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Footnotes

Yaser Yacoob
Computer Vision Laboratory

University of Maryland, College Park, MD 20742, USA

The quadrants’ boundary intensity discontinuity a result of of the video-camera consisting of four
separate A/D banks. As a result, flow estimation at the quadrant boundaries is inaccurate. The

problem could be overcome by local gain compensation.

The dense flow algorithms of Black and Anandan [6] is used. The algorithm’s parameters were changed

to achieve best measurement results.

The same effect could have been achieved by dividing the right side of Equation (3) by s for all scales

prior to error summation.

The book is manually segmented in the first image and tracked automatically afterwords using our

multi-scale parameterized flow model.
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ABSTRACT

A model for computing image flow in image sequences containing a very wide range of instanta-
neous flows is proposed. This model integrates the spatio-temporal image derivatives from multiple
temporal scales to provide both reliable and accurate instantaneous flow estimates. The integra-
tion employs robust regression and automatic scale weighting in a generalized brightness constancy
framework. In addition to instantaneous flow estimation the model supports recovery of dense esti-
mates of image acceleration and can be readily combined with parameterized flow and acceleration
models. A demonstration of performance on image sequences of typical human actions taken with a

high frame-rate camera is given.

1 Introduction

Image motion estimation involves relating temporal changes in image intensity across the spatial dimen-
sions. Articulated and deformable motions such as those encountered in images of humans in motion
give rise to image sequences having, instantaneously, a wide range of flow magnitudes ranging from very
small sub-pixel motions, whose recovery is inhibited by typical signal to noise constraints, to very large
multiple pixel motions that can be recovered using expensive correlation methods or multi-resolution
approaches. Table 1 shows the categories of image motion, typical motion values that can be recovered

The support of the Defense Advanced Research Projects Agency (ARPA Order No. #C635), the Office of Naval
Research (contract N000149510521) is gratefully acknowledge4d



H Category ‘ Motion amount m ‘ Model/Algorithm H

Very large | > R Correlation

Large 1.0<m< R Pyramid4 Image Gradients, Correlation or Motion Filters
Small o<<m<1.0 Image Gradients or Correlation

Very small | 0 & m 77 Multi-frame

Table 1: Categories of image motion, amount of motion m (pixels/frame) and potential algorithms. R
is the search radius around the point (e.g., in a correlation-based algorithms) and is equal to 27 (p is the
number of levels in the case of pyramid-based methods) for differential methods. The noise level is o (a
standard deviation in the case of Gaussian noise).

and the computational algorithms currently available for their estimation. Differential methods perform
well at estimating small motions, and in conjunction with a coarse-to-fine strategy they can estimate
large motions; but they fail when motions are very large. Correlation approaches are better suited to
compute very large motions but they are computationally expensive. Estimating very small motions
is challenging since sufficient (but unknown) time has to elapse before the motion can be reliably es-
timated. Too small a temporal window makes motion estimation highly susceptible to noise while too
large a temporal window might drive the estimation outside the domain of a differential algorithm.

Here, we focus on the problem of estimating dense image flow for image sequences in which instanta-
neous flows range from very small to large and these flows occur simultaneously at different locations in
the image. The practical problem, of course, is that we do not know a priori which parts of the image
are moving with which speed. Our solution is a scale-space like solution [13] in which we estimate image
flow over a range of temporal scales, and combine these estimates (employing both spatial and temporal
constraints) using a combination of robust estimation and parametric modeling.

To motivate both the problem and our proposed solution consider a pendulum arm moving in front of
a camera. The image flow will vary depending upon the distance of the point from the hanging point (see
Figure 1, left). As we move towards the pendulum hanging point the instantaneous flow becomes very
small and its measurement at small temporal scale suffers from low signal to noise ratio. As a result, two

frame estimation and subsequent integration of these flow measurements over time will be inaccurate.
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Figure 1: Left, pendulum movement illustrating varying velocities along its motion path. Right, a ramp
with inclination tan(a) in 1D motion

In the context of human motion, the coincidence of lip motion with body and head motion, or the calf
rotation around the knee create similar scale variations in the flow field.

