QMA(2) workshop— Tutorial 1

Bill Fefferman

(QuICS)
Agenda

I. Basics
II. Known results
III. Open questions/Next tutorial overview
I. Basics
I.1 Classical Complexity Theory

- **P**
 - Class of problems efficiently solved on classical computer

- **NP**
 - Class of problems with efficiently verifiable solutions
 - Characterized by **3SAT**
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - n-variable 3-CNF formula
 - E.g., $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_6) \land \ldots$
 - Problem: $\exists x_1, x_2, \ldots, x_n$ so that $\Psi(x)=1$?

- Could use a box solving **3SAT** to solve any problem in **NP**
1.2 Merlin-Arthur

- “Randomized generalization” of NP
- Can think of a game between all-knowing but potentially dishonest Merlin trying to prove statement to efficient randomized classical computer (Arthur)
- If statement is true, there exists a polynomial length classical bitstring or “witness” to convince Arthur to accept with high probability (Completeness)
- If statement is false, then every “witness” is rejected by Arthur with high probability (Soundness)
- Under commonly believed derandomization hypothesis MA=NP
1.3 Quantum Merlin-Arthur

- **QMA**: Same setup, now Arthur is BQP machine, witness is polynomial qubit quantum state
- **Formally**: QMA\(_m\) is the class of promise problems \(L=(L_{\text{yes}},L_{\text{no}})\) so that:
 - There exists a uniform verifier \(\{V_x\}_{x\in\{0,1\}^n}\) of polynomial size that acts on \(O(m(|x|)+k(|x|))\) qubits (for \(k \leq \text{poly}(n)\)):
 \[
 \begin{align*}
 &x \in L_{\text{yes}} \Rightarrow \exists |\psi\rangle \left(\langle \psi | \otimes \langle 0^k | \right) V_x^\dagger |1\rangle_{\text{out}} V_x \left(|\psi \rangle \otimes |0^k\rangle \right) \geq 2/3 \\
 &x \in L_{\text{no}} \Rightarrow \forall |\psi\rangle \left(\langle \psi | \otimes \langle 0^k | \right) V_x^\dagger |1\rangle_{\text{out}} V_x \left(|\psi \rangle \otimes |0^k\rangle \right) \leq 1/3
 \end{align*}
 \]

- “Quantum analogue” of NP
- **k-Local Hamiltonian** problem is QMA-complete (when \(k \geq 2\)) [Kitaev ’02]
 - Input: \(H = \sum_{i=1}^M H_i\), each term \(H_i\) is k-local
 - Promise, for \((a,b)\) so that \(b-a \geq 1/\text{poly}(n)\), either:
 - \(\exists |\psi\rangle\) so that \(\langle \psi | H |\psi\rangle \leq a\) OR
 - \(\forall |\psi\rangle\) we have \(\langle \psi | H |\psi\rangle \geq b\)
1.4 Entangled quantum states

• Let A and B be two finite dimensional complex vector spaces

• A bipartite density matrix, or state, is a positive semidefinite matrix ρ_{AB} on $A \otimes B$ that has unit trace

• ρ_{AB} is called *separable* if it can be written as $\rho_{AB} = \sum_k p_k \rho_{A,k} \otimes \rho_{B,k}$
 • For local states $\{\rho_{A,k}\}$ and $\{\rho_{B,k}\}$ and probabilities p_k

• States that are not *separable* are *entangled*
I.5 **QMA(2): The power of separable witness**

- Our question: Is there an advantage to Merlin sending unentangled states?
 - **QMA(2):**
 - **Completeness:** There exist states $|\psi_1\rangle \otimes |\psi_2\rangle$ that convinces Arthur to accept with high probability
 - **Soundness:** All states $|\psi_1\rangle \otimes |\psi_2\rangle$ are rejected by Arthur with high probability
 - **QMA(k):** Same class with k witnesses

- **Trivial bounds:** $\text{QMA} \subseteq \text{QMA}(2) \subseteq \text{NEXP}$

- Why isn’t **QMA(2)** *obviously* contained in **QMA**?
 - Merlin can cheat by entangling, and checking separability is hard
 - E.g., “**Weak-membership**(ε)” is **NP**-hard [e.g., Gharibian’09]
 - Given ρ_{AB} is it separable or $|\rho_{AB}-\text{Sep}| > \varepsilon$?
 - Where $\varepsilon = \frac{1}{\text{poly}(|A|,|B|)}$ relative to the trace norm

- **Error amplification is non-trivial**
 - Repetition doesn’t work (Measurements on one set of copies can create entanglement between witnesses)
I.6 Why should you care about QMA(2)?

