
Robustly Estimating Changes in Image AppearanceMichael J. BlackXerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304E-mail: black@parc.xerox.comDavid J. FleetXerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304Department of Computing and Information Science, Queen's University, Kingston, CanadaE-mail: 
eet@parc.xerox.comandYaser YacoobComputer Vision Laboratory, University of Maryland, College Park, MD 20742E-mail: yaser@cs.umd.eduWe propose a generalized model of image \appear-ance change" in which brightness variation over timeis represented as a probabilistic mixture of di�erentcauses. We de�ne four generative models of appearancechange due to: 1) object or camera motion; 2) illumina-tion phenomena; 3) specular re
ections; and 4) \iconicchanges" which are speci�c to the objects being viewed.These iconic changes include complex occlusion eventsand changes in the material properties of the objects.We develop a robust statistical framework for recover-ing these appearance changes in image sequences. Thisapproach generalizes previous work on optical 
ow toprovide a richer description of image events and morereliable estimates of image motion in the presense ofshadows and specular re
ections.Key Words: optical 
ow, mixture models, outliers,probabilistic models, illumination change, specularities,iconic change. 1. INTRODUCTIONAs Gibson noted, the world is made up of surfacesthat \
ow or undergo stretching, squeezing, bending, andbreaking in ways of enormous mechanical complexity"([21], page 15). These events result in a wide variety ofchanges in the \appearance" of objects in a scene. Whilemotion and illumination changes are examples of commonscene events that result in appearance change, numerousother events occur in nature that cause changes in ap-

pearance. For example, the color of objects can changedue to chemical processes (e.g., oxidation), objects canchange state (e.g., evaporation, dissolving), or objects canundergo radical changes in structure (e.g., exploding, tear-ing, rupturing, boiling). In this paper we formulate a ro-bust statistical framework for representing certain classesof appearance changes. In so doing we have three primarygoals. First, we wish to \explain" appearance changes inan image sequence as resulting from a \mixture" of causes.Second, we wish to locate where particular types of ap-pearance change are taking place in an image. And, third,we want to provide a framework that generalizes previouswork on motion estimation.The estimation of motion in image sequences is a dif-�cult problem that involves pooling noisy measurementsto make reliable estimates. This assumes some model ofthe image variation within a region. For example, it iscommonly assumed that the brightness within a region isconserved through time, that a single motion is present,and that the motion can be described by a low-order poly-nomial. For natural scenes, this model is a crude approx-imation that fails to capture many kinds of appearancechange such as those mentioned above.When our models of the scene are violated, we havetwo choices, namely, formulate more realistic models oradopt robust statistical techniques to cope with the vio-lations of the assumptions. In general we should pursuethe former while recognizing its limitations. For exam-ple, \better" models may require that more parametersbe estimated which may be undesirable since even simple1



2 BLACK, FLEET AND YACOOBmodels may be underconstrained. Furthermore, although\simple" models used for optical 
ow are typically lin-ear in the unknown parameters and admit closed form ore�cient iterative solutions, signi�cantly \better" modelsmay be non-linear and computationally prohibitive. Fi-nally, in natural scenes, any models we formulate will beapproximate and certain appearance changes will remainunmodeled. These unmodeled image variations require usto maintain a robust statistical formulation even as ourmodels improve.In this paper we pursue a strategy of both construct-ing more realistic models of appearance change and for-mulating the problem using robust statistical techniques.Speci�cally, we discuss the use of four generative models to\explain" the classes of appearance change illustrated inFigure 1. A change in \form" is modeled as the motion ofpixels in one image to those in the next image; that is, animage at time t+1 can be explained by warping the imageat time t using this image motion. Our framework usesa layered representation to model multiple motions in aregion due to occlusion and limited forms of transparency.Illumination variations may be global, occurringthroughout the entire image due to changes in the illumi-nant. They may also be local like the cast shadow of thehand that appears in Figure 1 (upper right). In this paperwe model illumination change simply as a smooth functionthat ampli�es/attenuates image contrast. By comparison,specular re
ections (Figure 1, lower right) are typically lo-cal, especially near regions of high surface curvature, andcan be modeled, in the simplest case, as a near saturationof image intensity.The fourth class of events considered in this paper isiconic change [9]. We use the word \iconic" to indicatechanges that are \pictorial." These are systematic changesin image appearance that are not readily explained byphysical models of motion, illumination, or specularity. Asimple example is the blinking of the eye in Figure 1 (lowerleft). Examples of physical phenomena that give rise toiconic change include occlusion, disocclusion, changes insurface materials, and motions of non-rigid objects. Inthis paper we consider iconic changes to be object speci�cand we \learn" models of the iconic structure for particularobjects using eigenspace techniques [38].These di�erent types of appearance change commonlyoccur together with natural objects, for example, with ar-ticulated human motion or the textural motion of plants,
ags, water, etc. We employ a probabilistic mixture modelformulation [30] to recover the various types of appearancechange and to perform a soft assignment, or classi�cation,of pixels to causes. This is illustrated in Figure 2. In nat-ural speech, the appearance change of a mouth betweenframes can be great due to the appearance/disappearanceof the teeth, tongue, and mouth cavity. While changesaround the mouth can be modeled by a smooth deforma-
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Weights WeightsFIG. 2. Two generative models of an image at time t. Motion isrepresented by a parameterized deformation from the image at timet+1 to the image at time t. Iconic change is represented by a linearcombination of learned basis images. The \weights" represent theprobability that the pixels in I(t) were generated (or are explained)by each of the models.tion (image t+1 warped to approximate image t) the largedisocclusions are best modeled as an iconic change (takenhere to be a linear combination of learned basis images).Both deformation and iconic change can be viewed asgenerative models and our goal is to estimate the parame-ters of these models. We de�ne the probability of observ-ing the image at time t given each of these \causes". Giventhis formulation, the Expectation-Maximization (EM) al-gorithm [16, 30] is used to iteratively compute maximumlikelihood estimates for the deformation and iconic modelparameters as well as the probabilities that pixels at timet are explained by each of the causes. These probabili-ties are the \weights" in Figure 2 and they provide a softassignment of pixels to causes.Changes in image appearance that are not modeled wellby iconic change, deformation, illumination variations, orspecularities are considered to be outliers [24]. To repre-