To appreciate, quantitatively, the difficulty of computing small motions, consider the simpler problem
of estimating the motion of a 1D ramp (which is equivalent to estimating the ramp’s inclination tan(a))
as a function of time lapse At and velocity v (see Figure 1, right). We make the simplifying assumption
that all noise sources can be modeled by a normal distribution with zero mean and standard deviation,
o1, (for a discussion of noise sources in flow estimation see [12, 16]). Under this assumption it can be
easily shown that the estimated inclination, tan(/3), satisfies the following if the measurement errors are

less than or equal to the standard deviation +o:

2 2
tan(a) — @;glt < tan(f) < tan(a) + @;glt (1)

Equation (1) indicates that as long as tan(a) >> 23L the estimation error (i.e., tan(3) — tan(a)) remains
very small. However, this error increases if either tan(a) becomes very small or vAt becomes very small
(e.g., due to a small v while At is kept constant). The former case is, in fact, the aperture problem

in 1D while the latter case has not been, so far, addressed in image motion research. This error is



inversely proportional to the time lapse At (assuming oy and v are held constant). Clearly, to reduce the
estimation error it is beneficial to choose a At >> %, which favors long time lapses. However, since the
linear ramp has only a finite extent, [, the maximal At has to be less than [ divided by v (see discussions
on sine wave motion in [2, 11, 12, 16]).

It is worth noticing that since current image motion estimation techniques use two frames (At = 1),
the estimation error is high unless tan(a) >> 22L. Hence, no matter what the value of oy is, there is a
velocity, v, for which the estimation error is unacceptably high. Also, regardless of the algorithm used
to estimate tan(f), Equation (1) illustrates the theoretical bounds on accuracy. This 1D example can
be generalized to 2D surfaces in motion where the fundamental trade-off between estimation accuracy,
on the one hand and time lapse and spatial frequency, on the other hand, also holds.

The majority of published algorithms for estimation of image flow are based on two images (for a
recent survey see [3]). Several approaches, however, consider the incremental estimation of flow [5,
15]; then, temporal continuity of the flow applied over a few images (for example, assuming constant
acceleration) can improve the accuracy of the flow estimate. These approaches, however, are still based on
computations between consecutive images. Other approaches use velocity-tuned filters (i.e., frequency-
based methods) [9, 11] to compute the flow, and can be extended to flow estimation from several frames,
perhaps employing a multi-scale approach similar to what is described here. The use of scale-space theory
to compute optical flow was recently proposed by Lindeberg [14]. The proposed algorithm focused on
scale selection in the spatial dimensions so that different size image structures lead to different selection
of scales for flow computation. The algorithm, however, estimates flow from two images and involves
only the spatial multi-scales.

We develop a method for computing optical flow taking into consideration the fact that motions may
be most accurately estimated at different temporal scales. We assume that no a priori information on

the spatio-temporal distribution of flow values is available, thus allowing our method to be used with any
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Figure 2: A diagram of the multi-scale approach

image sequence. This method can also be viewed as a multi-frame flow estimation when the utility of all
scales is not equal. We discuss how to extend the approach to estimation of image acceleration and to
the measurement of parameterized flow models; we provide demonstrations on several image sequences.

Figure 2 illustrates the approach we propose for computing image flow from multiple frames. Given
an image at time ¢ = 0 our objective is to compute image motion estimates based on subsequent images
t=1,...,n. We assume that brightness constancy holds and measure its satisfaction as a constraint on
flow estimation. The errors of all brightness constancy constraints are weighed according to a measure
of accuracy and the minimum of sum of errors is considered the best estimate.

The paper is organized as follows. Section 2 illustrates, using an image sequence, the inadequacy of
single scale flow estimation. In Section 3 we describe the motion model employed for estimating image
flow from multiple scales. This is followed by experimental results in Section 4. Section 5 provides the
extension of the model to compute image acceleration. In Section 6 we describe the estimation process
when parameterized motion models are used. Finally, in section 7 a discussion and summary of our

approach are provided.



2 A Motivating Example

We will use scale=1 to denote flow estimation between two consecutive images (i.e., the finest temporal
resolution available), scale=2 to denote flow estimation between images that are two frames apart, etc.
To illustrate the limitation of image flow estimates from any single scale we employ an image sequence of
an arm moving in front of a camera. The sequence was taken with a high-frame-rate camera (500 frames
per second) which allows us to capture the natural rapid motion of the arm. The arm (see Figure 3) is
rotating in a pendulum-like motion with an additional rotation of the hand around the wrist during its
motion in front of a lightly textured background*. Notice that there is a shadow created by the hand,
leading to non-zero flow estimates of the shadow as well as the arm. Figure 3 shows eight images from
the sequence (chosen two frames apart). While the motion of the arm between two frames is very small,
it will become apparent when the flow estimates are shown. The correct instantaneous flow should show
a spatially coherent flow in which the flow increases as we move from the upper part of the arm toward
the hand and then significantly increases on the hand.