- There are many multi-prover quantum complexity classes, why should we care about this one?
 1. Connections to separability testing (i.e., given a quantum state is it separable or far from separable?)
 2. Connections to entanglement measures and “quantum de Finetti theorems”
 3. Close connections to hardness of approximation and classical complexity theory: “Unique Games Conjecture” and the “Exponential Time Hypothesis”
I.7 Classes of bipartite measurement operators e.g., HM’12

- There’s an interesting line of work attempting to understand QMA(2) with restricted verification protocols
- We say a POVM \((M, I - M)\) is in:
 - **BELL**: “systems are measured locally with no conditioning” \(M = \sum_{(i,j) \in S} \alpha_i \otimes \beta_j\)
 - Where \(\sum_i \alpha_i = I\) and \(\sum_i \beta_i = I\)
 - \(S\) is set of pairs of outcomes (indices)
 - i.e., systems are measured locally get outcome \((i, j)\) and accept iff \((i, j) \in S\)
 - **1LOCC**: “choose measurement on system B conditioned on outcome of measurement on system A” \(M = \sum_i \alpha_i \otimes M_i\)
 - Where \(\sum_i \alpha_i = I\) and \(0 \leq M_i \leq I\) for each \(M_i\)
 - Can be generalized to **LOCC** by allowing for finite number of rounds of alternating measurements on the two subsystems
- **SEP** is the class of measurements \(M\) so that \(\sum_i \alpha_i \otimes \beta_i\)
 - For positive semidefinite matrices \(\{\alpha_i\}\) and \(\{\beta_i\}\)
- Notice that \(\text{BELL} \subseteq \text{LOCC1} \subseteq \text{LOCC} \subseteq \text{SEP} \subseteq \text{ALL}\)
II. Results on **QMA**(2)
II.1. **SAT** protocol: Aaronson, Beigi, Drucker, F., Shor ‘09

- **Conjecture 1:** 3SAT_n cannot be solved in *classical* poly(n) time
 - Equivalent to $\text{NP} \not\subset \text{P}$

- **Conjecture 2:** 3SAT_n cannot be solved in *classical* $2^{o(n)}$ time
 - “Exponential-time Hypothesis” [Impagliazzo & Paturi ‘99]
 - Seems reasonable even quantumly – “Quantum ETH”

- **Our result:** $3\text{SAT}_n \in \text{QMA}_{\log n} (\tilde{O}(\sqrt{n}))$
 - i.e., \sqrt{n} witnesses, each on $\log(n)$ qubits (*here n is number of clauses)*
 - Notice total number of witness qubits is $o(n)$
 - Same result classically would show Exponential-time Hypothesis to be false

- **Proof idea:**
 - Suppose $x_1, x_2, \ldots, x_n \in \{0,1\}^n$ is Merlin’s claimed satisfying assignment
 - Ask all Merlins to send the same state: $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{x_i} |i\rangle$
 - Need many Merlins to check that he sent this state!
II.1 (part ii). Related $\text{QMA}(2)$ protocols

• Related protocols:
 • [Blier & Tapp ’09] $\NP \subseteq \text{QMA}_{\log n}^{2, 1, 1 - \frac{1}{\text{poly}(n)}}$
 • Via protocol for 3Coloring
 • If soundness was constant then $\text{NEXP} \subseteq \text{QMA}(2)$
 • [Chen & Drucker ’10] $\text{3SAT}_n \in \text{QMA}^{\text{BELL}}_{\log n} (\tilde{O}(\sqrt{n}))$
 • Verifier uses local measurements
 • Matches parameters of [ABDEF’09]
 • Perfect completeness and constant soundness
II.2. “Product test”: Harrow & Montanaro ’12

• For all $k \leq \text{poly}(n)$ $\text{QMA}(k) = \text{QMA}(2)$
 • Uses the “product test”
 • Ask both Merlins to send $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes |\psi_3\rangle \otimes \cdots \otimes |\psi_k\rangle$
 • $\Pr \frac{1}{2}$: Arthur “swap tests” on each of the k pairs of corresponding subsystems and accepts iff they all accept
 • Swap test on states ρ and σ accepts with probability $1/2 + 1/2 \ \text{Tr}[\rho\sigma]$
 • $\Pr \frac{1}{2}$: Arthur runs verification protocol on one of the states

• **Main result:**
 • Suppose we are given two copies of k-partite state $|\psi\rangle$
 • Let $1 - \epsilon = \max_{|\phi\rangle \in \text{Sep}(k)} \left\{ |\langle \psi |\phi\rangle|^2 \right\}$
 • Then Product test accepts with probability $1 - \Theta(\epsilon)$

• In fact, $\text{QMA}(k) = \text{QMA}^{\text{Sep}}(2)$
 • Because the “accept” measurement of product test is separable operator
II.2 (part ii). More consequences of [HM’12]

1. Improves the SAT protocol from before [ABDFS’09]
 1. Result as stated: \(\text{SAT}_n \in \text{QMA}^{\log n} (\tilde{O}(\sqrt{n})) \)
 2. Result together with [HM’12]: \(\text{SAT}_n \in \text{QMA}^{\tilde{O}(\sqrt{n}) (2)} \)
 3. Don’t know how to extend this to Chen & Drucker result

