
PRAM-On-Chip Vision
Explicit Multi-Threading (XMT) Technology

Uzi Vishkin
University of Maryland

What I (really) want you to remember
• PRAM silicon is here and more is coming.
• It provides freedom and opportunity to pursue PRAM-

related research and education without waiting for
vendors. This is legitimate work. No need to wait for
parties that have their own agenda, or do not care for
parallel algorithms and/or programming in the same
way that some of us do.

• There may be something in it for you if you do.
• Consider using our tool chain (compiler & hardware) in

your F07/S08 class
• Documentation includes: Tutorial & Manual.
• Also, Methodology for advancing from PRAM

algorithm to programs
• Let’s talk if you are interested

General-Purpose Market History
Processing power on-chip advancing rapidly since the 1970’s

– Feature size ↓, transistor count and clock frequency ↑ => increasing
power needs

– Not sustainable
• Since 2003: Clock frequency traded for power consumption within limits

Dual (and multi-) Core Potential
Area Voltage Freq. Power Performance…

Single core 1 1 1 1 1.0
Single core 1 0.85 0.85 0.5 ~0.9
Dual core 2 0.85 0.85 1 ~1.8
Crucial for IT growth (& Nat. Sec.): is this sustainable?
@HotChips06: “Intel has found applications, including

benchmarks, scale well to around four cores before leveling off.
The company has known for a while that just throwing cores at
the problem won't necessarily make computers run faster.”

Read: NO, unless something is done about it. Easier said than
done. Widely known outcomes of 4 decades of parallel
computing and looking under some stones …

The Pain of Parallel Programming
• Parallel programming is currently too difficult, making

it unacceptable for many objectives.
– To many users programming existing parallel computers is

“as intimidating and time consuming as programming in
assembly language” [NSF Blue-Ribbon Panel on
Cyberinfrastructure].

• Tribal lore, parallel programming profs, DARPA HPCS
Development Time study (2004-2008): “Parallel
algorithms and programming for parallelism is easy.
What is difficult is the programming/tuning for
performance that comes after that.”

• J. Hennessy: “Many of the early ideas were motivated
by observations of what was easy to implement in the
hardware rather than what was easy to use”

Note To meet timing constraints, some slides have detailed counterparts under “back-up slides”

Solution Approach to Parallel
Programming Pain

• Parallel programming hardware should be
a natural outgrowth of a well-understood
parallel programming methodology
– Methodology first
– Build architecture
– Validate approach

A parallel programming methodology got to start with parallel
algorithms--exactly where our approach is coming from
[Parallel algorithms had to be new. The rest can be obtained
using a pathway of levers. Special slide at the end.]

Parallel Random Access Model
(Recognizing par algs as an alien culture, “parallel-algorithms-first”--as opposed

to: build-first, figure-out how to program later--started for me in 1979)

• PRAM Theory
– Assume latency for arbitrary number of memory

accesses is the same as for one access.
– Model of choice for parallel algorithms in all major

algorithms/theory communities. No real competition!
– Main algorithms textbooks included PRAM

algorithms chapters by 1990
– Huge knowledge-base
– Parallel computer architecture textbook [CS-99]: “..

breakthrough may come from architecture if we can
truly design a machine that can look to the
programmer like a PRAM”

Input: (i) All world airports.
(ii) For each, all airports to which

there is a non-stop flight.
Find: smallest number of flights

from DCA to every other
airport.

Basic algorithm
Step i:
For all airports requiring i-1flights
For all its outgoing flights
Mark (concurrently!) all “yet
unvisited” airports as requiring
i flights (note nesting)

Serial: uses “serial queue”.
O(T) time; T – total # of flights

Parallel: parallel data-structures.
Inherent serialization: S.

Gain relative to serial: (first cut) ~T/S!
Decisive also relative to coarse-grained

parallelism.

Note: (i) “Concurrently”: only change to
serial algorithm

(ii) No “decomposition”/”partition”
(iii) Takes the better part of a semester

to teach!