Figure 4 shows the image flow! magnitudes for six scales (falling on a geometric scale 1,2,4,8,16, and
32 frames apart). The finest scale provides detailed estimates of the flow magnitude at the hand but
quite noisy estimates along the arm, while the coarsest scale results in better estimates along the arm
but considerably blurred estimates on the hand.

Figure 5 is a rescaled version of Figure 4 in which the small flow values along the arm can be more
easily observed. The flow estimation along the arm at fine scales is dominated by the noise of the imaging
system. As scale increases, better estimates are computed along the arm at the cost of blurring the flow

of the hand. As a consequence, if motion segmentation into parts is sought, the finest scale would result

*The quadrants’ boundary discontinuity a result of of the video-camera consisting of four separate A/D banks. As a
result, flow estimation at the quadrant boundaries is inaccurate. The problem could be overcome by local gain compensation.

TThe dense flow algorithms of Black and Anandan [6] is used. The algorithm’s parameters were changed to achieve best
measurement results.
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Figure 3: Eight images (each two frames apart) from a long sequence of a moving arm

¢

Scale=1 Scale 2 Scale /4

Scale=8 Scale=16 Scale=32

Figure 4: Flow magnitudes at 1,2,4,8,16 and 32 scales (top left to bottom right respectively)

in highly fragmented components, while the coarsest scale would lead to highly inaccurate boundaries

for the hand.

3 A Multi-scale Flow Model

Let I(z,y,t) be the image brightness at a point (z,y) at time ¢. The brightness constancy assumption

at scale s is given by

Iz, y,t) = I(z + subt,y + svdt, t + s6t) (2)
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Scale=1 Scale 2 Scale /4

Scale=8 Scale=16 Scale=32

Figure 5: Enhanced flow display to show arm estimation at 1,2,4,8,16 and 32 scales (top left to bottom
right respectively)

where (u, v) is the horizontal and vertical image velocity at (x,y), 6t is small. We assume, for now, that
the instantaneous velocity (u,v) remains constant during the time span sét (leading to a displacement
(sudt, svdt)). This assumption is less likely to hold with the increase of scale and can lead to violations
of brightness constancy. Let the range of scales over which flow is to be estimated be 1,...n. Expanding
Equation (2) using a Taylor Series approximation (assuming locally constant flow) and dropping terms

results in

0=s(Is(z,y,)ut+ I°y(a,y, t)v+ *(z,y,1)) (3)

where [° is the s-th frame (forward in time relative to I) of the sequence, and I°;, I®, and I°; are the
spatial and temporal derivatives of image I° relative to I.
Since Equation (3) is underconstrained for recovery of (u,v), it is ordinarily posed as a minimization

of a robust error norm of the flow over a very small neighborhood, R, of (z,y), leading to

E(u,v,8)= > p(s(IPou+I°y0+I%),0.) (4)
(z,y)ER
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Figure 6: An illustration of the Lorentzian function p and its derivative p’

where p is a robust error norm [10] that is a function of a scale parameter o.. In our implementation we

use the Lorentizian function and its derivative (see Figure 6),

plr.00) = log(14 S50 and pl(e.00) = 5o (5)

o 20.2 4 22’

The parameter o. determines the point at which the influence of a measurement begins to diminish.
All points with absolute error greater that 2v/20. are considered outliers (more details can be found in
[6, 10]).

We have n equations of the form of Equation (4) one for each scale. The scale-generalized error is

defined as

Ep(u,v) =3 > p(s(IPpu+ IPyo + I*y), 00) (6)
S 1(1’7y)€R

n

Notice that Equation (6) biases the error term towards coarser scales due to the multiplication term s.

