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1 Introduction

Anthropometric data refer to a collection of measurable physical dimensions
and proportions of the human body. Anthropometrics have been used in a
variety of fields; primarily in forensics and physical anthropology for quite a
long time now, and more recently within the domains of apparel sizing and
ergonomic workspace design, among others. With the advent and growth of
computer-based image analysis, there is an increased interest in developing
automated and semi-automated methods for estimating human anthropom-
etry from images. Unlike traditional anthropometric measurement methods
that perform the measurements directly on the person (sometimes using spe-
cialized instruments), image-based anthropometric methods are contactless;
they obtain the measurements by processing images of the person. With high-
resolution images from multiple calibrated views, these techniques are fairly
simple and accurate [1]. But what if all we have is a single uncalibrated image;
could any useful anthropometric information at all be recovered in this case?
By uncalibrated, we mean that the conditions of image acquisition—the full
camera calibration parameters—are unknown.

In the present work, we view an anthropometric as the (Euclidean) length
of the 3D line segment between two well-defined and visible points on the
human body, and we address the general problem of estimating anthropo-
metrics from a single uncalibrated 2D image of a person. From a projective
geometry point of view, this amounts to the basic 3D reconstruction problem
of recovering the length of a 3D line segment based on its projection in a
2D image. In the calibrated case, this problem can be solved with additional
knowledge of the segment’s direction and a plane or line passing through one
of its endpoints. In the uncalibrated case, a general approach for this prob-
lem consists of first computing the length ratio q of the line segment with
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respect to another line segment in the scene of known length L, called the
reference length, and then simply obtaining the solution as the product qL.
This approach is purely geometric and comprises a whole family of metrology
techniques [2, 3, 4, 5, 6]. However, it poses two main difficulties in practice:
(i) a reference length may not always be available, and (ii) under the general
perspective camera model, the length ratio q can only be computed under
certain circumstances, such as when the two line segments are coplanar and
the vanishing line of their plane is known, or when the two line segments are
collinear and the vanishing point of their direction is known (See Section 3.4).

In this paper, we propose a novel metrology technique that resolves the first
issue by obviating the need for the reference length altogether. Geometrically
speaking, this is impossible because the reference length encodes absolute scale
information that is essential for 3D reconstruction. Nonetheless, we will show
that by injecting appropriate prior knowledge into the estimation process,
an approximate solution for the problem can be obtained. Specifically, our
technique simultaneously estimates the lengths of multiple (more than one) 3D
line segments, based on their projections in a single image. First we compute
their pairwise length ratios as in existing single-view metrology techniques,
then we formulate constraints on the solution based on probabilistic/statistical
knowledge about the unknown segment lengths and their ratios, assuming they
vary statistically. This amounts to a linearly constrained quadratic function
minimization problem, which we solve using standard quadratic programming
techniques. We then apply this metrology technique for the estimation of 10
anthropometrics, including head length and body height. The method has
been tested both on synthetic data and real images—an inhouse dataset of 99
high-resolution images comprising 26 different adults from various ethnicities.

The main intuition for why this technique ”works” lies in that human
body dimensions and human body proportions vary within a relatively limited
range, and so the projection of a person in an image encodes some information
about the scale of things (i.e. absolute scale) in the imaged scene. Naturally,
the technique is not as accurate as purely geometric techniques [3, 4], but this
is the price to pay when working with insufficient information.

The rest of the Chapter is organized as follows. In Section 2, we review
related work. In Section 3, we describe our novel metrology technique, which
lays the foundation for estimating human anthropometrics in Section 4. In
Section 5, we present the accuracy performance of our anthropometric esti-
mation method. Finally, in Section 6, we conclude with a summary of the
method, its achievements, and its limitations.

