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We propose a generalized model of image “appear-
ance change” in which brightness variation over time
is represented as a probabilistic mixture of different
causes. We define four generative models of appearance
change due to: 1) object or camera motion; 2) illumina-
tion phenomena; 3) specular reflections; and 4) “iconic
changes” which are specific to the objects being viewed.
These iconic changes include complex occlusion events
and changes in the material properties of the objects.
We develop a robust statistical framework for recover-
ing these appearance changes in image sequences. This
approach generalizes previous work on optical flow to
provide a richer description of image events and more
reliable estimates of image motion in the presense of
shadows and specular reflections.
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1. INTRODUCTION

As Gibson noted, the world is made up of surfaces
that “flow or undergo stretching, squeezing, bending, and
breaking in ways of enormous mechanical complexity”
([21], page 15). These events result in a wide variety of
changes in the “appearance” of objects in a scene. While
motion and illumination changes are examples of common
scene events that result in appearance change, numerous
other events occur in nature that cause changes in ap-

pearance. For example, the color of objects can change
due to chemical processes (e.g., oxidation), objects can
change state (e.g., evaporation, dissolving), or objects can
undergo radical changes in structure (e.g., exploding, tear-
ing, rupturing, boiling). In this paper we formulate a ro-
bust statistical framework for representing certain classes
of appearance changes. In so doing we have three primary
goals. First, we wish to “explain” appearance changes in
an image sequence as resulting from a “mixture” of causes.
Second, we wish to locate where particular types of ap-
pearance change are taking place in an image. And, third,
we want to provide a framework that generalizes previous
work on motion estimation.

The estimation of motion in image sequences is a dif-
ficult problem that involves pooling noisy measurements
to make reliable estimates. This assumes some model of
the image variation within a region. For example, it is
commonly assumed that the brightness within a region is
conserved through time, that a single motion is present,
and that the motion can be described by a low-order poly-
nomial. For natural scenes, this model is a crude approx-
imation that fails to capture many kinds of appearance
change such as those mentioned above.

When our models of the scene are violated, we have
two choices, namely, formulate more realistic models or
adopt robust statistical techniques to cope with the vio-
lations of the assumptions. In general we should pursue
the former while recognizing its limitations. For exam-
ple, “better” models may require that more parameters
be estimated which may be undesirable since even simple
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models may be underconstrained. Furthermore, although
“simple” models used for optical flow are typically lin-
ear in the unknown parameters and admit closed form or
efficient iterative solutions, significantly “better” models
may be non-linear and computationally prohibitive. Fi-
nally, in natural scenes, any models we formulate will be
approximate and certain appearance changes will remain
unmodeled. These unmodeled image variations require us
to maintain a robust statistical formulation even as our
models improve.

In this paper we pursue a strategy of both construct-
ing more realistic models of appearance change and for-
mulating the problem using robust statistical techniques.
Specifically, we discuss the use of four generative models to
“explain” the classes of appearance change illustrated in
Figure 1. A change in “form” is modeled as the motion of
pixels in one image to those in the next image; that is, an
image at time t+ 1 can be explained by warping the image
at time ¢ using this image motion. Our framework uses
a layered representation to model multiple motions in a
region due to occlusion and limited forms of transparency.

Illumination variations may be global, occurring
throughout the entire image due to changes in the illumi-
nant. They may also be local like the cast shadow of the
hand that appears in Figure 1 (upper right). In this paper
we model illumination change simply as a smooth function
that amplifies/attenuates image contrast. By comparison,
specular reflections (Figure 1, lower right) are typically lo-
cal, especially near regions of high surface curvature, and
can be modeled, in the simplest case, as a near saturation
of image intensity.

The fourth class of events considered in this paper is
iconic change [9]. We use the word “iconic” to indicate
changes that are “pictorial.” These are systematic changes
in image appearance that are not readily explained by
physical models of motion, illumination, or specularity. A
simple example is the blinking of the eye in Figure 1 (lower
left). Examples of physical phenomena that give rise to
iconic change include occlusion, disocclusion, changes in
surface materials, and motions of non-rigid objects. In
this paper we consider iconic changes to be object specific
and we “learn” models of the iconic structure for particular
objects using eigenspace techniques [38].

These different types of appearance change commonly
occur together with natural objects, for example, with ar-
ticulated human motion or the textural motion of plants,
flags, water, etc. We employ a probabilistic mixture model
formulation [30] to recover the various types of appearance
change and to perform a soft assignment, or classification,
of pixels to causes. This is illustrated in Figure 2. In nat-
ural speech, the appearance change of a mouth between
frames can be great due to the appearance/disappearance
of the teeth, tongue, and mouth cavity. While changes
around the mouth can be modeled by a smooth deforma-
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FIG. 1. Four classes of appearance change (explained in text).
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FIG. 2. Two generative models of an image at time ¢. Motion is
represented by a parameterized deformation from the image at time
t+ 1 to the image at time ¢. Iconic change is represented by a linear
combination of learned basis images. The “weights” represent the
probability that the pixels in I(¢) were generated (or are explained)
by each of the models.
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tion (image t+ 1 warped to approximate image t) the large
disocclusions are best modeled as an iconic change (taken
here to be a linear combination of learned basis images).