. . e . . . . +
Therefore, we normalize the error terms so that the minimization is in the form*

n

Ep(u,v) =Y > p(IPyu+I*yv+ I, 0.) (7)
s=1 (x7y)eR

{The same effect could have been achieved by dividing the right side of Equation (3) by s for all scales prior to error
summation.
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Equation (7) gives equal weight to the error values of all scales. Since it is expected that at each
point (z,y) the accuracy of instantaneous motion estimation will be scale-dependent, we introduce a
weight function W(u, v, s) designed (see below) to minimize the influence of error terms of the relatively

inaccurate scales. Equation (7) now becomes

Ep(u,v) =3 > p(W(u,v,s)(IPpu+ I*yv+I°%),0.). (8)
s=1 (g;7y)eR

Before discussing the design choices for the weighting function W, it is worth considering quantitatively
the residual error values at each scale. Consider again the 1D ramp example discussed in Section 1, the

inclination error assuming noise within +o is given by

Er = tan(f) — tan(a) < i%. (9)

Therefore, given a Gaussian noise model, the estimation error will be Gaussian with standard deviation
:I:%. At the same time, the physical extent of the ramp determines the maximal time over which accu-
rate derivative estimates are computable. The best-case scenario occurs when the initial measurement
occurs at the beginning of the ramp. In this case, the maximal time delay is given as At < [/v where [ is
the projected length of the ramp (i.e., I = r cos(a) where 7 is the full length of the ramp). As the initial
measurement approaches the end of the ramp there is diminishing time to obtain a second measurement
on the same ramp.

Figure 7 shows the error functions of Equation (9) for different v’s. The red, green and blue graphs
show the error, Er, for three speeds v = 0.5,0.05,0.025 pixels/frame and oy = 3. The points marked

ty = 21,1t = 20l,t35 = 40l denote the maximal best-case lapse times due to the limited length of the

ramp (respectively to the speeds). The best-case scenario occurs only with probability 1/! (assuming a
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Figure 7: The two error functions values as as a function of time scale s. The red, green and blue
graphs show the error of the temporal function for three different speeds v = 0.5,0.05,0.025 pixels/frame

for o1 = 3. The points 1,15, 13 designate the best-case temporal window delay for the three velocities,
respectively.

uniform distribution); therefore for an average initial sample at /2, t; = [, 13 = 10,73 = 20!. In practice,
the extent of [ is never known, therefore determining ¢; is hard to achieve. Instead, we use a temporal
window over a region that is assumed to include {;.

Figure 7 also suggests that assigning equal weights to all temporal scales does not lead to a minimal
sum of errors in the case of small motions since the error is larger at the lower scales.

The 1D ramp example forms the basis for designing the weighting function for the errors of different
scales. Since the weight function W(wu,v,s) should also reflect the width of the temporal window of
computation of the flow estimation we redefine it to include a scaling parameter o,,, W(u,v,s,0,). W
weighs the residual error contributions with respect to the total error; therefore, we choose to normalize
its value so that W = 1 denotes full contribution and W = 0 denotes no contribution. The choice of the

weighting function W should satisfy the following constraints:

e It should take on values in the range [0..1].

e The scaling parameter o,, expresses the width of the temporal window over which flow estimates are

integrated. Initially, we have no knowledge of thf 4locally optimal time-scale for measurement of flow



and, therefore, the weighting function weighs all residual errors equally (i.e, the temporal window is as
wide as the number of frames involved in the estimation). But, as the estimates are iteratively refined,
the weighting function should concentrate the weights on the most appropriate scales and ignore the
remaining scales by narrowing the width of the window. Therefore, by first choosing a large o,,, we

ensure that W is uniformly 1.0 for all (u,v) and s.

e Given oy, larger estimated flow (u,v) at point (z,y) should lead to higher weights for the lower scales
of the error term I°,u 4 I°,v 4+ I°;, while a small flow should lead to higher weights of the highest

scales.

Figure 8 reflects qualitatively the desired shape of the weighting function for a fixed o,. It illustrates
the weighting as a function of scale s and flow magnitude ||(u,v)|| at («,y). We adopt the assumption of
normal distribution of the sources of error, which naturally leads to Gaussian weighting functions. The

following Gaussian function satisfies the above requirements

W(u,v,s,04) = e_(5_<all<u,v73||+1~0> ) /20w? (10)

where ||(u,v)|| is the magnitude of the current flow estimate at (x,y), and « is a constant. Notice that
when ||(u,v)|| << 1.0 the maximal weight occurs at the highest scale n, while higher values of ||(u, v)]|
lead to a maximal weight at lower scales; specifically the Gaussian is centered at W. The scale
parameter o,, determines the width of the Gaussian, and the constants a and 1.0 determine the maximal
weight scale location. The application of the weighting function in the estimation is as follows: initially
all scales are given equal weight (1.0) by selecting a large o,,. Afterwords, iteratively, the estimates are
refined by decreasing o,,.