2 Related Work

Image-based anthropometric estimation, when done with multiple calibrated
cameras is straightforward and requires hardly any attention from the research
community, except when it comes to fully automating the entire process [1].
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Anthropometric estimation in general has scarcely been addressed in the com-
puter vision literature. However, certain anthropometrics have received some
limited attention, namely facial anthropometrics (typically in the context of
feature-based face recognition) and body height. Previous work on the estima-
tion of body height from images varies in terms of whether the methods are
automated or semi-automated, whether they use a single image or a sequence
of images (video), and how much prior knowledge they assume about camera
calibration and 3D structure of the scene [3, 7, 8, 9].

Another related body of work is that on the use of the human body as a
camera self-calibration object. The work of [10, 11, 12] addressed the problem
of camera self-calibration based on tracking a walking human in a video. It
basically exploits the fact that a walking person is orthogonal to the ground
plane and maintains the same height, with small variations during the walk
cycle. Other work explored the use of human anthropometric proportions to
constrain image understanding tasks [13, 14, 15].

To our knowledge, anthropometric estimation from single uncalibrated im-
ages has not been addressed in a comprehensive manner, as we do in this
work. Our line of research is perhaps most akin to that of [16, 17]. In this
work, Barron and Kakadiaris estimate pose and anthropometric ratios (and
not anthropometrics per se) of a person in arbitrary pose from a single uncali-
brated image. The proposed techniques are based on building a family of stick
models and the of use of human anthropometry to constrain the estimation
process. However, in our view, their main contribution really lies in body pose
estimation and not in anthropometric estimation.

3 A Novel Image-Based Metrology Method

3.1 Overview

We describe a novel metrology technique that simultaneously estimates mul-
tiple, say n, 3D line segments (such as anthropometrics) from a single image
under minimal calibration information, with n > 1. One common approach
for this problem is as follows: first compute the ratio of two line segments
based on their projections in the image, then compute the length of one seg-
ment as a function of the obtained ratio and the length of the other seg-
ment [4, 5, 6]. We extend this purely geometric approach by obviating the
need for absolute length information and solving the problem in a statistical
framework. For this, we assume the segment lengths to be estimated are ran-
dom variables with known statistical properties. The missing absolute scale
information (otherwise derived from the reference length) is now derived—
indirectly speaking—from prior probabilistic/statistical knowledge. Figure 1
illustrates the relationship, in a nutshell, between our proposed technique and
the existing purely geometric approach.
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Fig. 1. Image-based metrology methods for computing the length of a 3D line
segment under minimal calibration information; (a) Purely geometric existing tech-
niques; (b) Our proposed technique, which extends the methods in (a) by obviating
the need for absolute length information (the reference length) and incorporating
prior knowledge of the statistical properties of the segments to be estimated.

3.2 An Ill-posed Inverse Problem Formulation

Let x be a vector containing the lengths of n 3D line segments, and let y be
a vector containing m length ratios xi/xj where i 6= j. We wish to estimate
x based on the observed value of y. We will later go back to the issue of how
the value of y is itself computed from a single image (Section 3.4).

From a purely algebraic point of view, this is an ill-posed inverse prob-
lem, as there are infinitely many vectors x that could generate the same value
of y; if a solution x0 exists, then any scalar multiple of x0 is also a solution.
A formal derivation of the infinite solution space3 for this problem follows.

Let I be the set of all pairs (i, j) such that xi/xj is in y. Let rij be the
observed value of the length ratio xi/xj , for any (i, j) ∈ I. Each rij value
provides a linear equality constraint in the unknown variables xi and xj :

xi − rijxj = 0 (1)

Hence with m distinct length ratios we obtain m corresponding linear equality
constraints, which we denote collectively by the linear homogeneous system:

Cx = 0 (2)

3 The term solution space of a problem in this paper is used to mean the set of
candidate (admissible) solutions of the problem.
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where C is hence a mxn matrix. Since rij and rji provide equivalent equality
constraints (barring numerical errors), there can only be at most n(n − 1)/2
distinct rows in C. That is, m ≤ n(n− 1)/2.