Please take into account that based on
experience with scores of good
students this semester-long course
is needed to make full sense of the
approach presented here.

Example of PRAM-like Algorithm

PRAM-On-Chip
• Reduce general-purpose single-task completion time.
• Go after any amount/grain/regularity of parallelism you

can find.
• Premises (1997):

– within a decade transistor count will allow an on-chip parallel
computer (1980: 10Ks; 2010: 10Bs)

– Will be possible to get good performance out of PRAM
algorithms

• But why? crash course on parallel computing
– How much processors-to-memories bandwidth?

Enough Limited
Ideal Programming Model: PRAM Programming difficulties

PRAM-On-Chip provides enough bandwidth for on-chip
processors-to-memories interconnection network. PRAM
was just ahead of its time.

How does it work
“Work-depth” Algorithms State all ops you can do in parallel. Repeat.

Minimize: Total #operations, #rounds (source SV82)
Program single-program multiple-data (SPMD). Short (not OS) threads.

Independence of order semantics (IOS). XMTC: C plus 3 commands:
Spawn+Join, Prefix-Sum

Programming methodology Algorithms effective programs.
Extend the SV82 Work-Depth framework from PRAM to XMTC

Or Established APIs (VHDL/Verilog, OpenGL, MATLAB) “win-win proposition”
Compiler minimize length of sequence of round-trips to memory; take
advantage of architecture enhancements (e.g., prefetch)

Architecture Dynamically load-balance concurrent threads over processors.
“OS of the language”. (Prefix-sum to registers & to memory.)

Basic Algorithm (sometimes informal)

Serial program (C)

Add data-structures (for serial algorithm)

Decomposition

Assignment

Orchestration

Mapping

Add parallel data-structures
(for PRAM-like algorithm)

Parallel
Programming
(Culler-Singh)

Parallel program (XMT-C)

XMT Computer
(or Simulator)

Parallel computer

Standard Computer

3
1

2

4

• 4 easier than 2
• Problems with 3
• 4 competitive with 1:
cost-effectiveness; natural

PERFORMANCE PROGRAMMING & ITS PRODUCTIVITY

Low overheads!

Serial program (C)

Decomposition

Assignment

Orchestration

Mapping

Parallel
Programming
(Culler-Singh)

Parallel program (XMT-C)

XMT architecture
(Simulator)

Parallel computer

Standard Computer

Application programmer’s interfaces (APIs)
(OpenGL, VHDL/Verilog, Matlab)

compiler

Yes MaybeAutomatic?
Yes

APPLICATION PROGRAMMING & ITS PRODUCTIVITY

Von Neumann (1946--??)

XMT

Virtual Hardware

Virtual Hardware

PC PC

PC

PC

PC

1

2

1000

PC

PC1000000

1

PC

Spaw n 1000000

Join

Spawn

Join

When PC1 hits Spawn, a spawn unit broadcasts 1000000 and
the code

to PC1, PC 2, PC1000 on a designated bus

$:= TCU-ID Use PS to get new $

Execute
Thread $

Start

Is $ > n ?

No

Yes

Done

How-To Nugget - Time allows only one
Seek 1st (?) upgrade of program-counter
& stored program since 1946

Virtual over physical:
distributed solution

XMT Memory Architecture

Master TCULocal $Memory Module

Memory Module

Memory Module

TCU cluster
TCU cluster

TCU cluster

Interconnection
Network

-Cache-coherence defined away
-Transition from serial to parallel, and serial compatibility
-Size example: 1024 TCUs in 64 clusters, 64 MMs

Off
Chip

XMT Development
• Hardware Track

– Interconnection network. Led so far to:
ASAP’06 Best paper award for mesh of trees (MoT) study
Using IBM+Artisan tech files: 4.6 Tbps average output at max frequency (1.3 -
2.1 Tbps for alt networks)! No way to get such results without such access
90nm ASIC for March’07 tapeout??