Both deformation and iconic change can be viewed as
generative models and our goal 1s to estimate the parame-
ters of these models. We define the probability of observ-
ing the image at time ¢ given each of these “causes”. Given
this formulation, the Expectation-Maximization (EM) al-
gorithm [16, 30] is used to iteratively compute maximum
likelihood estimates for the deformation and iconic model
parameters as well as the probabilities that pixels at time
t are explained by each of the causes. These probabili-
ties are the “weights” in Figure 2 and they provide a soft
assignment of pixels to causes.

Changes in image appearance that are not modeled well
by iconic change, deformation, illumination variations, or
specularities are considered to be outliers [24]. To repre-
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sent them explicitly, the mixture-model contains an outlier
layer that receives high weights for pixels that are unex-
plained by any of the models [26]. This helps to ensure
robustness when violations of the models occur. The out-
lier layer also helps us to identify regions where our models
fall short of explaining the appearance change, and there-
fore require improvement. Below we describe our mixture-
model formulation and a collection of appearance-change
models that generalize the notion of brightness constancy
used in estimating optical flow.

2. CONTEXT AND PREVIOUS WORK

Previous work in image sequence analysis has focused
on the measurement of optical flow using conservation as-
sumptions and smooth models of the optical flow field
[4]. One common assumption, referred to as brightness
constancy, is that the image brightness I(x, t) at a pixel
x = [#,y] and time ¢ can be represented by a deformation
of the image at time ¢ + 1:

I(x,t) =I(x —u(x), t+ 1), (1)

where u(x) = (u(x), v(x)) represents the horizontal and
vertical displacement of the pixel. Although useful in
many contexts, 1t is well-known that brightness constancy
is often violated by shadows, global illumination changes,
specular reflections, and the occlusion or disocclusion of
surfaces. In the remainder of this section we review ap-
proaches for making optical flow estimation robust to
changes such as these and relate these to our formulation
of appearance change.

Image Preprocessing

One approach to coping with violations of brightness
constancy has been to preprocess the image to extract im-
age properties whose deformations through time provide a
more reliable measure of the desired flow field. Common
approaches include band-pass filtering and contrast gain
normalization to remove smooth illumination variations,
or the extraction of image features such as edges or re-
gions to achieve robustness with respect to even more sig-
nificant appearance changes [1, 32, 39]. Fleet and Jepson
[19] proposed the use of local phase information (from the
output of bandpass filters). Phase is stable with respect
to smooth variations in illumination and smooth geomet-
ric deformations between frames. Moreover, locations of
phase instability can be detected and therefore ignored,
making the subsequent estimation of optical flow more ro-

bust [20].

Robust Estimation
Image preprocessing, although useful, will not always ac-
count for the full range of ways in which 1image brightness
may change. Models of brightness change will be an ap-
proximation to the true physical processes and hence will

be violated. These violations can be viewed as statistical
outliers, and suggest the need for robust estimation.

The assumption of smooth optical flow fields, although
useful in many situations, is also violated often in practice.
Models of smoothness have been applied in image patches
using regression techniques or through the propagation of
local information using regularization techniques. In par-
ticular, with linear parameterized models, the optical flow
field is often represented by a low-order polynomial (con-
stant, affine, or planar) [5, 8, 14, 19, 36], and is estimated
by collecting hundreds or thousands of constraints over an
image region and using regression methods or other search
techniques. These approaches can recover accurate motion
estimates when the motion model is a good approximation
to the image motion. In real scenes, however, simple mo-
tion models are often inappropriate either because the mo-
tion is more complex or there are multiple objects moving
with different velocities.

Early attempts at robust optical flow estimation in-
volved least-squares regression followed by outlier detec-
tion and rejection, and then re-estimation of the motion for
the remaining image pixels [25]. Black and Anandan [8] in-
troduced robust statistical techniques (M-estimation) [24]
to compute a dominant motion while automatically down-
weighting outliers. Multiple motions can be computed in
a region by successively applying robust estimation tech-
niques to the outliers [8, 37]. Bab-Hadiashar and Suter [3]
developed a robust approach using the Least Median of
Squares (LMedS) technique [35] to estimate the dominant
motion in a region. These robust methods can typically
cope with a small number of motions within a region but
not with general flow fields. Other methods add further
robustness by allowing regions to vary in size [10], or by
regularizing flow both within and between image regions

[28].

Layered Models

The robust estimation techniques above typically as-
sume a single dominant motion within a given region.
Layered models relax this assumption and estimate mul-
tiple motions in a region. Darrell and Pentland [15] in-
troduced the idea of estimating global motions in layers
and presented an optimization scheme using ideas from
robust statistics. Wang and Adelson [42] also formulated
a model that groups coherent velocity estimates into layers
but their approach did not exploit the layered model to di-
rectly estimate motion from images. Jepson and Black [26]
assumed that the motion in the scene could be represented
by a mixture of distributions and used the Expectation
Maximization (EM) algorithm to decompose the motion
into a fixed number of layers. These layered approaches,
and the EM algorithm in particular, have become popular
methods for motion estimation [2, 28, 43, 44, 45].

One issue with layered models concerns the estimation
of the appropriate number of layers. A number of authors
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have used a minimum description length criterion to strike
a balance between accurate encoding of the motion and the
number of layers needed to represent it [2, 15, 27].

With parameterized models, the estimation of the mo-
tion of a given surface may be adversely affected by distant,
and quite unrelated, image points. These distant motions
can act as “leverage points” [35] that pull the solution
away from the desired local motion. A spatial smoothness
constraint can be added to the computation of the weights
that assign pixels to layers [27, 44]. This may reduce the
effect of leverage points by encouraging layers to have spa-
tially coherent support.