We know from basic linear algebra that an exact nontrivial solution for
the homogeneous linear system in (2) exists if and only if C is rank-deficient,
i.e. rank(C) < n. Otherwise, when rank(C) = n, a non-exact nontrivial solu-
tion can be obtained by solving the following minimization problem via least
squares estimation (LSE) 4:

min
x
‖Cx‖2 subject to ‖x‖2 = 1 (3)

The condition ‖x‖2 = 1 serves both to avoid the trivial solution and to guar-
antee uniqueness. This LSE problem has a unique solution, which happens to
be the right singular vector, denoted vn, of C that corresponds to its smallest
singular value, denoted σn [18]. Thus, a set of approximate (inexact) solutions
for (2) are:

x = kvn (4)

where k is an arbitrary scalar. This is an unbounded one-dimensional so-
lution space, hence containing infinite candidate solutions. It is useful to
notice that the sum of square errors (SSE) of each of these solutions is:
‖Cx‖2 = k2‖Cvn‖2 = k2σ2

n, which is an increasing function of k. In other
words, our infinite candidate solutions are not all equal in terms of their data
fit, and the trivial solution solution has the best fit. Clearly, some other crite-
rion is needed, in addition to data fit, for selecting a single ”best” candidate
solution from this infinite solution space.

3.3 Approximate Solution via Regularization

So far, we have derived a solution space of our inverse problem that is infinite
and unbounded (Equation (4)), and we need a sensible way for selecting a sin-
gle ”best” solution from this infinitum of candidate solutions. A well-known
strategy for dealing with ill-posed inverse problems is regularization—the pro-
cess of introducing appropriate prior knowledge and assumptions about the
unknown x, in order to hopefully (but not necessarily) narrow down its solu-
tion space [19].

To this end, we view x as a random vector (equivalently each xi as a ran-
dom variable), and we derive additional constraints on the problem solution
from the following statistical properties of x: (i) lower and upper bounds of
each component xi of x, (ii) lower and upper bounds of each component ratio
xi/xj , and (iii) the prior probability distribution of x. We refer to (i) and (ii)
collectively as range constraints. The details are given next.
4 While in theory one might expect matrix C to be rank deficient, in practice it

generally is not, due to errors in the input measurements.
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Introducing Range Constraints

We define Li,i and Ui,i respectively as the lower and upper α percentiles5 of the
probability distribution of xi. Similarly, we define Li,j and Ui,j respectively as
the lower and upper bounds of the quotient random variable ρij = xi/xj , for
any i 6= j. With a sufficiently small α, the α percentiles act as de facto lower
and upper bounds of the respective random variable. If the values of Li,j and
Ui,j are known for all (i, j), the following set of inequality constraints apply:

Li,i ≤ xi ≤ Ui,i for all i ∈ {1, 2, · · · , n} (5)

Li,j ≤ xi

xj
≤ Ui,j for all (i, j) ∈ I (6)

Thus, we can re-formulate the minimization problem in (3) as follows:

min
x
‖Cx‖2 subject to

{
Li,i ≤ xi ≤ Ui,i, 1 ≤ i ≤ n
Li,j ≤ xi

xj
≤ Ui,j , (i, j) ∈ I (7)

It is easy to see that this is in effect a linearly constrained quadratic function
minimization problem, hence a quadratic programming (QP) problem, since
the inequalities in (6) can be expressed as linear inequalities in xi and xj :

xi − Ui,jxj ≤ 0 (8)
−xi + Li,jxj ≤ 0 (9)

This quadratic program can be solved using standard (iterative) QP tech-
niques; we currently use the quadprog function of the Matlab Optimization
Toolbox. Also, a geometric interpretation of the solution is straightforward,
as explained next.

Since a linear constraint defines a halfspace in n-dimensional space, the
range constraints in (7) simultaneously define a convex bounded polytope in
nD space. Let P denote this polytope, let S0 denote the one-dimensional un-
bounded solution space of our original (unconstrained) inverse problem (rep-
resented by Equation (4)), and let S1 = P ∩ S0. In the simple case n = 2, S0

is a line, P is a polygon, and their intersection consists of a line segment (or
the empty set), as illustrated in Figure 2.