– Synthesizable Verilog of the whole architecture. Led so far to:
Cycle accurate simulator. Slow. For 11-12K X faster:
1st commitment to silicon—64-processor, 75MHz computer; uses FPGA: Industry
standard for pre-ASIC prototype; have done our homework for ASIC
1st ASIC prototype?? 90nm ASIC for Summer’07 tapeout. 5 grad students
working full time

• Compiler Done: Basic. To do: Optimizations. Match HW enhancement.
- Basic, yet stable, compiler completed
- To do: prefetch, clustering, broadcast, nesting, non-blocking store. Optimizations.

• Applications
– Methodology for advancing from PRAM algorithms to efficient programs
– Understanding of backwards compatibility with (standard) higher level

programming interfaces (e.g., Verilog/VHDL, OpenGL, MATLAB)
– More work on applications with progress on compiler, cycle-accurate simulator,

new XMT FPGA and ASIC. Feedback loop to HW/compiler.
– A DoD-related benchmark coming

Tentative DoD-related speedup result

Speedup Description

Kernel 1 72.68 Builds the graph data structure from the set of edges

Searches multigraph for desired maximum integer weight, and desired string weight

Extracts desired subgraphs, given start vertices and path length

Extracts clusters (cliques) to help identify the underlying graph structure

Kernel 2 94.02

Kernel 3 173.62

Kernel 4 N/A

• DARPA HPC Scalable Synthetic Compact Application (SSCA 2) Benchmark –
Graph Analysis. (Problems size: 32k vertices, 256k edges.)

• HPC Challenge Benchmarks
DGEMM 580.28 Dense (integer) matrix multiplication. Matrix size: 256x256.

HPL(LU) 54.62 Linear equation system solver. Speedup computed for LU factorization kernel, integer
values. XMT configuration: 256TCUs in 16Clusters. Matrix size: 256x256.

Serial programs are run on the Master TCU of XMT. All memory requests from Master TCU are
assumed to be Master Cache hits-- An advantage to serial programs.
Parallel programs are ran with 2MB L1 cache 64X2X16KB. L1 cache miss is served from L2,
which is assumed preloaded (by an L2 prefetching mechanism). Prefetching to prefetch buffers,
broadcasting and other optimization have been manually inserted in assembly.
Except for HPL(LU), XMT is assumed to have 1024 TCUs grouped in 64 clusters.

New XMT (FPGA-based) computer

System clock rate 75MHz

Memory size 1GB DDR2 SODIMM

Memory data rate 300 MHz, 2.4 GB/s

TCUs 64 (4 x 16)

Shared cache size 64KB (8X 8KB)

MTCU local cache size 8KB

App. XMT Basic XMT
Enhanced

AMD

M-Mult 182.8 sec 80.44 113.83

QSort 16.06 7.57 2.61

Some Specs

Execution time

AMD Opteron 2.6 GHz, RedHat Linux Enterprise 3,
64KB+64KB L1 Cache, 1MB L2 Cache (none in
XMT), memory bandwidth 6.4 GB/s (X2.67 of XMT)

M_Mult was 2000X2000: XMT beats AMD Opteron
QSort was 20M

Note: First commitment to silicon. “We can build”.

Aim: prototype main features.
No FP. 64 32-bit.

Enhanced XMT: Broadcast, prefetch + buffer,
non-blocking store. Nearly done: non-blocking
caches.

More XMT Outcomes & features
– 100X speedups for VHDL gate-level simulation on common

benchmark. Journal paper 12/2006.
– Backwards compatible (&competitive) for serial
– Works with whatever parallelism. scalable (grain, irregular)

• Programming methodology & training kit (3 docs: 150
pages)
– Hochstein-Basili: 50% development time of MPI for

MATVEC (2nd vs 4th programming assignment at UCSB)
– Class tested: parallel algorithms (not programming) class,

assignments on par with serial class
• Single inexperienced student in 2+ years from initial Verilog

design: FPGA of a Billion transistor architecture that beats 2.6
GHz AMD Proc. On M_Mult. Validates: XMT architecture (not
only the prog model) is a very simple concept. Implies: faster
time to market, lower implementation cost.