ROBUSTLY ESTIMATING CHANGES IN IMAGE APPEARANCE 3sent them explicitly, the mixture-model contains an outlierlayer that receives high weights for pixels that are unex-plained by any of the models [26]. This helps to ensurerobustness when violations of the models occur. The out-lier layer also helps us to identify regions where our modelsfall short of explaining the appearance change, and there-fore require improvement. Below we describe our mixture-model formulation and a collection of appearance-changemodels that generalize the notion of brightness constancyused in estimating optical 
ow.2. CONTEXT AND PREVIOUS WORKPrevious work in image sequence analysis has focusedon the measurement of optical 
ow using conservation as-sumptions and smooth models of the optical 
ow �eld[4]. One common assumption, referred to as brightnessconstancy, is that the image brightness I(x; t) at a pixelx = [x; y] and time t can be represented by a deformationof the image at time t+ 1:I(x; t) = I(x � u(x); t+ 1); (1)where u(x) = (u(x); v(x)) represents the horizontal andvertical displacement of the pixel. Although useful inmany contexts, it is well-known that brightness constancyis often violated by shadows, global illumination changes,specular re
ections, and the occlusion or disocclusion ofsurfaces. In the remainder of this section we review ap-proaches for making optical 
ow estimation robust tochanges such as these and relate these to our formulationof appearance change.Image PreprocessingOne approach to coping with violations of brightnessconstancy has been to preprocess the image to extract im-age properties whose deformations through time provide amore reliable measure of the desired 
ow �eld. Commonapproaches include band-pass �ltering and contrast gainnormalization to remove smooth illumination variations,or the extraction of image features such as edges or re-gions to achieve robustness with respect to even more sig-ni�cant appearance changes [1, 32, 39]. Fleet and Jepson[19] proposed the use of local phase information (from theoutput of bandpass �lters). Phase is stable with respectto smooth variations in illumination and smooth geomet-ric deformations between frames. Moreover, locations ofphase instability can be detected and therefore ignored,making the subsequent estimation of optical 
ow more ro-bust [20]. Robust EstimationImage preprocessing, although useful, will not always ac-count for the full range of ways in which image brightnessmay change. Models of brightness change will be an ap-proximation to the true physical processes and hence will

be violated. These violations can be viewed as statisticaloutliers, and suggest the need for robust estimation.The assumption of smooth optical 
ow �elds, althoughuseful in many situations, is also violated often in practice.Models of smoothness have been applied in image patchesusing regression techniques or through the propagation oflocal information using regularization techniques. In par-ticular, with linear parameterized models, the optical 
ow�eld is often represented by a low-order polynomial (con-stant, a�ne, or planar) [5, 8, 14, 19, 36], and is estimatedby collecting hundreds or thousands of constraints over animage region and using regression methods or other searchtechniques. These approaches can recover accurate motionestimates when the motion model is a good approximationto the image motion. In real scenes, however, simple mo-tion models are often inappropriate either because the mo-tion is more complex or there are multiple objects movingwith di�erent velocities.Early attempts at robust optical 
ow estimation in-volved least-squares regression followed by outlier detec-tion and rejection, and then re-estimation of the motion forthe remaining image pixels [25]. Black and Anandan [8] in-troduced robust statistical techniques (M-estimation) [24]to compute a dominant motion while automatically down-weighting outliers. Multiple motions can be computed ina region by successively applying robust estimation tech-niques to the outliers [8, 37]. Bab-Hadiashar and Suter [3]developed a robust approach using the Least Median ofSquares (LMedS) technique [35] to estimate the dominantmotion in a region. These robust methods can typicallycope with a small number of motions within a region butnot with general 
ow �elds. Other methods add furtherrobustness by allowing regions to vary in size [10], or byregularizing 
ow both within and between image regions[28]. Layered ModelsThe robust estimation techniques above typically as-sume a single dominant motion within a given region.Layered models relax this assumption and estimate mul-tiple motions in a region. Darrell and Pentland [15] in-troduced the idea of estimating global motions in layersand presented an optimization scheme using ideas fromrobust statistics. Wang and Adelson [42] also formulateda model that groups coherent velocity estimates into layersbut their approach did not exploit the layered model to di-rectly estimate motion from images. Jepson and Black [26]assumed that the motion in the scene could be representedby a mixture of distributions and used the ExpectationMaximization (EM) algorithm to decompose the motioninto a �xed number of layers. These layered approaches,and the EM algorithm in particular, have become popularmethods for motion estimation [2, 28, 43, 44, 45].One issue with layered models concerns the estimationof the appropriate number of layers. A number of authors