Now, if S1 6= ∅, then S1 consists of a bounded one-dimensional subspace
embedded in n-D space, and the solution of our QP is a point in S1 with the
smallest residual ‖Cx‖2. And if S1 = ∅, then the solution is a point in P (but
not in S0) with the smallest residual ‖Cx‖2. In other words, it is a point in
P that is closest to S0.
5 The lower α percentile of the probability distribution of a random variable X is

a value zL such that Pr(X ≤ zL) = α. Similarly, its upper α percentile is a value
zR such that Pr(X ≤ zR) = 1− α.
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Fig. 2. Geometric interpretation of the solution space when n = 2, with and with-
out range constraints-based regularization. Before regularization, the solution space
consists of an unbounded one-dimensional subspace, x = kvn (dotted line passing
through origin). The range constraints (dashed lines) define a convex polytope in
nD space—a polygon when n = 2 (gray-filled polygon). Hence by imposing the range
constraints, we obtain a solution that lies in the intersection of these two regions—-a
bounded one-dimensional subspace (the line segment between points E1 and E2) .

Introducing Prior Probability

We extend the regularization method of Section 3.3 by using prior probability
as an additional source of information in selecting a unique solution from the
infinite set of candidates in (4). This is achieved by solving a sightly modified
quadratic program:

min
x

[‖Cx‖2 + λ`(x)] subject to
{

Li,i ≤ xi ≤ Ui,i, 1 ≤ i ≤ n
Li,j ≤ xi

xj
≤ Ui,j , (i, j) ∈ I (10)

where λ is a positive scalar parameter, and µ and Σ are respectively the mean
vector and covariance matrix of the probability distribution of x. Under the
assumption that this distribution is Gaussian, the second term in the cost
functional is proportional to the Mahalanobis distance of x from the popula-
tion mean. And so this additional term has the effect of favoring candidate
solutions with smaller Mahalanobis distance, hence higher prior probability,
in the minimization process.

Obviously the geometric interpretation of the solution of this quadratic
program remains the same as in Section 3.3, except that the solution is now a
point that minimizes a different cost functional. It is also interesting to note
that, assuming errors in the input measurements are of the form: Cx = η,
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where η is Gaussian white noise, then our solution of (7) in fact corresponds
to the Maximum Likelihood estimate (MLE), and our solution of (10) corre-
sponds to the Bayesian MAP (maximum a posteriori) estimate of our inverse
problem.

3.4 Computing Length Ratios

Let us now re-visit the issue of how the length ratios (i.e. vector y) are them-
selves computed from a single uncalibrated image. Basically, this is only pos-
sible under a limited set of conditions, each of which may require certain
minimal calibration information. We use the following algorithm to determine
what is needed for computing a length ratio (in addition to the projections of
the line segments in the image) [5]:

• If the line segments are coplanar and their plane is almost parallel to the
image plane, i.e. if the weak perspective camera model applies, then no
further information is needed for the computation. (In this case, the length
ratio of two 3D line segments is obtained as their length ratio in the image.)

• Otherwise, if the two line segments are collinear, then the vanishing point
of their direction is needed for the computation.

• Otherwise, if the two line segments are parallel, then the vanishing point
of their direction and the vanishing point of the line passing through an
endpoint of each segment are needed for the computation.

• Otherwise, if the two line segments are coplanar, then the vanishing line
of the plane containing them is needed for the computation.

4 Application

We now show that our novel visual metrology technique of Section 3 can
be applied to the estimation of certain human-body anthropometrics from a
full-body uncalibrated photograph of a person. Namely, the n line segments
in the metrology technique consist of 10 anthropometrics (so n = 10), and
each anthropometric is the straight-line distance between two visible and well-
defined body landmarks (or canonical points). They are the following [20, 21]:

1. body height (or stature): between the base of the feet (or the standing
surface) and the top of the head.