Specialized Spatial Models

Parameterized approaches may perform poorly when the
spatial variation of the image motion is more complex than
a low-order polynomial. To handle complex motions with
concise models, Black et al. [13] proposed “learning” lin-
ear parameterized models from training examples using
principal component analysis (PCA). Similarly, Fleet et
al. [18] modeled motion features, such as dynamic occlu-
sion edges and moving bars, using linear combinations of
steerable basis flow fields. These linear models constrain
the interpretation of image motion, and are used in the
same way as translational or affine motion models. Sim-
ilar approaches have been used in modeling the deforma-
tions between individual faces in a database of face images

[6, 17, 23, 33, 40, 41].

Generalizing Brightness Constancy

Much of the recent work in motion estimation has fo-
cused on achieving increased robustness in the presence of
unmodeled appearance changes. In this paper we take the
approach of explicitly modeling many of these events and
hence extend the notion of “constancy” to more complex
types of appearance change.

One motivation for this is our interest in recognizing
complex non-rigid and articulated motions, such as hu-
man facial expressions. Previous work in this area has fo-
cused on analyzing the image motion of face regions such
as mouths [12]. But image motion alone does not cap-
ture appearance changes such as the systematic appear-
ance/disappearance of the teeth and tongue during speech
and facial expressions. For machine recognition we would
like to be able to model these intensity variations.

Our framework extends several previous approaches
that generalize the brightness constancy assumption.
Mukawa [31] extended the brightness constancy assump-
tion to allow illumination changes that are a smoothly
varying function of the image brightness. In a related pa-
per, Negahdaripour [34] proposed a general linear bright-
ness constraint

I(x, ) =m(x, ) I(x —u(x), t + 1)+ ¢(x, t) (2)

where m(x,1) and ¢(x,1) allow for multiplicative and addi-
tive deviations from brightness constancy and are assumed
to be constant within an image region.

Another generalization of brightness constancy was pro-
posed by Nastar et al. [33]. Treating image intensity I as
the height of a surface in 3D XY I-space, they proposed
a physically-based approach for finding the deformation
from an XYI surface at time ¢ to the XY I surface at
t 4+ 1. This allows for a general class of smooth deforma-
tions between frames, including both multiplicative and
additive changes to intensity.

One variation on the general form of (2) is the the use of
object-specific models of image brightness [7, 22, 23, 41].
Hager and Belhumeur [22] used principal component anal-
ysis to find a set of orthogonal basis images, {B;(x)}7=1,
that spanned the ensemble of images of an object under
a wide variety of illuminant directions. They constrained
deviations from brightness constancy to lie in the subspace
of illumination variations, giving the constraint

Kxﬂ:I@—u@mmt+U+§:@@@% (3)

where u(x; m) is a parameterized (affine) model of image
motion. The authors estimated the motion coefficients m
and the subspace coefficients b1...b,.

This is similar to our model of illumination variation
but does not allow mixtures of multiple causes within a
region. These approaches are also related to the eigen-
tracking work of Black and Jepson [11] in which subspace
constraints were used to help account for iconic changes in
appearance while an object was being tracked.

3. MIXTURE MODEL OF APPEARANCE
CHANGE

The approach presented here recasts a number of the
above approaches in a probabilistic mixture model frame-
work [30]. We propose a set of generative models that can
be used to construct or explain an image.  Unlike the
approaches above, the mixture model framework decom-
poses the appearance change into multiple causes. It also
performs a soft assignment of pixels to the different mod-
els while allowing for outliers, i.e., pixels that are not well
explained by any one model.

In particular, we assume that the image I(x,?) at lo-
cation x at time ¢ is generated, or explained, by one of
n causes Io,, ¢ = 1,...,n. The causes, I¢,(x,?;a;), can
be thought of as overlapping layers and are simply images
that are generated given a vector of parameters a;. We will
consider four causes below, namely, motion (Ips), illumi-
nation variations (I ), specular reflections (Ig), and iconic
(pictorial) changes (Ip). A fifth cause (Ip) will represent
outliers.
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Given n of the above causes, the probability of observing
the image I(x,?) is a mixture model [30] given by

n

pI(x,0) [{ay, 05 }721) = > wilx) pi(I(x,1) | a;, 03). (4)

i=1

The w;(x) are “ownership probabilities.” They specify
the relative probabilities that the different models account
for the appearance change at pixel x. At each pixel, these
probabilities sum to unity; that is, >, w;(x) = 1. In prac-
tice, we use a single outlier model while we may employ
any number of motion, illumination, specularity, or iconic
models to explain the image region.

The dependence of w;(x) on image location allows for
the fact that the appearance change at different pixels will
often be explained by different causes that vary across the
image. This generalizes the more common formulation in
which mixture probabilities m; replace the w; in (4), and
are given as the average weights over an image region (or
over an ensemble of independent samples from the dis-
tribution); that is, 7y = >~ w;(x)/N. In our formulation,
the causes provide parametric models over the entire image
region, while the weights represent the relative likelihoods
pi(I(x,t)|a;, 04) of each cause at every pixel.

Finally, the o; in (4) are scale parameters that are used
to control a form of deterministic annealing in the estima-
tion of the parameters (to be discussed below).