4 BLACK, FLEET AND YACOOBhave used a minimumdescription length criterion to strikea balance between accurate encoding of the motion and thenumber of layers needed to represent it [2, 15, 27].With parameterized models, the estimation of the mo-tion of a given surface may be adversely a�ected by distant,and quite unrelated, image points. These distant motionscan act as \leverage points" [35] that pull the solutionaway from the desired local motion. A spatial smoothnessconstraint can be added to the computation of the weightsthat assign pixels to layers [27, 44]. This may reduce thee�ect of leverage points by encouraging layers to have spa-tially coherent support.Specialized Spatial ModelsParameterized approaches may perform poorly when thespatial variation of the image motion is more complex thana low-order polynomial. To handle complex motions withconcise models, Black et al. [13] proposed \learning" lin-ear parameterized models from training examples usingprincipal component analysis (PCA). Similarly, Fleet etal. [18] modeled motion features, such as dynamic occlu-sion edges and moving bars, using linear combinations ofsteerable basis 
ow �elds. These linear models constrainthe interpretation of image motion, and are used in thesame way as translational or a�ne motion models. Sim-ilar approaches have been used in modeling the deforma-tions between individual faces in a database of face images[6, 17, 23, 33, 40, 41].Generalizing Brightness ConstancyMuch of the recent work in motion estimation has fo-cused on achieving increased robustness in the presence ofunmodeled appearance changes. In this paper we take theapproach of explicitly modeling many of these events andhence extend the notion of \constancy" to more complextypes of appearance change.One motivation for this is our interest in recognizingcomplex non-rigid and articulated motions, such as hu-man facial expressions. Previous work in this area has fo-cused on analyzing the image motion of face regions suchas mouths [12]. But image motion alone does not cap-ture appearance changes such as the systematic appear-ance/disappearance of the teeth and tongue during speechand facial expressions. For machine recognition we wouldlike to be able to model these intensity variations.Our framework extends several previous approachesthat generalize the brightness constancy assumption.Mukawa [31] extended the brightness constancy assump-tion to allow illumination changes that are a smoothlyvarying function of the image brightness. In a related pa-per, Negahdaripour [34] proposed a general linear bright-ness constraintI(x; t) = m(x; t)I(x � u(x); t + 1) + c(x; t) (2)

where m(x; t) and c(x; t) allow for multiplicative and addi-tive deviations from brightness constancy and are assumedto be constant within an image region.Another generalization of brightness constancy was pro-posed by Nastar et al. [33]. Treating image intensity I asthe height of a surface in 3D XY I-space, they proposeda physically-based approach for �nding the deformationfrom an XY I surface at time t to the XY I surface att + 1. This allows for a general class of smooth deforma-tions between frames, including both multiplicative andadditive changes to intensity.One variation on the general form of (2) is the the use ofobject-speci�c models of image brightness [7, 22, 23, 41].Hager and Belhumeur [22] used principal component anal-ysis to �nd a set of orthogonal basis images, fBj(x)gnj=1,that spanned the ensemble of images of an object undera wide variety of illuminant directions. They constraineddeviations from brightness constancy to lie in the subspaceof illumination variations, giving the constraintI(x; t) = I(x � u(x;m); t+ 1) + nXj=1 bj Bj(x); (3)where u(x;m) is a parameterized (a�ne) model of imagemotion. The authors estimated the motion coe�cients mand the subspace coe�cients b1:::bn.This is similar to our model of illumination variationbut does not allow mixtures of multiple causes within aregion. These approaches are also related to the eigen-tracking work of Black and Jepson [11] in which subspaceconstraints were used to help account for iconic changes inappearance while an object was being tracked.3. MIXTURE MODEL OF APPEARANCECHANGEThe approach presented here recasts a number of theabove approaches in a probabilistic mixture model frame-work [30]. We propose a set of generative models that canbe used to construct or explain an image. Unlike theapproaches above, the mixture model framework decom-poses the appearance change into multiple causes. It alsoperforms a soft assignment of pixels to the di�erent mod-els while allowing for outliers, i.e., pixels that are not wellexplained by any one model.In particular, we assume that the image I(x; t) at lo-cation x at time t is generated, or explained, by one ofn causes ICi , i = 1; : : : ; n. The causes, ICi (x; t; ai), canbe thought of as overlapping layers and are simply imagesthat are generated given a vector of parameters ai. We willconsider four causes below, namely, motion (IM ), illumi-nation variations (IL), specular re
ections (IS ), and iconic(pictorial) changes (IP ). A �fth cause (IO) will representoutliers.



ROBUSTLY ESTIMATING CHANGES IN IMAGE APPEARANCE 5Given n of the above causes, the probability of observingthe image I(x; t) is a mixture model [30] given byp(I(x; t) j faj ; �jgnj=1) = nXi=1 wi(x) pi(I(x; t) j ai; �i): (4)The wi(x) are \ownership probabilities." They specifythe relative probabilities that the di�erent models accountfor the appearance change at pixel x. At each pixel, theseprobabilities sum to unity; that is,Piwi(x) = 1. In prac-tice, we use a single outlier model while we may employany number of motion, illumination, specularity, or iconicmodels to explain the image region.The dependence of wi(x) on image location allows forthe fact that the appearance change at di�erent pixels willoften be explained by di�erent causes that vary across theimage. This generalizes the more common formulation inwhich mixture probabilities �i replace the wi in (4), andare given as the average weights over an image region (orover an ensemble of independent samples from the dis-tribution); that is, �i =Pxwi(x)=N . In our formulation,the causes provide parametric models over the entire imageregion, while the weights represent the relative likelihoodspi(I(x; t)j ai; �i) of each cause at every pixel.Finally, the �i in (4) are scale parameters that are usedto control a form of deterministic annealing in the estima-tion of the parameters (to be discussed below).Robustness in the current framework occurs in two ways,namely, with the use of an outlier layer and with theform of the likelihood function used. In contrast to aGaussian mixture formulation, the component probabil-ities used here for the generative models of appearancechange, pi(I(x; t)j ai; �i), are de�ned to bepi(I(x; t)j ai; �i) = 2�3i�(�2i +�I2Ci)2 ; (5)where �ICi = I(x; t) � ICi (x; t; ai). This is a t-distribution of degree 3 centered at ICi(x; t; ai) with stan-dard deviation �i [29]. Simply put, the probability thatan image pixel at time t is explained by each cause is afunction of the di�erence between the observed intensityand that predicted by the model. This likelihood function(Figure 3) has the properties that it falls o� more rapidlythan a Gaussian distribution and has heavier tails. Thisre
ects our expectation that the residuals �ICi containoutliers [24]. The fact that the likelihood drops rapidlywill have the e�ect of forcing large residuals for a givenmodel to be accounted for by other models, thereby help-ing to separate the explanation of image data into distinctcauses.