Application-Specific Potential of XMT
• Chip-supercomputer chassis for application-optimized

ASIC.
General idea: Fit to suit – function, power, clock
More/less FU of any type
Memory size/issues
Interconnection options; synchrony levels
All: easy to program & jointly SW compatible.

Examples: MIMO; Support in one system >1 SW defined
radio/wireless standards; recognition of need for
general-purpose platforms in AppS is growing; reduce
synchrony of int. connect for power (battery life)

Other approaches

• Streaming: XMT can emulate (*using
prefetching). Not the opposite.

• Transactional memory: OS threads+PS. Like
streaming, does some things well, not others.
– What TM can do XMT can, but not the opposite.
– TM less of a change to past architectures. But, why

architecture loyalty? backwards compatibility on
code is important

• Cell-Processor Based:
Not easy to program.

None has a competitive parallel programming model,
or supports a broad range of APIs

http://www.electronicsweekly.com, 4’06: Will multi-core processing fulfill its potential?
The goal is a programming tool which is understandable, accessible and readily
usable by programmers, and which fully exploits the power of parallelism. No
one is expecting this anytime soon. So there is the problem. Multi-core is
perceived as difficult to program, programming tools do not really exist, and the
programmers are entrenched in a serial mind-set. …
Although everyone accepts that multi-cores running at low speed get over the
power density brick wall which was hit by single processors running at high
speed, people are finding multi-core much more difficult to implement than
expected. “There’s a lot of snake oil around in the multi-core business,” says
Alan Gatherer, CTO for communication infrastructure at Texas Instruments.
“I’m not claiming we understand the secret. It varies from application to
application. I’m not sure anyone knows how to build a generic multi-core
architecture. It’s a great goal, but the chances of failure are 100 per cent.”
Gatherer’s point is that multi-core delivers performance when it is targeted
at a specific application when you know what each part of the chip will be doing,
but it becomes a nightmare when you try to produce a microprocessor which
can be programmed for many different applications which, of course, is
supposed to be the whole point of a microprocessor.
The problem is caused by multiple cores, all the same, which are intended to
work as a generic processor.
“We can produce a chip with a lot of theoretical Mips but it won’t be very
programmable, the difficulty is partitioning the programming across the cores,”
says TI’s Gatherer. “Our customers tell us that, if you have to partition an
algorithm across multiple cores and expect them all to talk to each other in
real-time, that’s a hard problem.”

http://www.electronicsweekly.com/

That problem has to be solved by programmers, and everyone seems to agree that
programmers are entrenched in a multi-core resistant mind-set which is the main hindrance
to the wider adoption of multi-core architectures.
Peter Claydon, founder and COO of PicoChip, reckons: “A lot of the parallel processing
start-ups have failed because they try to use a sequential programming language like C.
The mentality of programmers is to expect everything to be serial. Multi-core is here to stay,
but it needs a new way of thinking. I have talked to people who are thinking of doing
start-ups to produce multi-core programming tools.”
“Customers say: ‘Be very careful with parallel architectures’. They ask us, ‘you don’t know
how to program these massively parallel devices yourselves do you?’,” says TI’s Gatherer.
“That’s one of the reasons why there’s been no traction for those companies doing
massively parallel architectures. These companies program their own devices because
no one else can.
"When they say: ‘We’ve got a reference design so you don’t need to program it yourself’,
what they really mean is, ‘we’ve got a reference design because we know you’ll never be
able to program it yourself’. But a lot of our customers feel they have their own competitive
differentiation, which they can provide from programming the chip themselves. That’s what we
provide.”
The goal is a programming tool which is understandable, accessible and readily usable
by programmers, and which fully exploits the power of parallelism. No one is expecting
this anytime soon.
So there is the problem. Multi-core is perceived as difficult to program, programming
tools do not really exist, and the programmers are entrenched in a serial mind-set.
[UV: 1st observation: too many targets to hit in one shot. Need a pathway to solution.]

That is a lot of problems but, as everyone agrees, multi-core is the future.