2. neck height: between the base of the feet and the trapezius—point at the
side of the neck.

3. acromial height: between the base of the feet and the acromion—tip of
the shoulder.

4. chin to top of head distance (or head length): between the top of the head
and the chin (or menton) landmarks.
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5. mouth to top of head distance: between the stomion—point at the center
of the mouth—and top of head landmarks.
item subnasale to top of head distance: between the subnasale—point at
the base of the nose—and top of head landmarks.

6. forehead to chin distance: between the crinion—lowest point of the hairline
on the forehead—and menton landmarks.

7. sellion to chin distance: between sellion—point at the deepest point of the
nasal root depression—and the chin.

8. biocular distance: between outer corners of the eyes.
9. bitragion distance: between left and right tragions—points on the carti-

laginous flaps in front of each earhole.

Clearly, for the first four anthropometrics the person is assumed to be in
upright standing pose—not slouching or leaning on one side. Furthermore,
assuming body pose and head pose are both (nearly) frontal with respect
to the camera, these ten anthropometrics are all either (nearly) collinear or
coplanar, and hence their ratios can be easily computed from an image (see
Section 3.4). Specifically, anthropomerics 1–8 are all vertical and collinear,
and so we only need the vertical vanishing point to compute their pairwise
ratios. Anthropometrics 4–10 lie on the facial surface and are nearly coplanar,
provided that the person is sufficiently far from the camera. With the head
pose (nearly) frontal to the camera, the weak perspective model is a good
approximation over the facial region (i.e. the facial anthropometrics are nearly
coplanar in a plane nearly parallel to the image plane) and so we do not need
any calibration information to compute the pairwise ratios of these facial
anthropometrics. Currently we compute pairwise ratios of anthropomerics 1–
8 and pairwise ratios of anthropomerics 4–10, hence a total of 39 ratios.

If, however, the whole body and/or the head are at an angle with respect
to the camera, then the weak perspective model no longer applies in the facial
region, and facial anthropometric ratios (4–10) cannot be easily estimated.

Finally, a word on the choice of anthropometrics. There are many other
possible anthropometrics that can be used (in addition to or in place of the
ones we chose to estimate in this paper). However, some factors have limited
our choice, in particular: (i) ability to compute the anthropometric ratios,
(ii) availability of anthropometric statistics, and (iii) accuracy of landmark
localization in the image; for example, the bigonial width6 is a bad choice
because the gonial is difficult to locate in an image, even manually and even
with high-resolution images.

4.1 Landmark Localization

Localization of the landmarks associated with the ten anthropometrics of
interest is achieved as follows; first we locate the following 13 body landmarks
6 Bigonial (or mandible) width: the straight-line distance between the left and right

gonial landmarks—the corners of the jaw.
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in the image: top of the head, forehead, subnasale, stomion, chin, left and right
outer corners of the eyes, left and right tragions, left and right trapezius, left
and right neck points, left and right acromions, and left and right medial
longitudinal foot arches. This is currently done semi-automatically by having
the user select points in the image via an interactive Matlab interface. We then
estimate the person’s medial axis (or midline of symmetry) as the line passing
through the following four points: top of the head, chin, midpoint of the two
foot landmarks, and the vertical vanishing point. We refine the locations of
the first five landmarks (top of head, forehead, subnasale, stomion, chin) by
projecting them onto the medial axis. For the landmark pairs of the trapezius,
neck, acromions, and feet, we compute the intersection point of the medial
axis with the line segment joining each landmark pair. This way, the vertical
anthropometrics are all collinear with the medial axis. See Figure 3(b).