Robustness in the current framework occurs in two ways,
namely, with the use of an outlier layer and with the
form of the likelihood function used. In contrast to a
Gaussian mixture formulation, the component probabil-
ities used here for the generative models of appearance
change, p;(I(x,1)| a;, 0;), are defined to be

3
207

i(I(x,t)|a,00) = —5——53,
p( (X )|a U) F(O.Zz_i_AI%l)Z (5)

where Al = I(x,t) — Ic,(x,¢;a;).  This is a t-
distribution of degree 3 centered at I, (x,t; a;) with stan-
dard deviation o; [29]. Simply put, the probability that
an image pixel at time ¢ is explained by each cause is a
function of the difference between the observed intensity
and that predicted by the model. This likelihood function
(Figure 3) has the properties that it falls off more rapidly
than a Gaussian distribution and has heavier tails. This
reflects our expectation that the residuals Algs, contain
outliers [24]. The fact that the likelihood drops rapidly
will have the effect of forcing large residuals for a given
model to be accounted for by other models, thereby help-
ing to separate the explanation of image data into distinct
causes.

pi(l(x,1)|a;, 07)

FIG. 3. A robust likelihood function, p;.

FIG. 4.

Affine flow basis set.

3.1.

In what follows, we describe the four generative models

Sources of Appearance Change

of appearance change and the outlier model in more detail.

Motion
Motion is a particularly important type of appearance
change that is modeled by

Ine(x,t;ap) = I(x —u(x; apr), ¢+ 1).

The image at time ¢ is generated by warping the image at
time ¢ + 1 by a flow field u(x; apr). We use a parametric
description of optical flow in which the motion in an image
region is modeled as a linear combination of k& basis flow

fields {A; (l‘)}lez

u(x; ay) = ij M;(x). (6)

where ayr = [my, ...
be estimated.

,my] is the vector of parameters to

For the experiments in Section 5 we use an affine flow
model. For an image region about pixel (z., y.), the affine
model is given by

u(z,y) = mo+mi(x —a.)+ma(y —y.), (7)
v(z,y) = m3+ma(x —x.)+ms(y—y.), (8)

Equivalently, we can express affine motion as in (6) with
an explicit set of constant and linear basis flow fields, as
shown in Figure 4.

Illumination Variations
IMNlumination changes may be global, resulting from
changes in the illuminant, or local, as a result of shadows
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FIG. 5.

Linear illumination-change basis images.

cast by objects in the scene. The mixture formulation al-
lows both of these types of variation to be modeled, where
the (ownership) weights in the mixture indicate where il-
lumination variations have occurred in the image.

With simple changes in illumination, an image at time
t can be written as a scaled version of the image at time
t+1,ie, 1+ L(x;ar)] I(x,t + 1) where 1 4+ L(x;ar) is
the scaling function parameterized by ar. The change in
appearance is then L(x,ar)I(x,t+ 1). If we allow for
motion as well as illumination change, then the change in
image appearance can be written as

It m(x, t;ay,ar) = L(x;ap) I(x —u(x;ap ), t 4+ 1).(9)

This states that the illumination change is a scaled version
of the motion-compensated image at time ¢ + 1. When
estimating the parameters ay here we assume that the
motion u(x;aps) is known and fixed.

We take L(x; ar) to be a parametric model, expressed
as a weighted sum of basis images. For example, in the
case of linear spatial variation, L is given by

3
L(X; aL) = 11 + lz(l‘ — l‘c) + lg(y — yc) = le LZ(X)
i=1

where (z.,y.) is the center of the relevant image region,
ar = [l1, 2, 5] are the model parameters, and L;(x) denote
the basis images, shown for the linear model in Figure 5.

Specularity Model

Specularities are typically local and result in near sat-
uration of image brightness. While more sophisticated
models of specularities may be formulated, we have exper-
imented with a simple model which works well in practice:

3
Is(x,t; as) = 51+ s2(x —x.) + s3(y —ye) = ZSZ' Si(x)
i=1

where S; are the same linear basis images as in Figure b
and ag = [s1, s2,s3]. Note that unlike the illumination
model, the specularity term is independent of the image.

Iconic Change

In addition to the generic types of appearance change
above, there are image appearance changes that are spe-
cific to particular objects or scenes. Systematic changes in
appearance exhibit spatial or temporal structure that can
be modeled and used to help explain appearance changes

in image sequences. Recall the example of human mouths
in Figure 2. As people talk, their lips deform smoothly
but there are also changes that cannot be characterized
as smooth deformation, such as the appearance and dis-
appearance of the teeth as the mouth opens and closes
(Figure 6).

As with the models above, we use a linear, parametric
model of iconic change. However, here we learn the ap-
propriate model from the individual frames of a training
image sequence using principal component analysis. This
is described in Section 6; for now it is sufficient to think
of the iconic model, like the specularity model, as a linear
combination of basis images 4;(x)

Ip(x,t; ap) = Za Ai(x), (10)

where ap = [ay, ...
be estimated.

, @g] 1s the vector of scalar values to

Outlier Model
For the outlier layer, we adopt a simple model in which
image intensity is uniformly distributed between the min-
imum and maximum intensity values; that is, the model
can generate (explain) any pixel with uniform probability.
Chosing oo such that it satisfies

3
209

po(I(x,t)loo) = (03 + (2.500)%)?

=1/256
gives the likelihood of an outlier.