This temporal multi-scale procedure is accompanied by a spatial coarse-to-fine strategy [4] that con-

structs a pyramid of the spatially filtered and subl—gampled images and computes the flow initially at



)

(V)

Figure 8: The weighting function as a function of s and flow magnitude ||(u,v)||

the coarsest level and then propagates the results to finer levels. This allows dealing with large motions
that may be present in addition to the small and very small motions. The computational aspects of the
multi-scale model follow, generally, the approach proposed by Black and Anandan [5, 6]. Equation (8)

can be rearranged as

n

Ep(u,v)= Z p (Z Wiu,v,s,0,)(L°u+ I°yv+ 1%),0.) (11)
(zy)eR  s=1

The minimization is carried out using a descent method, Simultaneous over-Relaxation (SOR). The
minimization of Ep(wu,v) with respect to u and v is achieved using an iterative update equation, so at

step e+ 1

: : 1 oF
(i+1) — o _,, - Y=D
o o wT(u%y) Oty (12)

where 0 < w < 2 is an overrelaxation parameter which is used to overcorrect the estimate of uLy(i"'l) at
stage ¢ + 1 (a similar treatment is used for v). The value of w determines the rate of convergence. The

term T'(uy,) is an upper bound on the second partial derivative of Ep

O*Ep
T(ty,) > 13
(o) 2 g (13)
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To achieve a globally optimal solution the robust error norm p is started with a large enough scale
parameter o, to find a solution using the SOR technique. For each o., the o, is started from a value that
allows several scales to contribute to the solution; then it is gradually narrowed down to focus on the best
scale. This process is iteratively repeated while decreasing o, and starting with the last estimate. The
choice of a large enough o, guarantees convexity of the error function at the beginning of the process,
which is followed by the use of the Graduated Non-Convexity method developed in [8]. The iterated
decrease in o, reduces the influence of the outlier measurements and thereby refines the estimates while

the reduction in ¢, improves the scale selection.

4 Experimental Results
4.1 A Synthetic Example
In the following figures we show the results of image flow computation when ¢,, = 5.0 and is decreased
at a rate of 0.6 for five iterations, and o, = 18.0 and is decreased at a rate of 0.4 for 5 iterations. The
computation is performed over 12 temporal scales.

In order to compare the performance of single scale (scale = 1) and multi-scale flow estimation, we
generated a sequence of images using a synthetic flow model where we have ground-truth data. Figure
9 (top) shows an image of a person during a walking activity. The synthetic sequence is generated by
warping the image patch of part of the “thigh” and the whole “calf” foreward so that the thigh is rotating
slowly while the “calf” is rotating faster around the knee. The sequence simulates a common motion
in sequences of human motion. Figure 9 (middle row) shows quantitative comparison along a line on
the “calf” (left to right) between the ground-truth flow (bottom, solid line) the single scale flow (dotted
line) and the multi-scale (dashed line). The multi-scale estimate is closer to the synthetic flow than the
single scale estimation especially at very small flow magnitudes. Accurate recovery of the flow is actually
limited by interpolation side effects in generating the synthetic motion.

Table 2 provides comparative results on the pe{]‘f)rmance of single scale, multiple scale with equal
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Figure 9: A synthetic motion example that compares flow magnitudes on a real image of a calf and thigh
. The image (see (b)) was warped and the flow magnitudes along a line (see (c)) are shown as a solid
line (see center row). The estimates of flow magnitudes using 1 scale and 12 scales over the same line
are shown (center row, dotted and dashed lines, respectively). The lower row shows the magnitude of
angular degree errors over the region for the 1 scale and 12 scale algorithms (left to right respectively).
Notice that the slow-moving thigh is more error prone for the single scale algorithm.
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H Algorithm ‘ Mean Angular Error ‘ Standard Deviation H
Single scale 2.8 3.13
Multi-scale W=1 4.95 7.81
Multi-scale Gaussian | 2.5 2.91

Table 2: Comparative performance of algorithms by mean error and standard deviation of angular errors

in the flow
| Algorithm [ <1° [ <22 [<3° [ <5° | <10° |
Single scale 28% | 55% | 68% | 86% | 99%
Multi-scale W=1 20% | 41% | 537% | 72% | 89%
Multi-scale Gaussian | 41% | 60% | 70% | 83% | 97%

