two different Gesture

is the distance to the nearest edge feature in the image. A
perfect model to image match will have Dk

i = 0 for all
model edge features. Consider the random variable associ-
ated with this distance measurement, and let the associated
probability density function (PDF) be pk

i . We assume that
these random variables are independent. This assumption
was used in [12, 14] based on the results obtained in [13].
Therefore, the observation likelihood (the probability of the
observation given the exemplar xk) can be defined as the
product of these PDFs as

P (zt|xt = xk) =
mk∏

i=1

pk
i (Dk

i ) (6)

The PDF pk
i for the distance between model features

and nearest image feature location is defined for each fea-
ture i in each pose model k. We use a PDF of the form

pk
i (D) = c1 +

1
σ
√

2π
e−D2/2(σ)2

Since the distance D can become arbitrary large, the prob-
ability can become very small and therefore the constant c1

is used as a lower bound on the probability. This makes the
likelihood function robust to outliers.

This probabilistic formulation was first introduced
in [12] and was used in a Hausdorff matching context to find
the best transformation of an edge template using maximum
likelihood estimation. Equation 6 represents a probabilis-
tic formulation for Chamfer matching. Chamfer distance
has been used extensively in object detection, for example
in [10]. In [9] the matching was generalized to include mul-
tiple feature types, (for example, oriented edges) by match-
ing each individual feature template with its corresponding
distance transformed image and combining the results. Also
the matching was generalized in [9, 10] to match multiple
templates through a hierarchical template structure.

4.2 Weighted Matching

Our objective is to match multiple pose exemplars to the
same image location in order to evaluate the likelihood of
the observation given each of these poses. Typically, the
different pose templates are similar in some parts and dif-
ferent in another parts in the templates. For example, the

head, torso and bottom parts of the body are likely to be
similar in different pose templates, while articulated body
parts that are involved in the gesture, such as the arm, will
be at different positions at different pose templates. For ex-
ample, see figure 3. Since the articulated part, such as the
arm, is represented by a small number of features with re-
spect to the whole pose templates, the matching is likely
to be biased by the major body parts. Instead, it is desired
to make the matching biased more by articulated parts in-
volved in performing the gesture since these parts will be
more discriminating between different poses templates.

To achieve this goal, different weights are assigned to
different feature points in each pose exemplar. Therefore
each pose exemplar, xk, is represented as a set of feature
locations as well as a set of weights, {wk

1 , wk
2 , · · · , wk

mk},

corresponding to each feature where
∑mk

i=1 wk
i = 1. The

likelihood equation 6 can be written in terms of weighted
log-likelihood as

log P (zt|xk) =
mk∑

i=1

wk
i log pk

i (Dk
i ) (7)

In our case, the set of all recognized poses does not have
a common correspondence frame. For example, some fea-
tures in one pose might not have corresponding features in
another pose. Also we do not restrict the pose templates to
have the same number of features. Therefore we drive the
weights with respect to the image locations.

Let X be the set of all features in all registered poses in
the training data, i.e.,

X =
⋃

k

xk = {x1, x2, · · ·xm}

where each xi is the image location of an edge feature.
Given this sample of edge feature locations, the edge proba-
bility distribution f(y) (the probability to see an edge at cer-
tain image location, y) can be estimated using kernel density
estimation [19] as

f̂(y) =
1
m

m∑

i=1

Kh(y − xi)

Where Kh is a kernel function with a scale variable h. We

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03) 
1063-6919/03 $17.00 © 2003 IEEE 



used a Gaussian kernel Kh(t) = 1√
2πh

e−1/2( t
h )2 for this

probability estimation.
The weight assigned to each feature point is based on

the information this feature provides. Given the estimated
edge probability distribution, f̂(y), at any image pixel, y,
the weight for a certain feature i at a certain pose k is the
ratio of the information given by this feature to the total
information by that pose, i.e.,

wk
i =

log f̂(xk
i )

∑mk

j=1 log f̂(xk
j )

5 Gesture Classification

Figure 5. Left-Right HMM

This section summarizes the gesture classification pro-
cedure. We represent each gesture g by an exemplar space,
(Xg, ρ), and an HMM , λg . The exemplar space is defined
by a set of shape exemplars Xg = {xk, k = 1, · · · , K},
representing different body poses during the gesture, and
a distance function ρ which is defined as the symmetric
chamfer distance, i.e., given exemplar xk = {yk

1 , · · · , yk
mk}

and exemplar xl = {yl
1, · · · , yl

ml} the symmetric distance
ρ(xk, xl) is computed as,

ρ(xk, xl) =
1

ml

ml∑

i

dxk(yl
i) +

1
mk

mk∑

i

dxl(yk
i ).

The HMM hidden states correspond to the progress of the
gesture with time. We used a left-right model as in figure 5
to impose a constraint on the dynamics which leads to better
generalization since there are less transitions to adjust. Note
that the number of states is different from the number of
poses as mentioned above. Training sequences of poses are
used to learn the model parameters:

1. The state transition probabilities A = {aij} where
aij = P [qt+1 = sj |qt = si] ∀i, j = 1 · · ·N .

2. The initial state distribution π where πj = P [q1 =
sj ] ∀j = 1 · · ·N .

3. The probability of each pose xk given the states, B =
{bkj = P (xk|sj) ∀j = 1 · · ·N, ∀k = 1 · · ·K}

The learning is performed using the nonparametric learning
approach in section 3.2.