Summary of technical pathways
It is all about (2nd class) levers

Credit: Archimedes

Reported:
Parallel algorithms. First principles. Alien culture: had to do from scratch. (No

lever)
Levers:
1. Input: Parallel algorithm. Output: Parallel architecture.
2. Input: Parallel algorithms & architectures. Output: parallel programming

Proposed:
• Input: Above. Output: For select AppS application niche.
• Input: Above Apps. Output: GP.

Bottom Line
Cures a potentially fatal problem for growth of general-

purpose processors: How to program them for single
task completion time?

Please consider our record
Proposal Over-Delivering

NSF ‘97-’02 exper. Algorithms architecture
NSF 2003-8 arch. simulator silicon (FPGA)
DoD 2005-7 FPGA FPGA+ASIC*
*subject to access

Final thought: Created our own coherent planet

• When was the last time that a professor offered
a (separate) algorithms class on own language,
using own compiler and own computer?

• Colleagues could not provide an example since
at least the 1950s. Have we missed anything?

List of recent papers
A.O Balkan, G. Qu, and U. Vishkin. Mesh-of-trees and alternative interconnection

networks for single-chip parallel processing. In ASAP 2006: 17th IEEE Int. Conf.
on Application-specific Systems, Architectures and Processors, 73–80, Steamboat
Springs, Colorado, 2006. Best Paper Award.

A.O. Balkan and U. Vishkin. Programmer’s manual for XMTC language, XMTC compiler
and XMT simulator. Technical Report, February 2006. 80+ pages.

P. Gu and U. Vishkin. Case study of gate-level logic simulation on an extremely fine-
grained chip multiprocessor. Journal of Embedded Computing, Dec 2006.

D. Naishlos, J. Nuzman, C-W. Tseng, and U. Vishkin. Towards a first vertical proto-
typing of an extremely fine-grained parallel programming approach. In invited
Special Issue for ACM-SPAA’01: TOCS 36,5, pages 521–552, New York, NY,
USA, 2003.

A. Tzannes, R. Barua, G.C. Caragea, and U. Vishkin. Issues in writing a parallel
compiler starting from a serial compiler. Draft, 2006.

U. Vishkin, G. Caragea and B. Lee. Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform. In R. Rajasekaran and J.
Reif (Editors), to appear in Handbook of Parallel Computing, CRC Press,
December 2007. 60+ pages.

U. Vishkin, I. Smolyaninov and C. Davis. Plasmonics and the parallel programming
problem. Silicon Photonics Conference, SPIE Symposium on Integrated
Optoelectronic Devices 2007, January 20-25, 2007, San Jose, CA.

X. Wen and U. Vishkin. PRAM-On-Chip: First commitment to silicon. SPAA’07.

Contact Information

Uzi Vishkin
The University of Maryland Institute for Advanced

Computer Studies (UMIACS) and Electrical and
Computer Engineering Department

Room 2365, A.V. Williams Building
College Park, MD 20742-3251
Phone 301-405-6763. Shared fax: 301-314-9658
Home page: http://www.umiacs.umd.edu/~vishkin/

http://www.umiacs.umd.edu/~vishkin/

Back up slides

From here on all slides are back-up slides

Solution Approach to Parallel
Programming Pain

• Parallel programming hardware should be
a natural outgrowth of a well-understood
parallel programming methodology
– Methodology first
– Architecture specs should fit the methodology
– Build architecture
– Validate approach

A parallel programming methodology got to start with parallel
algorithms--exactly where our approach is coming from

Parallel Random Access Model
(started for me in 1979)

• PRAM Theory
– Assume latency for arbitrary number of memory

accesses is the same as for one access.
– Full overheads model (like serial RAM).
– Model of choice for parallel algorithms in all major

algorithms/theory communities. No real competition!
– Main algorithms textbooks included PRAM

algorithms chapters by 1990
– Huge knowledge-base
– Parallel computer architecture textbook [CS-99]: “..

breakthrough may come from architecture if we can
truly design a machine that can look to the
programmer like a PRAM”

How does it work
Algorithms State all that can be done in parallel next. Repeat.