pi(I(x; t)jai; �i)FIG. 3. A robust likelihood function, pi.M1 M2M3 M4 M5 M6FIG. 4. A�ne 
ow basis set.3.1. Sources of Appearance ChangeIn what follows, we describe the four generative modelsof appearance change and the outlier model in more detail.MotionMotion is a particularly important type of appearancechange that is modeled byIM (x; t; aM) = I(x � u(x; aM ); t + 1):The image at time t is generated by warping the image attime t + 1 by a 
ow �eld u(x; aM ). We use a parametricdescription of optical 
ow in which the motion in an imageregion is modeled as a linear combination of k basis 
ow�elds fMj(x)gkj=1:u(x; aM ) = kXj=1mj Mj(x): (6)where aM = [m1; : : : ;mk] is the vector of parameters tobe estimated.For the experiments in Section 5 we use an a�ne 
owmodel. For an image region about pixel (xc; yc), the a�nemodel is given byu(x; y) = m0 +m1(x � xc) +m2(y � yc); (7)v(x; y) = m3 +m4(x � xc) +m5(y � yc); (8)Equivalently, we can express a�ne motion as in (6) withan explicit set of constant and linear basis 
ow �elds, asshown in Figure 4.Illumination VariationsIllumination changes may be global, resulting fromchanges in the illuminant, or local, as a result of shadows



6 BLACK, FLEET AND YACOOBL1 = 1 L2 = x� xc L3 = y � ycFIG. 5. Linear illumination-change basis images.cast by objects in the scene. The mixture formulation al-lows both of these types of variation to be modeled, wherethe (ownership) weights in the mixture indicate where il-lumination variations have occurred in the image.With simple changes in illumination, an image at timet can be written as a scaled version of the image at timet + 1, i.e., [1 + L(x; aL)] I(x; t + 1) where 1 + L(x; aL) isthe scaling function parameterized by aL. The change inappearance is then L(x; aL) I(x; t + 1). If we allow formotion as well as illumination change, then the change inimage appearance can be written asIL;M(x; t; aM ; aL) = L(x; aL) I(x � u(x; aM ); t+ 1): (9)This states that the illumination change is a scaled versionof the motion-compensated image at time t + 1. Whenestimating the parameters aL here we assume that themotion u(x; aM ) is known and �xed.We take L(x; aL) to be a parametric model, expressedas a weighted sum of basis images. For example, in thecase of linear spatial variation, L is given byL(x; aL) = l1 + l2(x� xc) + l3(y � yc) = 3Xi=1 li Li(x)where (xc; yc) is the center of the relevant image region,aL = [l1; l2; l3] are the model parameters, and Li(x) denotethe basis images, shown for the linear model in Figure 5.Specularity ModelSpecularities are typically local and result in near sat-uration of image brightness. While more sophisticatedmodels of specularities may be formulated, we have exper-imented with a simple model which works well in practice:IS(x; t; aS) = s1 + s2(x� xc) + s3(y � yc) = 3Xi=1 si Si(x)where Si are the same linear basis images as in Figure 5and aS = [s1; s2; s3]. Note that unlike the illuminationmodel, the specularity term is independent of the image.Iconic ChangeIn addition to the generic types of appearance changeabove, there are image appearance changes that are spe-ci�c to particular objects or scenes. Systematic changes inappearance exhibit spatial or temporal structure that canbe modeled and used to help explain appearance changes

in image sequences. Recall the example of human mouthsin Figure 2. As people talk, their lips deform smoothlybut there are also changes that cannot be characterizedas smooth deformation, such as the appearance and dis-appearance of the teeth as the mouth opens and closes(Figure 6).As with the models above, we use a linear, parametricmodel of iconic change. However, here we learn the ap-propriate model from the individual frames of a trainingimage sequence using principal component analysis. Thisis described in Section 6; for now it is su�cient to thinkof the iconic model, like the specularity model, as a linearcombination of basis images Ai(x)IP (x; t; aP ) = qXi=1 aiAi(x); (10)where aP = [a1; : : : ; aq] is the vector of scalar values tobe estimated. Outlier ModelFor the outlier layer, we adopt a simple model in whichimage intensity is uniformly distributed between the min-imum and maximum intensity values; that is, the modelcan generate (explain) any pixel with uniform probability.Chosing �O such that it satis�espO(I(x; t)j�O) = 2�3O�(�2O + (2:5�O)2)2 = 1=256gives the likelihood of an outlier.4. EM-ALGORITHMWe seek a maximum likelihood estimate of the globalmodel parameters a1; : : : ; an and the ownership probabili-ties, w1(x); : : : ; wn(x) that yield a soft assignment of pixelsto models. If the parameters of the di�erent models areknown, then we can compute the probability that pixelx belongs to cause i. These probabilities, referred to asownership weights, are given by [30]wi(x; �i) = pi(I(x; t)j ai; �i)Pnj=1 pj(I(x; t)j aj ; �j) (11)These ownership weights force every pixel to be explainedby some combination of the di�erent causes. As the �j go
Iconic change

DeformationFIG. 6. Object-speci�c deformation and iconic change.