4. EM-ALGORITHM

We seek a maximum likelihood estimate of the global
model parameters ay, ..., a, and the ownership probabili-
ties, w1 (X), ..., wy(x) that yield a soft assignment of pixels
to models. If the parameters of the different models are
known, then we can compute the probability that pixel
x belongs to cause i. These probabilities, referred to as
ownership weights, are given by [30]

pi(I(x,t)| a;, o)
Z;’lzl pj(I(X’t)| aj’aj)

These ownership weights force every pixel to be explained
by some combination of the different causes. As the o; go

(11)

wi(x, 0;) =

Deformation

Iconic change

FIG. 6.

Object-specific deformation and iconic change.
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to zero, the likelihood function approaches a delta func-
tion. Therefore, for small values of o; the weights will
tend towards zero or one.

The maximum likelihood estimate of the model param-
eters, given the ownership weights, satisfies [30]

ZZwi(x, Ui)aiailog pi(I(x, )] a;,00) =0 (12)

x i=1

where the derivative of the log likelihood is given by

dlog p;(I(x,t)|a;,00) Ilc, (x,t;a;)
Oa, = U(Alg,,03) e, (13)
where
—4Al-
U(Al,, ;) = ———Cr 14
( C,,O') 0_22+AI%1 ( )

and Alg, = I(x,t) — Ic,(x,t;a;) for the i model.
Note the similarity between the derivative of the log like-
lihood used here in Figure 7 and the shape of the influ-
ence functions of common robust M-estimators [24]. In
M-estimation this shape has the effect of reducing the in-
fluence of outliers on the maximum likelihood estimate.
The ¥-function here has the same effect.

In the case of Gaussian mixtures with linear models,
the model parameters can be computed in closed form
given the ownership weights. However, with the robust
likelihood function and the nonlinear models used here,
we incrementally compute the a; satisfying (12). Briefly,
we replace a; with a; 4+ da; where da; is an incremental
update. We approximate (12) by its first order Taylor ex-
pansion, simplify, and solve for éa; using gradient ascent.
We then update a; — a; + éa;. This algorithm is similar
to that described in [8, 11] for the robust estimation of
optical flow.

Estimation of large image motions requires a coarse-to-
fine process in which the images are represented with a
Gaussian pyramid. The ap; are updated at a coarse level
and then projected to the next finer level where they are
used to warp the image at time ¢ + 1 towards the image at
t, thereby incrementally reducing the difference between
the images (see [5, 8] for details).

The EM algorithm [16] alternates between solving for
the weights, w;(x, 0;), given an estimate of the param-
eters, aj...a, (the Expectation step), and then updating

U(r, o)

FIG. 7. U(r,o) (the derivative of the log likelihood).

the parameters, a;...a,, with the weights held fixed (the
Maximization step). It should be noted that although the
EM algorithm works well in practice, its validity with finite
mixtures of t-distributions remains unclear.

Each model has an associated value of o; which deter-
mines what residual values are considered to be outliers.
A common approach for improving the stability of the es-
timation process and for avoiding local maxima is to use
a deterministic annealing scheme in which the values of
o; start at a high value and are lowered to the value that
gives the desired outlier rejection properties. Here these
values are determined empirically. For all the experiments
in this paper the value of o; began at 45.0 and was lowered
by a factor of 0.95 at each iteration of the optimization to
a minimum of 10.0. These same values of o were used for
all the models.

The effect of o on the interaction between the mod-
els is interesting to consider. For high values of o, the
likelihood function falls off slowly and hence models tend
to “share” the explanation of pixels; that is, the w;(x)
are close to 1/n. When the residual errors, Als, =
I(x,t) — Ic,(x,t;a;), result in likelihoods that are lower
than po, then the normalization in (11) has the effect of
shifting the weight to the outlier layer. At the beginning
of the annealing process the high value of ¢ means that
the outlier probability is much smaller than the generative
model would suggest; that is, smaller than po = 1/256. In
this case the outlier layer accounts for few if any of the pix-
els. As o is annealed the outlier probability monotonically
increases towards 1/256 and more pixels are accounted for
by that layer.

5. GENERIC APPEARANCE CHANGE

This section presents examples of generic appearance
changes that are common in natural scenes, namely, mo-
tion, illumination variations, and specularities.

5.1. Multiple Motions

We begin with an experiment involving multiple motions
within a region. Figure 8 shows a person moving behind
a plant. We assume that there are two affine motions
present and solve for them using the robust mixture for-
mulation. The figure shows the weights for the foreground
layer (wpr, (x)) and the background layer (wpr, (x)) where
white indicates a weight near 1.0 and black near 0.0. The
outlier layer receives high weight in regions that border oc-
clusion boundaries. This simple model of layers does not
account for the appearance/disappearance of image pixels
and hence these regions are assigned automatically to the
outlier layer.