2. Hardness consequences for “\(\varepsilon \)-Best Separable State” problem
 • **Input**: Hermitian matrix \(M \) on \(A \otimes B \)
 • **Output**: Estimate of \(h_{\text{sep}}(M) = \max_{\sigma \in \text{sep}} \text{Tr}[M \sigma] \) to within additive error \(\varepsilon \)
 • “Equivalent” in hardness to Weak Membership problem
 • So this problem is NP-hard for \(\varepsilon=1/poly(d) \)
 • Notice that this problem is at least as hard as deciding a language in QMA(2)
 • Therefore, \(\text{SAT}_n \) can be cast as a BSS problem with \(|A| = |B| \approx 2^{O(\sqrt{n})} \)
 • Gives subexponential bounds on the complexity of \(\varepsilon \)-Best Separable State for constant \(\varepsilon \)
 • Suppose there’s an algorithm runs in time \(\exp(O(\log^{1-\gamma}|A| \log^{1-\nu}|B|)) \) then ETH is false!
 • **\(\varepsilon \)-Best Separable State** turns out to also be polynomial-time equivalent to many other problems
 • Connections to Unique Games conjecture via “2-to-4 norm problem” (see [HM’12] for details)

3. Is QMA(2) \(\subseteq \text{QMA} \)?
 • \(\text{QMA}_m(1) \subseteq \text{BQTIME}[O(2^m)] \) [Marriott & Watrous ’04]
 • So, if \(\text{QMA}_m(2)=\text{QMA}_m^{2-\nu} \) the Quantum ETH is false

4. QMA\(^{\text{sep}}(2)\) characterization allows us to error amplify using repetition!
II.3. **QMA(2) with 1LOCC measurements [BCY’11]**

- “Quantum de Finetti” Theorem
 - Definition: We say a bipartite state ρ_{AB} is *k-extendible* if:
 - There exists a (k+1)-partite $\rho_{AB_1B_2...B_k}$ so that $\rho_{AB} = \rho_{AB_1} = \rho_{AB_2} = \cdots = \rho_{AB_k}$
 - *Separable* states are k-extendible for all $k>0$ [e.g., DPS’08]
 - [Christandl et. al ‘07] shows that k-extendible states are close to separable in a well-defined sense:
 \[\|\rho_{AB} - Sep\|_1 \leq \frac{4|B|^2}{k} \]
 - [BCY’11] shows much tighter relation for 1LOCC norm:
 \[\|\rho_{AB} - Sep\|_{1LOCC} \leq \sqrt{\frac{\log |A|}{k}} \]
 - As a consequence, $\text{QMA}_m^{1\text{LOCC}}(2) = \text{QMA}_m^{2}(1)$
 - Proof idea: In QMA(1) protocol, Arthur asks Merlin to send k-extension of his bipartite witness
 - Use de Finetti theorem for 1LOCC to bound soundness probability (i.e., the advantage Merlin gets from entangling his states in case the answer is ‘No’)

- There’s an interesting line of work trying to improve this result in various ways e.g., [Brandao & Harrow ‘11], [Lancien & Winter’16]
II.4. Complete problem for QMA(2) [Chailloux & Sattath ’12]

• Recall: “k-local Hamiltonian problem” is QMA-complete

• “Separable sparse Hamiltonian problem”
 • Definition: An operator over n qubits is row-sparse if:
 • Each row in A has at most poly(n) non-zero entries
 • There’s classical algorithm that takes a row index and outputs the non-zero entries this row
 • Input: Row-sparse Hamiltonian, H, on n qubits
 • Promise: for (a,b) so that b-a≥1/poly(n), either:
 • ∃|ψ⟩ = |ψ⟩_A ⊗ |ψ⟩_B so that ⟨ψ|H|ψ⟩ ≤ a OR
 • ∀|ψ⟩ = |ψ⟩_A ⊗ |ψ⟩_B we have ⟨ψ|H|ψ⟩ ≥ b

• Proof uses “clock” construction of Kitaev and “Product test” of Harrow-Montanaro

• In fact, same paper shows that Separable local Hamiltonian is QMA-complete

• Starting point for recent attempt at proving QMA(2) upper bound [Schwarz’15]
III. Open questions/Preview of things to come
III. Open Questions

• Can we put a nontrivial upper bound on \(\text{QMA}(2) \)?
• Can Chen & Drucker’s 3SAT protocol with \text{BELL} measurements be improved to use only 2 witnesses?
• Can the 1LOCC de Finetti theorem be extended to \text{SEP}? measurements? This would imply \(\text{QMA}(2) \subseteq \text{QMA}(1) \)
• \(\text{QMA}(1) = \text{QMA}^{1\text{LOCC}}(2) \) vs \(\text{QMA}^{\text{SEP}}(2) = \text{QMA}(k) \)
• Other \(\text{QMA}(2) \)-complete problems?
III. Next time!

• Classical complexity of the ε-Best Separable State problem

1. SDP hierarchies and its relation to BSS
 • Give algorithms for (special cases) of BSS
 • “Sum-of-Squares”

2. ε-nets