ROBUSTLY ESTIMATING CHANGES IN IMAGE APPEARANCE 7to zero, the likelihood function approaches a delta func-tion. Therefore, for small values of �j the weights willtend towards zero or one.The maximum likelihood estimate of the model param-eters, given the ownership weights, satis�es [30]Xx nXi=1 wi(x; �i) @@ai log pi(I(x; t)j ai; �i) = 0 (12)where the derivative of the log likelihood is given by@ log pi(I(x; t)j ai; �i)@ai = 	(�ICi ; �i) @ICi (x; t; ai)@ai (13)where 	(�ICi ; �i) = �4�ICi�2i +�I2Ci ; (14)and �ICi = I(x; t) � ICi(x; t; ai) for the ith model.Note the similarity between the derivative of the log like-lihood used here in Figure 7 and the shape of the in
u-ence functions of common robust M-estimators [24]. InM-estimation this shape has the e�ect of reducing the in-
uence of outliers on the maximum likelihood estimate.The 	-function here has the same e�ect.In the case of Gaussian mixtures with linear models,the model parameters can be computed in closed formgiven the ownership weights. However, with the robustlikelihood function and the nonlinear models used here,we incrementally compute the ai satisfying (12). Brie
y,we replace ai with ai + �ai where �ai is an incrementalupdate. We approximate (12) by its �rst order Taylor ex-pansion, simplify, and solve for �ai using gradient ascent.We then update ai  ai + �ai. This algorithm is similarto that described in [8, 11] for the robust estimation ofoptical 
ow.Estimation of large image motions requires a coarse-to-�ne process in which the images are represented with aGaussian pyramid. The aM are updated at a coarse leveland then projected to the next �ner level where they areused to warp the image at time t+1 towards the image att, thereby incrementally reducing the di�erence betweenthe images (see [5, 8] for details).The EM algorithm [16] alternates between solving forthe weights, wi(x; �i), given an estimate of the param-eters, a1:::an (the Expectation step), and then updating	(r; �)FIG. 7. 	(r; �) (the derivative of the log likelihood).

the parameters, a1:::an, with the weights held �xed (theMaximization step). It should be noted that although theEM algorithmworks well in practice, its validity with �nitemixtures of t-distributions remains unclear.Each model has an associated value of �i which deter-mines what residual values are considered to be outliers.A common approach for improving the stability of the es-timation process and for avoiding local maxima is to usea deterministic annealing scheme in which the values of�i start at a high value and are lowered to the value thatgives the desired outlier rejection properties. Here thesevalues are determined empirically. For all the experimentsin this paper the value of �i began at 45:0 and was loweredby a factor of 0:95 at each iteration of the optimization toa minimum of 10:0. These same values of � were used forall the models.The e�ect of � on the interaction between the mod-els is interesting to consider. For high values of �, thelikelihood function falls o� slowly and hence models tendto \share" the explanation of pixels; that is, the wi(x)are close to 1=n. When the residual errors, �ICi =I(x; t) � ICi (x; t; ai), result in likelihoods that are lowerthan pO, then the normalization in (11) has the e�ect ofshifting the weight to the outlier layer. At the beginningof the annealing process the high value of � means thatthe outlier probability is much smaller than the generativemodel would suggest; that is, smaller than pO = 1=256. Inthis case the outlier layer accounts for few if any of the pix-els. As � is annealed the outlier probability monotonicallyincreases towards 1=256 and more pixels are accounted forby that layer.5. GENERIC APPEARANCE CHANGEThis section presents examples of generic appearancechanges that are common in natural scenes, namely, mo-tion, illumination variations, and specularities.5.1. Multiple MotionsWe begin with an experiment involvingmultiple motionswithin a region. Figure 8 shows a person moving behinda plant. We assume that there are two a�ne motionspresent and solve for them using the robust mixture for-mulation. The �gure shows the weights for the foregroundlayer (wM1(x)) and the background layer (wM2(x)) wherewhite indicates a weight near 1.0 and black near 0.0. Theoutlier layer receives high weight in regions that border oc-clusion boundaries. This simple model of layers does notaccount for the appearance/disappearance of image pixelsand hence these regions are assigned automatically to theoutlier layer. 5.2. ShadowsWe next consider a mixture of motion and illuminationvariation (Figure 9). The appearance variation betweenFigures 9a and b includes both global motion and an illu-
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a: I(x; t) b: I(x; t+ 1)

d: wM1(x) e: wM2(x) f: wO(x) (outliers)FIG. 8. Multiple Motion Experiment (see text).
a: I(x; t) b: I(x; t+ 1) c: 
ow

d: Imean(x) e: jI(x; t)� Imean(x)j f: wM (x) g: wO(x) (outliers)FIG. 9. Illumination Experiment 1 (cast shadow of a hand). Appearance change estimated using a single motion layer with outliers (seetext).mination change caused by the shadow of a hand in framet+1. The true motion �eld contains expansion due to themotion of the background. Figure 9 shows the results ofassuming just a single motion within the region. A three level pyramid is used in the coarse-to-�ne estimation andthe motion is computed using the a�ne model presentedin Section 3.The result of the estimation process is a mixture modelfor the image at time t based on the image at time