5.2. Shadows
We next consider a mixture of motion and illumination
variation (Figure 9). The appearance variation between
Figures 9¢ and b includes both global motion and an illu-
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f: wo(x) (outliers)

FIG. 8. Multiple Motion Experiment (see text).

a: b: I(x,t+1) c: flow
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FIG. 9. Ilumination Experiment 1 (cast shadow of a hand). Appearance change estimated using a single motion layer with outliers (see
text).

mination change caused by the shadow of a hand in frame level pyramid is used in the coarse-to-fine estimation and
t+ 1. The true motion field contains expansion due to the the motion is computed using the affine model presented
motion of the background. Figure 9 shows the results of in Section 3.

assuming just a single motion within the region. A three
The result of the estimation process is a mixture model

for the image at time ¢ based on the image at time
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d: |1(x,1) = Imean(x)]

e: wyr(x)
FIG. 10.

t + 1 and the appearance change parameters. The mix-
ture model forms a generative model from which we can
sample reconstructions of the image at time . We can
also compute the expectation E[I(x,t)[{a;,0;}7_;] as a
way of illustrating the generative model. Think of draw-
ing samples (images) from the generative model. At a
given pixel x, with probability was(x), the intensity sam-
ple is Inr(x,t;apr) while with probability wo(x) the in-
tensity sample 1s drawn from the outlier distribution. The
expected value of the outlier model 18 128. The ex-
pected image, Iyeqn, from the generative model is there-
fore Imean(x) = war(x)Inr (x) + wo(x)128. For example,
Figure 9d shows this “mean reconstruction” image (at time
t) that results from the mixture of the deformation (from
time ¢+ 1) and the outlier layer. Note that the uniform ex-
pected intensity of the outlier model means that the outlier
pixels corresponding to the shadowed hand region appear
roughly as a uniform gray.

The absolute difference between this model image and
the actual image at time ¢ is shown in Figure 9e, and
Figure 9 f, g shows the weights for the single motion layer
and the outlier layer. Note first that, while this robust
formulation of the motion-only model is able to detect the
correct outliers, the recovered optical flow is inaccurate.
The large number of unmodeled intensity changes pull the
solution away from the true motion. Qutlier maps like this,
with large numbers of outliers, provide a clear indication
that the model fails to explain the appearance changes
caused by the shadow, and that a richer class of models is
required.

AR
ARRRARRAS

At et ot e e® et 0 =0 = S
A Attt et ot 2 > o - .
LA B B B S B B A A A

L A R A el e e
0 0 e P e e e e—————
o 0 0 o ¢ ¢ e e e e o

frwr p(x) g: wo(x) (outliers)

TMumination Experiment 2. Appearance change estimated using a mixture of motion and illumination change models (see text).

If, instead, we allow a mixture of the affine motion
model (Izr) and the linear illumination model (Ir ar),
we see an improvement in the image motion. We es-
timate the ownership weights war(x) and wr ar(x) that
assign pixels to the models and the motion parameters
aps and illumination parameters ayp as described in the
previous section. Figure 105 shows the mean reconstruc-
tion of the image at time ¢, which 1s now much closer to
the actual image in Figure 10a. This image is given by
Ipean(x) = war(x) I (x) + wr pr(x)In ar(x) + wo(x)128.
Figures 10d-f show the reconstruction error, the weight
images war(x) and wr ar(x), and the outlier image. The
motion weights wps(x) are near 1 (white) when the appear-
ance change is captured by motion alone. Where there is
illumination change as well as motion, in the region of the
hand, the weights wps(x) are near 0 (black) and weights
wr, am(x) are near 1. The gray regions indicate weights
near 0.5 which are equally well described by the two mod-
els.

The outlier layer (Figure 10¢) indicates which pixels had
appearance changes that were not well explained by either
model. Compared with the motion-only model in Figure
9f, the motion+illumination model exhibits far fewer out-
liers, most of which now occur around the boundary of the
shadow. Our simple illumination model only accounts for
a linear illumination change while the actual shadow fades
non-linearly at the edges of the hand. Thus the boundary
regions are not well explained by the illumination change
model. To better account for local variations in illumi-
nation one could replace the linear model L with a reg-
ularized model of the illumination variation (see [43] for
regularization in a mixture-model framework).
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. [1(t) = Imean(x)]

FIG. 11.

Finally, note that there is a significant difference be-
tween the flow fields computed using these two different
models as shown in Figures 9¢ and Figure 10c. The mo-
tion is Figure 10¢ is qualitatively correct. Explicitly ac-
counting for the illumination change thus results in a more
accurate representation of the true motion.

5.3. Specularities

Consider the example in Figure 11 in which a stapler
with a prominent specularity on the metal plate is moved.
We first apply a single affine motion model with outliers
to explain the appearance change. A four level pyramid
was employed to capture the large motion between frames;
other parameters remained unchanged. The recovered mo-
tion is relatively accurate despite the fact that very few
pixels were actually used in computing it. Examining the
motion layer weights, wps(x) in Figure 11f, we see that the
motion layer receives high weight in the uniform regions
which provide few constraints on the motion. The outlier
layer, by comparison captures the majority of the metal
plate where the specularity occurs. As above, this indi-
cates that the structure of the appearance change in this
region could not be explained by the single motion model.

We next model this situation using a mixture of motion
(Inr) and specularity (Ig) models. The simplified model
of specularities assumes that some regions of the image
at time ¢ can be modeled as a warp of the image at time
t + 1 while others are best modeled as a linear brightness
function.