Minimize: Total #operations, #rounds Arbitrary CRCW PRAM SV-82a+b

Program single-program multiple-data (SPMD). Short (not OS) threads.
Independence of order semantics (IOS). Nesting possible. XMTC: C plus 3
commands: Spawn+Join, Prefix-Sum

Programming methodology Algorithms effective programs.
General Idea: Extend the SV-82b Work-Depth framework from PRAM to XMTC

Or Established APIs (VHDL/Verilog, OpenGL, MATLAB) “win-win proposition”
Compiler prefetch, clustering, broadcast, nesting implementation, non-
blocking stores, minimize length of sequence of round-trips to memory

Architecture Dynamically load-balance concurrent threads over processors.
“OS of the language”. (Prefix-sum to registers & to memory.) Easy transition
serial2parallel. Competitive performance on serial. Memory architecture defines
away cache-coherence. High throughput interconnection network.

New XMT (FPGA-based) computer: Backup slide

System clock rate 75MHz

Memory size 1GB DDR2 SODIMM

Memory data rate 300 MHz, 2.4 GB/s

TCUs 64 (4 x 16)

Shared cache size 64KB (8X 8KB)

MTCU local cache size 8KB

spawn join spawn joinlow

high

low

high

parallel and serial mode

cluster 0 cluster 1 … cluster n

cache 0 …
interconnection network

cache m

prefix-sum unitGRF

MTCU

MC 0 MC k…
cache 1

block diagram of the XMT processor

App. XMT Basic XMT
Enhanced

AMD

M-Mult 182.8 sec 80.44 113.83

QSort 16.06 7.57 2.61

Some Specs

Execution time

AMD Opteron 2.6 GHz, RedHat Linux Enterprise 3,
64KB+64KB L1 Cache, 1MB L2 Cache (none in
XMT), memory bandwidth 6.4 GB/s (X2.67 of XMT)

M_Mult was 2000X2000: XMT beats AMD Opteron
QSort was 20M

Note: First commitment to silicon. “We can build”.

Aim: prototype main features.
No FP. 64 32-bit.
Imperfect reflection of ASIC performance
Irrelevant for power.

Enhanced XMT: Broadcast, prefetch + buffer,
non-blocking store. Nearly done: non-blocking
caches.

XMT Block Diagram – Back-up slide

MOT-64 HYC-64
Typical

HYC-64
Max tput/cycle

BF-64
Typical

BF-64
Max tput/cycle

Number of packet
registers

24k 3k 49k 6k 98k

Switch Complexity:
Total Switch Delay and
Pipeline Stages / Switch

0.43 ns,
1stage

1.3 ns,
3 stages

2.0 ns
3 stages

1.0 ns
3 stages

1.7 ns
3 stages

End-to-end packet latency
with low traffic (cycles)

13 19 19 19 19

End-to-end packet latency
with high traffic (cycles)

23 N/A 38 N/A 65

Maximum operating
Frequency (GHz)

2.32 1.34 0.76 1.62 0.84

Cumulative Peak Tput at
max Frequency (Tbps)

4.7 2.7 1.6 3.3 1.7

Cumulative Avg Tput at
max Frequency (Tbps)

4.6 2.1 1.3 1.8 1.6

Cumulative Avg Tput at
0.5 GHz clock, (Tbps)

0.99 0.78 0.86 0.56 0.95

Back up slide: Post ASAP’06 Quantitative Study of Mesh of Trees & Others

Technology files (IBM+Artisan) allowed this work

Backup slide: Assumptions
• Typical HYC/BF configurations have v=4 virtual channels (packet buffers)
• Max Tput/Cycle As one way for comparing the 3 topologies, a frequency

(.5 GHz) was picked. For that frequency, throughout of both HYC and BF is
maximized by configuring them to have v=64 virtual channels. As a result,
we can compare the throughput of the 3 topologies by simply measuring
packets per cycle. This effect is reflected at the bottom row, where all
networks run at the same frequency. As can be seen, at that frequency, the
max tput/cycle configurations performs better than their v=4 counterparts.