ROBUSTLY ESTIMATING CHANGES IN IMAGE APPEARANCE 9
a: I(x; t) b: Imean(x) c: 
ow

d: jI(x; t)� Imean(x)j e: wM (x) f: wL;M(x) g: wO(x) (outliers)FIG. 10. Illumination Experiment 2. Appearance change estimated using a mixture of motion and illumination change models (see text).t + 1 and the appearance change parameters. The mix-ture model forms a generative model from which we cansample reconstructions of the image at time t. We canalso compute the expectation E[I(x; t) j faj ; �jgnj=1] as away of illustrating the generative model. Think of draw-ing samples (images) from the generative model. At agiven pixel x, with probability wM (x), the intensity sam-ple is IM (x; t; aM ) while with probability wO(x) the in-tensity sample is drawn from the outlier distribution. Theexpected value of the outlier model is 128. The ex-pected image, Imean, from the generative model is there-fore Imean(x) = wM(x)IM (x) + wO(x)128. For example,Figure 9d shows this \mean reconstruction" image (at timet) that results from the mixture of the deformation (fromtime t+1) and the outlier layer. Note that the uniform ex-pected intensity of the outlier model means that the outlierpixels corresponding to the shadowed hand region appearroughly as a uniform gray.The absolute di�erence between this model image andthe actual image at time t is shown in Figure 9e, andFigure 9 f, g shows the weights for the single motion layerand the outlier layer. Note �rst that, while this robustformulation of the motion-only model is able to detect thecorrect outliers, the recovered optical 
ow is inaccurate.The large number of unmodeled intensity changes pull thesolution away from the true motion. Outlier maps like this,with large numbers of outliers, provide a clear indicationthat the model fails to explain the appearance changescaused by the shadow, and that a richer class of models isrequired.

If, instead, we allow a mixture of the a�ne motionmodel (IM ) and the linear illumination model (IL;M ),we see an improvement in the image motion. We es-timate the ownership weights wM(x) and wL;M(x) thatassign pixels to the models and the motion parametersaM and illumination parameters aL as described in theprevious section. Figure 10b shows the mean reconstruc-tion of the image at time t, which is now much closer tothe actual image in Figure 10a. This image is given byImean(x) = wM(x)IM (x) +wL;M(x)IL;M(x) + wO(x)128.Figures 10d-f show the reconstruction error, the weightimages wM(x) and wL;M(x), and the outlier image. Themotionweights wM(x) are near 1 (white) when the appear-ance change is captured by motion alone. Where there isillumination change as well as motion, in the region of thehand, the weights wM (x) are near 0 (black) and weightswL;M(x) are near 1. The gray regions indicate weightsnear 0:5 which are equally well described by the two mod-els.The outlier layer (Figure 10g) indicates which pixels hadappearance changes that were not well explained by eithermodel. Compared with the motion-only model in Figure9f, the motion+illumination model exhibits far fewer out-liers, most of which now occur around the boundary of theshadow. Our simple illumination model only accounts fora linear illumination change while the actual shadow fadesnon-linearly at the edges of the hand. Thus the boundaryregions are not well explained by the illumination changemodel. To better account for local variations in illumi-nation one could replace the linear model L with a reg-ularized model of the illumination variation (see [43] forregularization in a mixture-model framework).



10 BLACK, FLEET AND YACOOBa: I(x; t) b: I(x; t+ 1) c: 
owd: Imean(x) e: jI(t) � Imean(x)j f: wM (x) g: wO(x) (outliers)FIG. 11. Specularity Experiment 1 (a moving stapler). Appearance change estimated using a single motion layer with outliers (see text).Finally, note that there is a signi�cant di�erence be-tween the 
ow �elds computed using these two di�erentmodels as shown in Figures 9c and Figure 10c. The mo-tion is Figure 10c is qualitatively correct. Explicitly ac-counting for the illumination change thus results in a moreaccurate representation of the true motion.5.3. SpecularitiesConsider the example in Figure 11 in which a staplerwith a prominent specularity on the metal plate is moved.We �rst apply a single a�ne motion model with outliersto explain the appearance change. A four level pyramidwas employed to capture the large motion between frames;other parameters remained unchanged. The recovered mo-tion is relatively accurate despite the fact that very fewpixels were actually used in computing it. Examining themotion layer weights, wM (x) in Figure 11f, we see that themotion layer receives high weight in the uniform regionswhich provide few constraints on the motion. The outlierlayer, by comparison captures the majority of the metalplate where the specularity occurs. As above, this indi-cates that the structure of the appearance change in thisregion could not be explained by the single motion model.We next model this situation using a mixture of motion(IM ) and specularity (IS) models. The simpli�ed modelof specularities assumes that some regions of the imageat time t can be modeled as a warp of the image at timet+ 1 while others are best modeled as a linear brightnessfunction.The estimated 
ow �eld is shown in Figure 12c. Themean reconstructed image, computed from the mixtureof the motion and the linear brightness models, is shownin Figure 12b; this is given by Imean(x) = wM(x)IM (x) +wS(x)IS(x)+wO(x)128. The reconstruction error is shown