Table 3: Comparative performance of algorithms by percentage of points below 1°,2°,3° 5°,10° angular

error
weights and multiple scales with Gaussian weighting with respect to the mean angular error and standard

deviation of angular error as proposed in [3]. Asin [3], the image velocities are represented as a 3D vector,

1

—(u, v, 1)T.
w2 + 0241

7=
The error between the estimated flow, v. and the real flow v, is given by arccos(v, - v.). The multi-scale
Gaussian algorithm is slightly better than the single scale and uniformly weighted multi-scale algorithms.
It is illustrative to compare the percentage of points below specific angular errors. Table 3 shows the

results for angular errors of 1,2,3,5 and 10. The multi-scale Gaussian results show improved accuracy.

4.2 A Real Sequence

In the following figures we show the results of image flow computation when o,, = 20.0 and is decreased
at a rate of 0.5 for five iterations, and o, = 30.0 and is decreased also at a rate of 0.5 for 5 iterations.
The computation is performed over 16 temporal scales.

Figure 10 illustrates the weights at several scales during the computation of image flow (the brighter
the intensity the higher the weight; weights across scales were normalized in these images to allow for

comparisons). At scale=1 only the hand area is given high weights while the arm and the background are
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Figure 10: The weighting function W as computed at the scales 1,4,7,10,13 and 16 scales (top left to
bottom right respectively) expressed as an intensity image.

given very low weights. As the scale increases the weights are increased along the arm and the background
while a decrease on the hand gradually takes place. At the highest scale (scale = 16) the hand’s weight
is very low while the arm and the background receive a high weight. Figure 11 shows the effect of the
iterative refinement of the weighting function W for scale=1 (the finest scale) on the relative weights
for different regions. The values are normalized across the five images to allow comparison. Notice that
the first iteration gives high weights to the hand, and the weights given to the arm and the background
are somewhat significant. The fifth iteration also gives high weights to the hand while the arm and the
background have the lowest weight, and they are much lower than after the first iteration. This behavior
is reversed when we consider the coarsest scale, scale = 16 (see Figure 12).

Figure 13 (top and middle rows) shows graphs of the individual scale flow magnitudes computed
along a line drawn down the center of the arm (bottom right). These graphs correspond to the scale
computations shown in Figure 4. Since the arm is approzimately moving like a pendulum with the hand
simultaneously rotating around the wrist (see Figure 18), the flow should increase slowly along the arm

then jump considerably on the hand. This is cle%f)ly visible in the graphs. The dip in these graphs



Weight Iter=1 Weight Tter=2 Weight Iter=3

Weight Iter=4 Weight ITter=5

Figure 11: The weighting function W at scale 1 (finest scale) as evolved in five iterations
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Figure 12: The weighting function W at scale 16 (coarsest scale) as evolved in five iterations
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Figure 13: The flow magnitude along a line (bottom right) computed using a single scale (s = 1,2,4,8,16
and 32 scales; top and middle rows), the multi-scale flow magnitudes (bottom left), and the multi-scale
flow magnitudes along the line (bottom center)

(occurring between 125-145) is a result of the intensity discontinuity of the four quadrants of the camera.
Figure 13 also shows the multi-scale flow magnitude results (bottom left). The flow boundary is quite
sharp and the corresponding flow magnitude along the line is shown (bottom center); it measures a very
smooth change in the flow along the arm and significant increase at the hand (with maximal flow at the
finger).

Figure 14 shows four images taken from a long sequence of a person moving his arm around while
rotating his face (consecutive images are four frames apart). The magnitudes of the motions of the
arm and face vary significantly. Also, the flow along the arm varies, beginning with no motion at the

shoulder and increasing towards the hand. In Figures 15-16 the single-scale, multi-frame and multi-scale
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Figure 14: Images from a sequence of simultaneous arm and head motion

flow are shown (16 scales). Notice that the multi-frame flow computation is simply the case when W is
set to one for all residuals (see top row in Figure 16). While these results are slightly better than the
single-scale they still suffer from the inclusion of large residuals that the multi-scale algorithm recognizes

and discards.