• End-to-end packet latency is measured
– At 1% of network capacity for low traffic
– At 90% of network capacity for high traffic
– Network capacity is 1 packet delivered per port per cycle

• Typical configurations of HYC and BF could not support high traffic, they
reach saturation at lower traffic rates.

– Typical HYC saturates around 75% traffic
– Typical BF saturates around 50% traffic

• Cumulative Tput includes all 64 ports

More XMT Outcomes & features
– 100X speedups for VHDL gate-level simulation on common benchmark.

Journal paper 12/2006.
– Easiest approach to parallel algorithm & programming (PRAM) gives

effective programs. *Irregular & fine-grained. Established APIs
(VHDL/Verilon, OpenGL, MATLAB)

– Extendable to high-throughput light tasks (e.g., random-access)
– Works with whatever parallelism. scalable (grain, irregular)
– Backwards compatible (&competitive) for serial

• Programming methodology & training kit (3 docs: 150 pages)
– Hochstein-Basili: 50% development time of MPI for MATVEC (2nd vs 4th

programming assignment at UCSB)
– Class tested: parallel algorithms (not programming) class, assignments

on par with serial class
• Single inexperienced student in 2+ years from initial Verilog design: FPGA

of a Billion transistor architecture that beats 2.6 GHz AMD Proc. On M_Mult.
Validates: XMT architecture (not only the prog model) is a very simple
concept. Implies: faster time to market, lower implementation cost.

The XMT Overall Design Challenge
• Assume algorithm scalability is available.
• Hardware scalability: put more of the same
• ... but, how to manage parallelism coming from a

programmable API?

Spectrum of Explicit Multi-Threading (XMT) Framework
• Algorithms −− > architecture −− > implementation.
• XMT: strategic design point for fine-grained parallelism
• New elements are added only where needed

Attributes
• Holistic: A variety of subtle problems across different domains

must be addressed:
• Understand and address each at its correct level of abstraction

Snapshot: XMT High-level language
Cartoon Spawn creates threads; a
thread progresses at its own speed
and expires at its Join.
Synchronization: only at the Joins. So,
virtual threads avoid busy-waits by
expiring. New: Independence of order
semantics (IOS).

The array compaction (artificial)
problem

Input: Array A[1..n] of elements.
Map in some order all A(i) not equal 0

to array D.

1
0
5
0
0
0
4
0
0

1
4
5

e0

e2

e6

A D

For program below:
e$ local to thread $;
x is 3

XMT-C
Single-program multiple-data (SPMD) extension of standard C.
Includes Spawn and PS - a multi-operand instruction.

Essence of an XMT-C program
int x = 0;
Spawn(0, n) /* Spawn n threads; $ ranges 0 to n − 1 */
{ int e = 1;

if (A[$] not-equal 0)
{ PS(x,e);
D[e] = A[$] }

}
n = x;

Notes: (i) PS is defined next (think F&A). See results for
e0,e2, e6 and x. (ii) Join instructions are implicit.

XMT Assembly Language
Standard assembly language, plus 3 new instructions: Spawn, Join, and PS.

The PS multi-operand instruction
New kind of instruction: Prefix-sum (PS).
Individual PS, PS Ri Rj, has an inseparable (“atomic”) outcome:
(i) Store Ri + Rj in Ri, and
(ii) store original value of Ri in Rj.

Several successive PS instructions define a multiple-PS instruction. E.g., the
sequence of k instructions:
PS R1 R2; PS R1 R3; ...; PS R1 R(k + 1)
performs the prefix-sum of base R1 elements R2,R3, ...,R(k + 1) to get:
R2 = R1; R3 = R1 + R2; ...; R(k + 1) = R1 + ... + Rk; R1 = R1 + ... + R(k + 1).

Idea: (i) Several ind. PS’s can be combined into one multi-operand instruction.
(ii) Executed by a new multi-operand PS functional unit.