The estimated flow field is shown in Figure 12¢. The
mean reconstructed image, computed from the mixture
of the motion and the linear brightness models, is shown
in Figure 12b; this is given by Inean(X) = war(x) I (x) +
wg(x)Is(x)+wo(x)128. The reconstruction error is shown
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PPPPPPPPPIPLPPPPIPPPIP?
PPPPPPPIPPIIPILIILP?P 222
PPPPPPPPPIPPIPIIPILIILIV?
PPPPPPPPPPIPIPIPIPIIPI?
PLPPPLLPLILLPPPPPIPILIL
PLPPPPPPPIPIPILIPLIPIPIP?
PPPPPPPPPIPIPPIPIPIPIPIPIAIPIAL?,
PPPPPPPPPPPPIPPIPIPIPL?
PPPPPLPLLPLLPPPPPPPPLAL
PPPPPPPPPPPPPLPPP PP 222
PPPPPPPPPPPPPPPPILIAILS

PPPPPPPPPPPAPIPILL

c: flow

g: wo(x) (outliers)

Specularity Experiment 1 (a moving stapler). Appearance change estimated using a single motion layer with outliers (see text).

in Figure 12d. The ownership weights for the two model
components, along with the weights for the outlier layer
are shown in Figures 12e,f,g. Note how the weights in
Figure 12e are near zero for the motion model where the
specularity changes significantly. The weights also show
that the outlier layer (Figure 12¢) no longer accounts for
the majority of the specularity. The region of specularity
in the lower right corner of the metal plate 1s similar in
both frames and hence is “shared” by both models.

5.4. Combining Models of Appearance Change

We consider a final example of appearance change that
combines all the generic models. Figure 13 shows two
frames from a sequence in which a pair of scissors moves
rigidly and casts a shadow on a stationary, roughly planar,
surface. The change in orientation of the scissors with re-
spect to the light source causes a significant specular re-
flection. Four appearance models, plus the outlier model,
are required to explain the change between this pair of
images. The parameters were the same as in all the other
experiments and a three level pyramid was used for motion
estimation.

The ownership weights corresponding to each of the
models are shown in Figure 13 and include the motion of
the background (waz, (x)), the illumination change caused
by the shadow cast on background (wr ar, (x)), the mo-
tion of the scissors (wpr,(x)), and the specular reflection
(ws(x)). Difference images help illustrate which parts of
the image are accounted for by each of the models. Notice
that the motion model, My, accounts for much of the back-
ground but the area where the scissors cast a shadow has
lower probability of being explained by that model. This
same region is accounted for by the illumination model as
can be seen in the weights wr ar, (x). Notice that in dark
regions of the image the illumination model can account for
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d: I(x,%) = Imean(X)] e: wyr(x)

FIG. 12.

the appearance nearly as well as the simple motion model,
this is due to the multiplicative nature of the illumination
term.

The motion, Ms, accounts for motion of the hand and
portions of the scissors. The blades of the scissors exhibit
a large change due specular reflection and this is accounted
for by the specularity model as can be seen in the weights
wg(x). Additionally, the outlier layer, wo(x), largely ac-
counts for the regions around the edges of the scissors and
hand which correspond to regions of occlusion or disocclu-
sion for which we do not have a generative model. Finally,
the expected image, Inean(X), provides a reasonable re-
construction of the image I(x,1); the difference image cor-
responding to the mean illustrates that more pixels are
well modeled with the mixture model than with any of the
individual models alone.

This example raises a number of interesting issues. For
this experiment, we manually selected the number and
type of models to employ. Ideally we would like to de-
termine the models automatically but to do so will require
us to model the prior probabilities of observing the differ-
ent types of appearance change in typical image sequences.
Appropriate prior models will be required to choose among
competing hypotheses. As the number of models increases
so does the danger of over parameterization and computa-
tional instability. Here a notion of spatial locality of the
causes (modeled as a prior probability) may be useful (cf.

[43, 44]).

6. EXPERIMENTS: ICONIC CHANGE

Unlike the generic illumination and reflection events in
the previous section, here we consider image appearance
changes that are specific to particular objects or scenes.

frws(x)

g: wo(x) (outliers)

Specularity Experiment 2. Appearance changed accounted for using a mixture of motion and specularity models (see text).

Following previous work on eigen-based representations of
image structure and image motion [7, 9, 13, 18, 22, 23,
41], we learn parameterized models of motion and iconic
structure from examples. We then use these in our mixture
model framework to explain motion and iconic change in
human mouths.

6.1. Learned Iconic Model

To capture the iconic change in domain-specific cases,
such as the mouths in Figure 14, we construct a low-
dimensional model of the p images in the training set using
principal component analysis (PCA). For each s = n x m
training image we construct a 1D column vector by scan-
ning the pixels in the standard lexicographic order. Each
1D vector becomes a column in an s X p matrix B. We
use singular value decomposition to decompose B as

B =A%, V.. (15)

Here, A is an orthogonal matrix of size s X p, the columns
of which represent the principal directions in the train-

ing set. X, is a diagonal matrix with singular values
A1, Aa,..., Ay sorted in decreasing order along the diag-
onal.

Because there is a significant amount of redundancy in
the training sequence, the effective rank of B will be much
smaller than p. Accordingly, the first few columns of A
provide a basis that spans the majority of the structure
in B. Here we express the it column of A as a 2D basis
image, A;(x), so that we can approximate images like those
in the training set as

Ip(x,t; a) = ZaiAi(x), (16)
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FIG. 14 Example frames from training sequences of facial expres-
sions (anger, joy, sadness).
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FIG. 15.

for the facial expression experiment.

First eight basis appearance images, A1(x), ..., As(x),

where a = [ay, ..., a,] is the vector of scalar values to be
estimated and ¢ < p.