5 Estimation of Image Acceleration

The scale-generalized brightness constancy assumption given in Equation (2) assumes constant flow at
all scales. This can be extended to include acceleration models. Let the image flow as a function of scale
s be (u(s),v(s)). This image flow describes the instantaneous velocity between frame s — 1 and s. Then

the brightness constancy assumption at scale s becomes

S S

Ly, t)= Lz + Y _u(j),y+ D v(j)t+ ) (14)

i=1 i=1

As a special case, if image motion is assumed to be subject to a constant acceleration, the flow can be

given by

u(s) =bg+ bys (15)

v(s) = by + bss (16)
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Figure 15: Horizontal, vertical and magnitude of flow from two frames (left to right). For horizontal and
vertical flow, brighter value indicates greater motion leftward and upward, respectively.

-

Figure 16: Top row, single-scale horizontal, vertical and magnitude of flow (left to right). Center row,
multi-frame horizontal, vertical and magnitude of flow (left to right) (16 frames with the weight W =1
for all points at all times. Bottom row, multi-scale (s = 16) horizontal, vertical and magnitude of flow
(left to right). For horizontal and vertical flow, brighter value indicates greater motion leftward and
upward, respectively.



where by and bs are the horizontal and vertical acceleration terms. Note that in the context of a long
sequence this model supports a piecewise constant acceleration assumption. If acceleration fluctuations
within the scales involved in the estimation are small or fall within the performance range of the robust
estimator (about 35% outliers) this model holds. This flow model leads to a brightness constancy

assumption of the form

S S

Hz,y,t)=I(z+ Z(bo + b17),y + Z(bz + b3i), 1+ s) (17)

=1 =1

Using a Taylor series expansion and dropping terms (including scale normalization) we arrive at

5 s+1 5 s+1 5
0=1%(bo + b1 5 )+ I°y(ba + b3 5 )+ 1% (18)
The new scale-generalized error function is given by
o 5 s+1
Ep(u,v)= Z Z p(W(I%,(bo + by 5 )+ (19)
s=1 (z,y)€R
S S —I_ 1 S
1 y(b2+b3 ))‘I’I t) Ue)

Figure 17 shows the dense flow and acceleration estimated for a book-falling sequence (see also Figure
19). The top row shows the the weighting function’s values assigned for each scale (normalized to enhance
the contrast). At low scales the book’s region is assigned high weight while the background is assigned
very low weight. This is reversed as scale is increased, so at the top scale the motion of the book is so large
that little weight is given to the book area. The bottom row shows the dense velocity magnitude (left)
and the vertical and horizontal accelerations (center and right, respectively). Notice that the estimated

horizontal acceleration is almost uniformly zero.
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Figure 17: The weights (upper row) at scales 1, 3, 4 and 6, respectively (out of 6 scales), and the flow
magnitude and vertical and horizontal accelerations (bottom row, left to right, respectively) for a falling

book.
6 Parameterized Flow Models

Dense flow computation generates large data sets that may not be easily used in higher level vision
tasks. Recently, it has been demonstrated that parameterized flow models can provide a powerful tool
for reasoning about image motion between successive images (see [7]). The multi-scale flow estimation
algorithm can be extended in a straightforward way to parameterized models of image flow. In this
section we describe the extension of the muti-scale framework to affine and planar parameterized image
motion models.

Recall that the flow constraint given in Equation (3) assumes constant flow over a small neighborhood
around the point (z,y). Over larger neighborhoods, the image flow is given by low-order polynomials

[1]. For example, affine motion is given by

U(z,y) = a0+ a1z + azy (20)

V(z,y) = as + asx + asy (21)
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where a;’s are constants and (U, V) is the instantaneous velocity vector. A more general model is the
planar motion model [1] which is an approximation to the flow generated by a plane moving in 3-D under

perspective projection. The planar motion model is given by

Ulz,y) = ao+ 1@ + azy + agx? + arzy (22)
Viz,y) = as+ asx + asy + asry + ary’ (23)

Equation (8) now becomes
Ep(U,V)=>" p(W(U,V,s,0,)(I°.U +1°,V + I),0.) (24)

s=1(z,y)€A/P

where A/ P denotes the region in which the flow is assumed to be affine (A) or planar (P). The minimiza-
tion of Equation (24) results in estimates for the parameters a;. The choice of the weighting function W
is somewhat more complex here than it was previously. The weighting function can be designed using
the current flow estimates computed by the model (U,V). This weighting leads to different weights
within the region according to the magnitude of the flow so that at points where the flow estimate is
low the coarser scales will be more dominant while the larger flow estimates will determine the finer
scales. Alternatively, W can be designed using the parameters of the model a; (i.e., W(a, s, 0,,) where a
is the set of model parameters). This alternative reflects the fact that the region is treated as a single
object that is subject to rigid motion; therefore its motion is completely captured by the parameters a.
The former leads to a computation based on weighting of spatio-temporal derivatives while the latter
leads to weighting of parametric models. Once a choice for the weighting function has been made the
computation of the parameters of the model follows the approach proposed in [6].