Mapping PRAM Algorithms onto XMT
(1) PRAM parallelism maps into a thread structure
(2) Assembly language threads are not-too-short (to

increase locality of reference)
(3) the threads satisfy IOS

How (summary):
I. Use work-depth methodology [SV-82] for “thinking

in parallel”. The rest is skill.
II. Go through PRAM or not.
III. Produce XMTC program accounting also for:
(1) Length of sequence of round trips to memory,
(2) QRQW.
Issue: nesting of spawns.

Some BFS Example conclusions
(1) Describe using simple nesting: for each vertex

of a layer, for each of its edges... ;
(2) Since only single-spawns can be nested

(reason beyond current presentation), for some
cases (generally smaller degrees) nesting
single-spawns works best, while for others
flatening works better;

(3) Use nested spawn for improved development
time and let compiler derive best
implementation.

The Memory Wall
Concerns: 1) latency to main memory, 2) bandwidth to main memory.
Position papers: “the memory wall” (Wulf), “its the memory, stupid!” (Sites)

Note: (i) Larger on chip caches are possible; for serial computing, return on
using them: diminishing. (ii) Few cache misses can overlap (in time) in serial
computing; so: even the limited bandwidth to memory is underused.

XMT does better on both accounts:
• uses more the high bandwidth to cache.
• hides latency, by overlapping cache misses; uses more bandwidth to main

memory, by generating concurrent memory requests; however, use of the
cache alleviates penalty from overuse.

Conclusion: using PRAM parallelism coupled with IOS, XMT reduces the effect
of cache stalls.

Memory architecture, interconnects

• High bandwidth memory architecture.
- Use hashing to partition the memory and avoid hot spots.
- Understood, BUT (needed) departure from mainstream

practice.

• High bandwidth on-chip interconnects

• Allow infrequent global synchronization (with IOS).
Attractive: lower energy.

• Couple with strong MTCU for serial code.

Final thought: Created our own coherent planet
• When was the last time that a professor offered a

(separate) algorithms class on own language, using
own compiler and own computer?

• Colleagues could not provide an example since at
least the 1950s. Have we missed anything?

Teaching:
Class programming homework on par with serial

algorithms class. In one semester: multiplication of
sparse matrix by vector, deterministic general sorting,
randomized sorting, Breadth-First Search (BFS), log-
time graph connectivity and spanning tree.
In the past also: integer sorting, selection.

Consistent with claim that PRAM is a good alternative to
serial RAM. Who else in parallel computing can say
that?

Speed-up results from NNTV-03
Assumptions follow in 3 slides

	PRAM-On-Chip	Vision�Explicit Multi-Threading (XMT) Technology
	What I (really) want you to remember
	General-Purpose Market History
	The Pain of Parallel Programming
	Solution Approach to Parallel Programming Pain
	Parallel Random Access Model�(Recognizing par algs as an alien culture, “parallel-algorithms-first”--as opposed to: build-firs
	PRAM-On-Chip
	How does it work
	XMT Memory Architecture
	XMT Development
	Tentative DoD-related speedup result
	New XMT (FPGA-based) computer
	More XMT Outcomes & features
	Application-Specific Potential of XMT
	Other approaches
	Summary of technical pathways �It is all about (2nd class) levers
	Bottom Line
	Please consider our record
	Final thought: Created our own coherent planet
	List of recent papers
	Contact Information
	Back up slides
	Solution Approach to Parallel Programming Pain
	Parallel Random Access Model�(started for me in 1979)
	How does it work
	New XMT (FPGA-based) computer: Backup slide
	Backup slide: Assumptions
	More XMT Outcomes & features
	The XMT Overall Design Challenge�
	Snapshot: XMT High-level language
	XMT-C
	XMT Assembly Language
	Mapping PRAM Algorithms onto XMT
	Some BFS Example conclusions
	The Memory Wall
	Memory architecture, interconnects�
	Final thought: Created our own coherent planet
	Speed-up results from NNTV-03�Assumptions follow in 3 slides