Figure 14 shows samples of mouth images taken from a
training set of approximately 500 images. The training set
included image sequences of different subjects performing
the facial expressions “joy,” “anger,” and “sadness.” The
faces of each subject were stabilized with respect to the
first frame in the sequence using a planar motion model
[12]. The mouth regions were extracted from the stabilized
sequences and PCA was performed. The first 11 basis
images account for 85% of the variance in the training
data and the first eight of these are shown in Figure 15.

6.2.
We learn a domain-specific model for the deformation

Learned Deformations

component of the appearance change in much the same
way using PCA [13]. We first compute image motion for
each training sequence using the brightness constancy as-
sumption and a robust optical flow algorithm [8]. The
training set consists of a set of p optical flow fields. For
images with s = n x m pixels, each flow field contains
2s quantities (i.e., the horizontal and vertical flow compo-
nents at each pixel). For each flow field we place the 2s
values into a column vector by scanning u(x) and then v(x)
in lexicographic order. The resulting p vectors become the
columns of a 2s x p matrix F'.

As above we use PCA to decompose F as F' = M %, VL.
Flow fields like those in the training set can then be ap-
proximated as

3
m) = ij M
ji=1

where k < p, and M;(x) denotes the j'" column of M
interpreted as a 2D vector field. Note that this model is
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FIG. 16. First eight basis flow fields, M (x), ...

facial expression mouth motion.

conceptually equivalent to the affine models used above
except that it i1s tailored to a domain-specific class of mo-
tions.

Figure 16 shows the first eight basis flow fields recovered
for this training set. The first 11 basis flow fields account
for 85% of the variance in the training set.

6.3. Mixture of Motion and Iconic Change

We model appearance change of a mouth as a mixture
of the learned motion and iconic models. We performed
a number of experiments with image sequences of sub-
jects who were not present in the training set. In our
experiments we used 11 basis vectors for both motion and
iconic models. We estimated the parameters for deforma-
tion apy, iconic change ap, the ownership weights, wyr(x)
and wp(x), and the outlier weights between each consec-
utive pair of frames using a four-level pyramid and the
EM-algorithm as described earlier.

Figure 17 shows two consecutive frames from a smiling
sequence; notice the appearance of teeth between frames.
The motion model, Tns(x,¢; apr), captures the deformation
around the mouth but cannot account for the appearance
of teeth. The recovered flow field is shown in Figure 17¢
and one can see the expansion of the mouth. The iconic
model, Ip, on the other hand, does a reasonable job of
recovering an approximate representation of the image at
time t (Figure 17d). The iconic model however does not
capture the brightness structure of the lips in detail. This
behavior 1s typical; the iconic model 1s an approximation
to the brightness structure so, if the appearance change
can be described as a smooth deformation, then the mo-
tion model will likely do a better job of explaining this
structure.

The behavior of the mixture model can be seen in the
weights (Figures 17¢ and 175). The weights for the motion
model, wyr(x), are near zero in the region of the teeth,
near one around the high contrast boarder of the lips, and
near 0.5 in the untextured skin region which is also well
modeled by the iconic approximation Ip.

Figure 17g is the expected image given the generative
model. Note how this image resembles the original image
in Figure 17a. Also notice that the iconic model fills in
around the edges of the stabilized image where no infor-
mation was available for warping the image.
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ir wpr(x)

FIG. 17.

Not all the changes in the image could be accounted for
by the two models. There is a change on the lower lip
that is due to specular reflection. This specularity was
apparently not captured in the learned iconic model and
since no specularity model was included here, those pixels
are best explained as outliers (Figure 17k).

7. FUTURE DIRECTIONS

A research issue that warrants further work is the use of
priors on the collection of models that would enable one to
prefer some explanations over others. Without the use of
priors, a mixture model with several sources of appearance
change may produce several equally likely explanations.
The probabilistic formulation here should facilitate such
an approach.

As in Section 5.4, we may expect more than one in-
stance of each type of appearance change within an image
region. In this case we will need to estimate the number
of instances of each appearance model that are required.
There has been recent work on this topic in the area of
multiple motion estimation [2, 28, 44].

A related issue is the use of spatial smoothness in the
modeling of appearance change. In place of the param-
eterized models we might substitute regularized models
of appearance change with priors on their spatial smooth-
ness. In a mixture model framework for motion estimation,
Weiss [43, 44] has shown how to incorporate regularized
models and smoothness priors on the ownership weights.

8. CONCLUSIONS

Appearance changes in image sequences result from a
complex combination of events and processes, including
motion, illumination variations, specularities, changes in
material properties, occlusions, and disocclusions. In this
paper we propose a robust statistical framework that mod-

J: wp(x)

Facial Expression Experiment. Appearance changed modeled as a mixture of motion and iconic change (see text).

k: wo(x) (outliers)

els these variations as a probabilistic mixture of causes. To
illustrate these ideas, we have proposed some simple gen-
erative models.

Unlike previous work, the approach allows us to pull
apart, or factor, image appearance changes into different
causes and to locate where in the image these changes oc-
cur. Moreover, multiple, competing, appearance changes
can occur in a single image region. We have implemented
and tested the method on a limited suite of image se-
quences with different types of appearance change.

One way to view this work is as a generalization of cur-
rent work in the field of motion estimation to richer models
of appearance change that allow one to relax the bright-
ness constancy assumption. We expect that more com-
plex models of illumination variation and iconic change
can be accommodated by the framework and we feel that
it presents a promising direction for research in image se-
quence analysis.
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