The actual observation zt is the detected edge features
at each new frame, which is a probabilistic function of the

current state of the gesture as defined in equation 2. The
observation probabilities given the exemplar, P (zt|xk), are
obtained using the likelihood equations 6 and 7 as was de-
scribed in section 4

Given a set of observations Z = z1z2, · · · , zT and given
a set of HMM models λg corresponding to different gesture,
the objective is to determine the probability of that obser-
vation sequence given each of the models, i.e., P (Z|λg)∀g.
This is a traditional problem for HMM and can be solved ef-
ficiently through the Forward-Backward procedure [16, 1].

6 Experimental results

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6. Simulation data.

We performed simulation experiments to evaluate the
performance of the proposed learning approach. We used
synthetic data to emulate a gesture progressing over time
with spatial and temporal variations. We used data of
the form y = a sin(bx) + c where the parameters a, b, c
were generated randomly. The variation parameters a, b, c
are meant to emulate actual gesture spatial variations that
cannot be recovered through the geometric transformation
parameter α as discussed in section 2. Figure 6-a illus-
trates the used data (50 sequences of 20 points each). We
modelled the dynamics of the data using both the coupled
exemplar-based model (shown in figure 1) and using an the
uncoupled model (shown in figure 2). For the uncoupled
model, we estimated the intermediate observations using
the non-parametric approach presented in section 3.2. In
both cases we performed cross-evaluation by splitting the
data into training and test sets. For the coupled model,
we varied the number of clusters at each learning experi-
ment where the cluster centers are considered to be the ex-
emplars. Figure 7-a shows the log-likelihood for both the
training data and the test data for different number of clus-
ters. As expected, as the number of clusters increases, the
model specializes to the training data and yields poor gen-
eralization. For the uncoupled nonparametric model there
is no clustering performed and the learning is done from the
whole training data. Figures 7-b,c show the learning curves
(in terms of log-likelihood) with two different kernels: a
Gaussian kernel and a Parzen window respectively. Each
figure shows the log-likelihood for both the training and test
data. As can be noticed from the figures, in both cases the
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Figure 7. (a) Coupled model evaluation with different clustering. (b,c) Nonparametric learning of
uncoupled model with Gaussian kernel and a Parzen window

leaning curves converge which shows the generalization.

The proposed approach was experimented with real im-
ages for arm gesture classification. Here we show two dif-
ferent gesture classification experiments. In the first exper-
iment, the proposed approach was used to classify eight
arm gestures. Basically, the eight recognized gestures are
similar to the ones shown in figure 3, performed with each
arm, in upward motion and downward motion. Figure 8
shows some pose classification results for different people.
The figures shows the pose with the highest likelihood score
overlaid over the original image.

Figure 8. Pose matching results

Figure 9 shows the gesture likelihood probabilities for
the eight gesture classes. from the graphs, all the gestures
were close in likelihood at the beginning of the action but
as the gesture progresses with time, the likelihood of the
correct gesture increases, and the the likelihood of the other
gesture decreases as a result of the temporal constrains im-
posed by the HMM for each gesture. Each plot shows two
consecutive gestures performed and as one gesture was rec-
ognized all the HMMs were reset.

In the second experiment we used six gestures as shown
in figure 10 where in this case each gesture consists of an
upward followed by a downward arm motion. In this ex-
periments, pose exemplars were obtained from five differ-
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Figure 9. Gesture classification results
ent people where the total number of exemplars were 203,
195, 194, 216, 232, 208 exemplars for each of the six ges-
ture classes respectively. Six fixed topology HMMs with
13 states each were used (one for each gesture class) where
learning the HMM parameters and the intermediate obser-
vation probabilities was performed using the approach de-
scribed in section 3.2. We trained five sets of HMMs where
each HMM set was trained with one person’s exemplars left
out. For the evaluation we used 150 gesture sequences (5
people × 5 cycles × 6 gestures. For classifying any ges-
ture sequence for a particular person, we used an HMM set
that was trained with this person’s exemplars left out. The
classification results are shown in figure 6 in terms of a con-
fusion matrix.
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Figure 10. Six gestures: Each gesture con-
sists of an upward followed by a downward
arm motion

turn left 23 0 0 2 0 0
turn right 0 19 0 0 6 0
turn both 2 0 21 0 2 0
stop left 2 0 0 23 0 0
stop right 0 2 0 0 23 0
stop both 0 0 2 2 2 19

Figure 11. Confusion Matrix

7 Conclusion

The paper presented an approach for learning the dy-
namics for exemplar-based recognition systems and its ap-
plication to gesture recognition. The key contribution of
the paper is an approach for learning HMM parameters that
utilizes nonparametric density estimation for modeling the
observation density. This facilitates learning the dynamics
from large exemplar spaces where nonparametric estima-
tion is used to model the exemplar distribution. The proba-
bilistic model used decouples the system dynamics from the
exemplar space in order to achieve orthogonality between
the spatial and temporal domains. The approach was ex-
perimented with simulation data and was used to recognize
simple arm gestures. The experiments showed the ability of
the learning approach to capture the system dynamics.
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