in Figure 12d. The ownership weights for the two modelcomponents, along with the weights for the outlier layerare shown in Figures 12e,f,g. Note how the weights inFigure 12e are near zero for the motion model where thespecularity changes signi�cantly. The weights also showthat the outlier layer (Figure 12g) no longer accounts forthe majority of the specularity. The region of specularityin the lower right corner of the metal plate is similar inboth frames and hence is \shared" by both models.5.4. Combining Models of Appearance ChangeWe consider a �nal example of appearance change thatcombines all the generic models. Figure 13 shows twoframes from a sequence in which a pair of scissors movesrigidly and casts a shadow on a stationary, roughly planar,surface. The change in orientation of the scissors with re-spect to the light source causes a signi�cant specular re-
ection. Four appearance models, plus the outlier model,are required to explain the change between this pair ofimages. The parameters were the same as in all the otherexperiments and a three level pyramid was used for motionestimation.The ownership weights corresponding to each of themodels are shown in Figure 13 and include the motion ofthe background (wM1(x)), the illumination change causedby the shadow cast on background (wL;M1(x)), the mo-tion of the scissors (wM2(x)), and the specular re
ection(wS(x)). Di�erence images help illustrate which parts ofthe image are accounted for by each of the models. Noticethat the motionmodel,M1, accounts for much of the back-ground but the area where the scissors cast a shadow haslower probability of being explained by that model. Thissame region is accounted for by the illumination model ascan be seen in the weights wL;M1(x). Notice that in darkregions of the image the illuminationmodel can account for
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a: I(x; t) b: Imean(x) c: 
owd: jI(x; t)� Imean(x)j e: wM (x) f: wS(x) g: wO(x) (outliers)FIG. 12. Specularity Experiment 2. Appearance changed accounted for using a mixture of motion and specularity models (see text).the appearance nearly as well as the simple motion model;this is due to the multiplicative nature of the illuminationterm.The motion, M2, accounts for motion of the hand andportions of the scissors. The blades of the scissors exhibita large change due specular re
ection and this is accountedfor by the specularity model as can be seen in the weightswS(x). Additionally, the outlier layer, wO(x), largely ac-counts for the regions around the edges of the scissors andhand which correspond to regions of occlusion or disocclu-sion for which we do not have a generative model. Finally,the expected image, Imean(x), provides a reasonable re-construction of the image I(x; t); the di�erence image cor-responding to the mean illustrates that more pixels arewell modeled with the mixture model than with any of theindividual models alone.This example raises a number of interesting issues. Forthis experiment, we manually selected the number andtype of models to employ. Ideally we would like to de-termine the models automatically but to do so will requireus to model the prior probabilities of observing the di�er-ent types of appearance change in typical image sequences.Appropriate prior models will be required to choose amongcompeting hypotheses. As the number of models increasesso does the danger of over parameterization and computa-tional instability. Here a notion of spatial locality of thecauses (modeled as a prior probability) may be useful (cf.[43, 44]).6. EXPERIMENTS: ICONIC CHANGEUnlike the generic illumination and re
ection events inthe previous section, here we consider image appearancechanges that are speci�c to particular objects or scenes.

Following previous work on eigen-based representations ofimage structure and image motion [7, 9, 13, 18, 22, 23,41], we learn parameterized models of motion and iconicstructure from examples. We then use these in our mixturemodel framework to explain motion and iconic change inhuman mouths.6.1. Learned Iconic ModelTo capture the iconic change in domain-speci�c cases,such as the mouths in Figure 14, we construct a low-dimensional model of the p images in the training set usingprincipal component analysis (PCA). For each s = n �mtraining image we construct a 1D column vector by scan-ning the pixels in the standard lexicographic order. Each1D vector becomes a column in an s � p matrix B. Weuse singular value decomposition to decompose B asB = A�aV Ta : (15)Here, A is an orthogonal matrix of size s�p, the columnsof which represent the principal directions in the train-ing set. �a is a diagonal matrix with singular values�1; �2; : : : ; �p sorted in decreasing order along the diag-onal.Because there is a signi�cant amount of redundancy inthe training sequence, the e�ective rank of B will be muchsmaller than p. Accordingly, the �rst few columns of Aprovide a basis that spans the majority of the structurein B. Here we express the ith column of A as a 2D basisimage,Ai(x), so that we can approximate images like thosein the training set asIP (x; t; a) = qXi=1 aiAi(x); (16)
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I(x; t) I(x; t+ 1) Imean(x)
ow 1 wM1(x) wL;M1(x)
ow 2 di�M1 (x) di�M1;L(x)wM2(x) wS(x) wO(x) (outliers)di�M2 (x) di�S (x) jI(x; t)� Imean(x)j = di�mean(x)FIG. 13. Combination of two motions, a shadow, and a specular re
ection; see text.
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FIG. 14. Example frames from training sequences of facial expres-sions (anger, joy, sadness).1 2 3 45 6 7 8FIG. 15. First eight basis appearance images, A1(x); : : : ; A8(x),for the facial expression experiment.where a = [a1; : : : ; aq] is the vector of scalar values to beestimated and q < p.Figure 14 shows samples of mouth images taken from atraining set of approximately 500 images. The training setincluded image sequences of di�erent subjects performingthe facial expressions \joy," \anger," and \sadness." Thefaces of each subject were stabilized with respect to the�rst frame in the sequence using a planar motion model[12]. The mouth regions were extracted from the stabilizedsequences and PCA was performed. The �rst 11 basisimages account for 85% of the variance in the trainingdata and the �rst eight of these are shown in Figure 15.6.2. Learned DeformationsWe learn a domain-speci�c model for the deformationcomponent of the appearance change in much the sameway using PCA [13]. We �rst compute image motion foreach training sequence using the brightness constancy as-sumption and a robust optical 
ow algorithm [8]. Thetraining set consists of a set of p optical 
ow �elds. Forimages with s = n � m pixels, each 
ow �eld contains2s quantities (i.e., the horizontal and vertical 
ow compo-nents at each pixel). For each 
ow �eld we place the 2svalues into a column vector by scanning u(x) and then v(x)in lexicographic order. The resulting p vectors become thecolumns of a 2s � p matrix F .As above we use PCA to decompose F as F =M�mV Tm .Flow �elds like those in the training set can then be ap-proximated as u(x; m) = kXj=1mj Mj(x);where k < p, and Mj(x) denotes the jth column of Minterpreted as a 2D vector �eld. Note that this model is