Body
Height

acromions

top of head

base of
feet

chin

Acromial
Height

Neck
Height

neck

head
length

eyes
ears

(a) (b)

Fig. 3. (a) Some of the anthropometrics we estimate in this paper, and (b) the
body landmarks associated with them; the blue dots are points we mark manually;
the green line is medial axis of symmetry of the person, which we estimate by fitting
a line to some of these points (see text).

It is important to note that landmark localization is prone to error even
when done manually. The main sources of error include: non-frontal body
pose, occlusion by body hair and/or clothing, and fuzziness of the landmark.
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4.2 Anthropometric Statistics

The statistics required for our anthropometric estimation method are obtained
(directly or derived) from the seminal anthropometric survey in [22], and they
are all categorized by gender, i.e. separate statistics for males and females.
Table 1 shows these statistics for some anthropometrics based on α =1e-12.
The details of how they were all obtained are given next.

• The mean and standard deviation of each anthropometric, and the corre-
lation coefficient of each anthropometric pair are taken from the survey.

• We compute the upper and lower bounds of each anthropometric as the
upper and lower 100α percentiles of the normal distribution N(µ, σ), where
µ and σ are respectively its mean and standard deviation.

• The covariance matrix, Σ, of the anthropometrics is computed from their
standard deviations and pairwise correlations. Namely, if σi and σj are the
standard deviations of the ith and jth anthropometrics, respectively, and
ρij is their correlation coefficient, then: Σij = ρijσiσj .

• The upper and lower bounds of each anthropometric ratio are computed
from the means and standard deviations of the two associated anthropo-
metrics. We first estimate the probability distribution of the anthropomet-
ric ratio using the formula in [23], then obtain the upper and lower bounds
respectively as the upper and lower 100α percentiles of this distribution.

Table 1. Some anthropometric statistics (in cm), where SD: standard deviation,
UB: upper bound, LB: lower bound. Based on the 1988 US Army survey [22] and
α =1e-12 (see text).

Males Females

Mean SD LB UB Mean SD LB UB

Body height 175.5 6.68 128.8 222.3 162.9 6.36 118.4 207.5

Head length 23.20 .88 17.04 29.36 21.76 .85 15.81 27.71

Bitragion 14.48 .60 10.28 18.68 13.64 .52 10.0 17.28

Interocular 10.2 .54 6.42 13.98 9.62 .50 6.12 13.12

5 Experiments and Results

5.1 Data and Methodology

We tested our anthropometric estimation method using both synthetic data
and real images. The former consists of randomly generated y vectors, each
of which is obtained by first randomly generating a vector x from the multi-
variate Gaussian distribution of male or female anthropometrics (Section 4.2),
then computing the corresponding pairwise ratios. See Figure 4.
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Fig. 4. Methodology for (random) generation of synthetic anthropometric data
(namely y vectors) to be used in testing our anthropometric estimation method.

The real images consist of a set of high-resolution (4368x2912) images
captured in-house using a Canon 28-200mm EOS camera (Fig. 5). Each im-
age is a full-body frontal shot of one person. The dataset contains a total
of 108, of 27 different adults, 7 females and 20 males, spanning various eth-
nicities: caucasian, chinese, indian, and african. The vertical vanishing point
needed to compute pairwise ratios of anthropometrics 1–8 is computed as the
intersection in the image of parallel vertical lines of the background scene.

Fig. 5. Sample images from our inhouse dataset.

Because all our images are frontal shots with the person sufficiently far
from the camera, we only need the vertical vanishing point to compute the
pairwise anthropometric ratios (Section 4). This vanishing point is estimated
as the intersection in each image of at least two vertical lines of the background
scene (which are available in all our images). The lines are in turn obtained by
manually marking five points in the image for each vertical line, and fitting
them to a line via least squares estimation. We should also note that our
method assumes the gender of the person in the image is known, and uses the
anthropometric statistics of the corresponding gender (male or female). The
method is applied with the following parameter values: α =1e-7, and λ =.01.
The estimation error is defined as: true value - computed value, and the results
are presented in the following subsections.
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5.2 Synthetic Data Results

These results are summarized in Figure 6 based on 5000 random vectors
divided equally between males and females. Notice that since the synthetic
data vectors are uncorrupted by noise (apart from computer roundoff errors),
the estimation error in this case is equal to the method’s model error. In other
words, it does not reflect any kind of input error. Plot (a) shows the estimation
error distribution as a boxplot 7. For example, the standard error is 4.3cm
for body height and .58cm for head length.