In the examples in this section we adopt the weighting of parametric models. Recall that the parameters
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of the affine and planar models capture several aspects of the region’s motion (see [7]). Since the
translation of the region is of most interest the parameters ag and as can be substituted as ||(ag, as)|| for

||(w,v)|| in Equation (10) so that it becomes:

W, v, 8,0,) = ¢ O @lagaarsy) /20u” (25)

Figure 18 shows the results of parameterized flow estimation over the hand region of the moving arm
over a long sequence (about 540 frames). The parameterized flow is used to automatically track the
hand motion throughout the sequence similar to [7] (assuming an initial manual hand segmentation in
the first image). The frame numbers are shown with the images. The left graph shows the horizontal
and vertical translations (solid and dashed lines, respectively) and the right graph shows the curl of the
hand.

Parameterized flow models can also be extended to include acceleration. The extension of the affine
model requires that the motion parameters across scales be dependent on the scale so that a; becomes

a;(s). Assuming a constant acceleration for these parameters, the models now become

Uz, y)=(ao + av’s) + (ay + ays)x + (ay + a)s)y (26)

V(r,y)=(as + as's) + (as + ais)z + (a5 + ags)y (27)

where (), a% are the linear horizontal and vertical acceleration components of the motion and the @, a}, @/
and af are acceleration components that can be related to angular, divergence and deformation acceler-
ations.

Figure 19 describes an experiment in which the acceleration of a falling book is estimated from an image
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(left, solid and dashed lines, respectively) and curl (right).

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 18: Seven images of a long sequence of the arm in motion (top). Flow results of teh hand tracking
without acceleration model, as and ag (left, solid and dashed lines, respectively) and curl (center row left
to right). Flow results with an acceleration model, as and aqg (left, solid and dashed lines, respectively),
curl (bottom left to right) and a5 and af, acceleration (bottom right).

sequence.5 The computation is done over 16 scales. Notice that although the book is falling vertically, a
small horizontal motion component is present (observe the change of the upper left corner of the book
relative to the white stripes). The bottom left graph of Figure 19 shows the horizontal and vertical
velocity computed for the sequence (dashed and dotted lines, respectively), and the predicted vertical
velocity (solid line) based on the velocity computed at the first frame and the average acceleration in
the first ten frames. The graphs suggest that the inclusion of acceleration in the image motion model is
valuable in predicting the real motion for a significant amount of time.

Figure 18 shows the acceleration of the hand in addition to the flows for long image sequences. The

$The book is manually segmented in the first image and tracked automatically afterwords using our multi-scale param-
eterized flow model.
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Figure 19: Four frames of a falling book (a)-(b) from an 80 frame sequence, the vertical and horizontal
velocities (dashed and dotted lines, respectively (c)), and the predicted vertical velocity from the starting
velocity and average acceleration, az’, in the first 10 frames (solid line, (¢)) and the vertical and horizontal
accelerations as’, ap’ (dashed and solid lines respectively, (d))

acceleration of the hand does not satisfy the constant acceleration model, thus the estimates are not

linear.

7 Discussion

The proposed multi-scale approach for computing optical flow and acceleration introduced explicit tem-
poral models for image intensity and flow changes. As demonstrated in several image sequences, a multi-
scale framework can increase the accuracy of instantaneous motion estimates and recover simultaneously
both flow and acceleration.

Algorithms for motion estimation can be quite noisy since they are typically based on local operators
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applied over very small neighborhoods between two images. Temporal smoothing was proposed by [5]
in a regularization framework; in contrast our multi-scale approach computes temporal weights that
control the contribution of the spatio-temporal derivatives at each time instance and thereby improve
the accuracy of the instantaneous motion estimates.

In this paper we developed a new multi-temporal method for computing flow and acceleration in
images. Both dense and parameterized representations were employed and demonstrations on long image
sequences were provided. This approach is an extension of the popular brightness-constancy assumption
to a temporal scale-space domain. It provides for higher accuracy over a wider range of flows in image

sequences.
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