1 2 3 45 6 7 8FIG. 16. First eight basis 
ow �elds, M1(x); : : : ; M8(x) for thefacial expression mouth motion.conceptually equivalent to the a�ne models used aboveexcept that it is tailored to a domain-speci�c class of mo-tions.Figure 16 shows the �rst eight basis 
ow �elds recoveredfor this training set. The �rst 11 basis 
ow �elds accountfor 85% of the variance in the training set.6.3. Mixture of Motion and Iconic ChangeWe model appearance change of a mouth as a mixtureof the learned motion and iconic models. We performeda number of experiments with image sequences of sub-jects who were not present in the training set. In ourexperiments we used 11 basis vectors for both motion andiconic models. We estimated the parameters for deforma-tion aM , iconic change aP , the ownership weights, wM(x)and wP (x), and the outlier weights between each consec-utive pair of frames using a four-level pyramid and theEM-algorithm as described earlier.Figure 17 shows two consecutive frames from a smilingsequence; notice the appearance of teeth between frames.The motionmodel, IM (x; t; aM ), captures the deformationaround the mouth but cannot account for the appearanceof teeth. The recovered 
ow �eld is shown in Figure 17cand one can see the expansion of the mouth. The iconicmodel, IP , on the other hand, does a reasonable job ofrecovering an approximate representation of the image attime t (Figure 17d). The iconic model however does notcapture the brightness structure of the lips in detail. Thisbehavior is typical; the iconic model is an approximationto the brightness structure so, if the appearance changecan be described as a smooth deformation, then the mo-tion model will likely do a better job of explaining thisstructure.The behavior of the mixture model can be seen in theweights (Figures 17i and 17j). The weights for the motionmodel, wM (x), are near zero in the region of the teeth,near one around the high contrast boarder of the lips, andnear 0:5 in the untextured skin region which is also wellmodeled by the iconic approximation IP .Figure 17g is the expected image given the generativemodel. Note how this image resembles the original imagein Figure 17a. Also notice that the iconic model �lls inaround the edges of the stabilized image where no infor-mation was available for warping the image.



14 BLACK, FLEET AND YACOOBa: I(x; t) b: I(x; t+ 1) c: 
ow, u(x; aM ) d: IP (x)e: IM (x) f: jI(x; t)� IM (x)j g: Imean(x) h: jI(x; t)� Imean(x)ji: wM (x) j: wP (x) k: wO(x) (outliers)FIG. 17. Facial Expression Experiment. Appearance changed modeled as a mixture of motion and iconic change (see text).Not all the changes in the image could be accounted forby the two models. There is a change on the lower lipthat is due to specular re
ection. This specularity wasapparently not captured in the learned iconic model andsince no specularity model was included here, those pixelsare best explained as outliers (Figure 17k).7. FUTURE DIRECTIONSA research issue that warrants further work is the use ofpriors on the collection of models that would enable one toprefer some explanations over others. Without the use ofpriors, a mixture model with several sources of appearancechange may produce several equally likely explanations.The probabilistic formulation here should facilitate suchan approach.As in Section 5.4, we may expect more than one in-stance of each type of appearance change within an imageregion. In this case we will need to estimate the numberof instances of each appearance model that are required.There has been recent work on this topic in the area ofmultiple motion estimation [2, 28, 44].A related issue is the use of spatial smoothness in themodeling of appearance change. In place of the param-eterized models we might substitute regularized modelsof appearance change with priors on their spatial smooth-ness. In a mixturemodel framework for motion estimation,Weiss [43, 44] has shown how to incorporate regularizedmodels and smoothness priors on the ownership weights.8. CONCLUSIONSAppearance changes in image sequences result from acomplex combination of events and processes, includingmotion, illumination variations, specularities, changes inmaterial properties, occlusions, and disocclusions. In thispaper we propose a robust statistical framework that mod-

els these variations as a probabilistic mixture of causes. Toillustrate these ideas, we have proposed some simple gen-erative models.Unlike previous work, the approach allows us to pullapart, or factor, image appearance changes into di�erentcauses and to locate where in the image these changes oc-cur. Moreover, multiple, competing, appearance changescan occur in a single image region. We have implementedand tested the method on a limited suite of image se-quences with di�erent types of appearance change.One way to view this work is as a generalization of cur-rent work in the �eld of motion estimation to richer modelsof appearance change that allow one to relax the bright-ness constancy assumption. We expect that more com-plex models of illumination variation and iconic changecan be accommodated by the framework and we feel thatit presents a promising direction for research in image se-quence analysis. REFERENCES1. P. Anandan. A computational framework and an algorithm forthe measurement of visual motion. International Journal ofComputer Vision, 2:283{310, 1989.2. S. Ayer and H. Sawhney. Layered representation of motion videousing robust maximum-likelihood estimation of mixture modelsand MDL encoding. In Fifth International Conference on Com-puter Vision, pages 777{784, Boston, MA, 1995.3. A. Bab-Hadiashar and D. Suter. Robust optical 
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