The plot in (b) shows the estimation error for body height versus the true
anthropometric value. Clearly, it suggests that estimation error is somewhat
negatively correlated with true body height—the computed correlation coef-
ficient is -.46. This means estimation error tends to be larger for people with
”extreme” body height, i.e. who are far from the population mean. Plot (c)
shows the same thing as the plot in (b) but for head length, again suggesting
a negative correlation between head length and its estimation error—the com-
puted correlation coefficient is -.51. This result should not be too surprising,
since our metrology technique favors the candidate solutions with larger prior
probability, hence close to the population mean (Section 3.3). The plot in (d)
shows the distributions of body height estimation separately for males and
females. A one-way analysis of variance has rejected the hypothesis that these
two distributions are significantly different.

5.3 Real Images Results

These results are summarized in Figure 7, but only pertaining to body height
estimation error, because (unfortunately) we do not have groundtruth values
for all other anthropometrics. Plot (a) shows the estimation error distribution
(again as a boxplot), which has a mean of -7.1cm and a standard deviation
of 6.1cm. As expected, estimation error is significantly larger for real images
than synthetic data, since this error reflects both model and input errors. Plot
(b) shows the error distributions separately for males and females. A one-way
analysis of variance has rejected the hypothesis that these two distributions
are significantly different. However, visually speaking the female distribution
appears to have a smaller range of variation, which may be an artifact of
the smaller female sample in our dataset—20 males vs. 7 females. Plot (c)
shows that as with synthetic data estimation error is negatively correlated
with true body height, and indeed the computed correlation coefficient is -
.49. In particular, the largest errors are obtained for the shortest and tallest
persons in the dataset.
7 A boxplot is a way of displaying the distribution of a data sample. At the center is

a box with lines at the lower quartile, median, and upper quartile values. The two
lines extending from each end of the box (called whiskers) represent the middle
75% of the data. The ’+’ marks beyond the ends of the whiskers are called outliers.
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Fig. 6. Estimation results based on 5000 synthetic y vectors: (a) distribution of
estimation error for all 10 anthropometrics; (b) true body height versus estimation
error; (c) true head length versus estimation error; (d) male and female distributions
of body height estimation error.
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Fig. 7. Estimation results based on real images: (a) distribution of body height
estimation error; (b) male and female distributions of body height estimation error;
(c) true body height versus estimation error.

6 Conclusions and Future Work

We have developed a novel method for estimating anthropometrics from a sin-
gle un-calibrated image. The method may need minimal calibration informa-
tion for computing anthropometric ratios from the image (basically vanishing
points and/or line), but requires no absolute length information (i.e. a refer-
ence length). In a nutshell, we compensate for this information via clever use
of prior knowledge about anthropometric statistics. Naturally, the estimation
accuracy is inferior to other methods that use absolute length information
and/or more cameras, such as [4, 1]. However, our goal is not to uncondi-
tionally achieve very accurate estimation, but rather to obtain as accurate
an estimation as possible with limited input information. Besides, inaccurate
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estimates can be useful when combined with other (inaccurate) knowledge
sources. The method is primarily targeted for forensic-style identification,
but can also be useful for tracking people across multiple camera views in
surveillance applications, provided that the landmark localization and gender
classification parts are automated. Ongoing and future work includes:

• Automate localization of body landmarks.
• Study the effect on estimation accuracy of the control parameter values of

the method (i.e. α and λ).
• Study the effect on estimation accuracy of image resolution and head pose

variation.
• Extend the method to non-frontal body poses.
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