Brief Announcement: Performance Potential of an
Easy-to-Program PRAM-On-Chip Prototype Versus
State-of-the-Art Processor

George C. Caragea
University of Maryland

george@cs.umd.edu

A. Beliz Saybasili
LCB Branch, NHLBI, NIH
saybasiliab@mail.nih.gov

Xingzhi Wen
NVDIA Corporation
xwen@nvidia.com

Uzi Vishkin
University of Maryland
vishkin@umiacs.umd.edu

ABSTRACT

We compare the Paraleap FPGA computer, a 64-processor
hardware prototype of the PRAM-driven XMT architecture,
with an Intel Core 2 Duo processor and show that Paraleap
outperforms the Intel processor by up to 13.89x in terms
of cycle counts. The comparison favors the Intel design,
since the silicon area of an ASIC implementation of the 64-
processor XMT design is the same as that of a single core.

Categories and Subject Descriptors: C.1.4 Parallel Ar-
chitectures C.4 Performance of Systems

General Terms: Algorithms, Performance

1. INTRODUCTION

The eXplicit Multi-Threading (XMT) on-chip general pur-
pose computer architecture is aimed at the classic goal of
reducing single task completion time. It is a parallel algo-
rithmic architecture in the sense that: (i) it seeks to provide
good performance for parallel programs derived from Par-
allel Random Access Machine/Model (PRAM) algorithms,
and (ii) a work flow for advancing from PRAM algorithms
to XMT programs, along with a performance metric and its
empirical validation are provided [4]. Scalability and ease
of parallel programming are now widely recognized as the
main stumbling blocks for extending commodity computer
performance growth (e.g., using multi-cores) [3]. XMT pro-
vides a unique answer to both challenges: 1) To address the
programmability issue, the following methodology is pro-
posed. Given a problem, a PRAM style parallel algorithm
is developed using the Shiloach-Vishkin 1982 Work-Depth
(WD) Methodology. All the operations that can be con-
currently performed in the first round are noted, followed
by those that can be performed in the second round, and
so on. Such synchronous description of a parallel algorithm
makes it easy to reason about correctness and analyze for
work (the total number of operations) and depth (number
of rounds). The XMT programmer is then expected to use
the XMTC language (basically C with two additional com-
mands) for producing a multi-threaded program. Reasoning

*Also Istanbul Technical University

Copyright is held by the author/owner(s).
SPAA' 09, August 11-13, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-606-9/09/08.

about correctness or performance can now be restricted to
just comparison of the program with the WD algorithm, as-
suming that correctness and performance of the algorithm
have been established, often a much easier task than directly
analyzing the program. 2) By design, XMT also scales to one
thousand cores and beyond, the direction in which Moore’s
law and the current technology trends point towards.

The main contribution of this brief announcement is the
evaluation of an embodiment of the XMT Architecture, the
FPGA-based Paraleap prototype, using three benchmarks
and realistic input sizes, and contrasting our results with
an Intel Core 2 Duo processor. In all our tests, the Par-
aleap architecture surpassed the Core 2 Duo processor. The
more meaningful results show speed-ups ranging between
6.3x and 13.89x in terms of cycle counts. We consider this
an extremely encouraging result for the further development
of XMT. XMT is an academic project with a very modest
budget, while Intel is an industry giant that invested many
thousands of man-years in its processor.

2. PARALEAP: AN FPGA PRAM ON-CHIP
SYSTEM

A 64-processor FPGA prototype of the XMT chip
was completed in early 2007 at the University of Maryland.
This first commitment to silicon constitutes an important
milestone for the project. It provided: (i) validation of
the HDL description and implementability of the XMT ar-
chitecture; (ii) a platform for running realistic size appli-
cations and benchmarks (the FPGA prototype runs about
11-12K times faster than our cycle-accurate simulator) and
(iii) support for teaching parallel algorithmics to relatively
big classes (30+ students) at all levels, from high-school to
graduate level, while providing hands-on programming ex-
perience on actual hardware. The completion of the 64-core
FPGA prototype was first announced in SPAA’07 with a
more detailed description and evaluation appearing in [5].

The general XMT architecture (Figure 1(a)) includes
a Master Thread Control Unit (MTCU), processing clusters
(Clusto, . ..,Clustn) each comprising of several TCUs, a
high-bandwidth, low latency interconnection network, on-
chip cache modules which share the DRAM Channels, a
global register file (GRF) and a prefix-sum unit (PS). A
cluster has functional units shared by several TCUs and one
load/store port to the interconnection network, shared by



[ mmmm e m—— == = |
| Global I
| | Register |
 |File (GRA] } spawn
I
I
I
| : /
| | -
"l Master I $ Join
'l Teu I
: (MTCU) [+ Interconnection Networl : \ spawn
I
I
|
|
|
| ‘Cache(i)‘Cacheif...‘Cachel\*l: %
; R foin
|
b DRAM |~ ~ ~|DRAM |~
Channel " |Channel®
 To/From DRAM
@ (b)

Figure 1: (a) Block diagram of XMT (b) The XMT
execution model: switching between serial and par-
allel modes.

all its TCUs. Clusters also contain a compiler-controlled
read-only buffer which can cache values likely to be re-used
within the cluster. TCUs include an in-order pipeline, reg-
ister unit and basic functional unit (ALU, BR, SFT), and
also a small (e.g. 4-word) prefetch buffer unit used by the
compiler to hide memory latencies through data prefetching.

The global memory address space is evenly partitioned
into the cache modules using a form of hashing. The hash
function operates at cache line granularity, mapping con-
tiguous address spaces uniformly amongst the cache mod-
ules. A particular memory location can be found in at most
one cache module at any one time. Within each module, the
order of operations to the same location is preserved, and a
store operation can be acknowledged as soon as the module
accepts the request, regardless if it is a hit or a miss.

There are no local caches at the TCUs, effectively side-
stepping the cache-coherence problem. This is essential to
the scalability of the design to an envisioned 1024-TCU
XMT computer and beyond, as cache coherence mechanisms
use non-trivial amounts of chip area and power, as well as
adding execution overheads.

Paraleap is an embodiment of the XMT architecture, with
the system specifications as listed in Table 1.

Clock rate 75 MHz || No. TCUs 64
DRAM size 1GB || Clusters 8
DRAM chann. 1 [| Cache modules 8
Mem. data rate | 0.6GB/s || Shared cache 256KB

Table 1: The Paraleap FPGA Prototype

The XMT Paraleap prototype is built on an FPGA devel-
opment board using three FPGA chips: two Xilinx Virtex-4
LX200 and one Virtex-4 FX100. The utilization rate of the
two highest loaded FPGA chips was 99% and 94%. The Xil-
inx ISE Design Suite was able to meet timing requirements
for up to 100MHz for individual sub-modules, but the clock
rate had to be reduced to 75MHz for the system, since the
high utilization rate significantly limited the flexibility of the
Place-and-Route process. Future embodiments of the XMT
architecture will not have this limitation, allowing for higher
clock speeds to be achieved.

The XMTC programming language is an extension
of standard C used to program the XMT processor. Execu-

tion switches between serial and parallel, as shown in Figure
1(b). Threads are usually short, and the execution model
is Single-Program, Multiple-Data (SPMD). XMTC includes
constructs to explicitly manage parallelism, namely a spawn
instruction to start a parallel section, a special identifier $
holding the unique thread ID while in parallel mode and
a prefix-sum instruction ps which is executed efficiently by
a dedicated hardware mechanism and can be used for low-
overhead inter-thread coordination.

3. EXPERIMENTAL EVALUATION

As duly acknowledged later, a senior engineer at Intel sug-
gested that we augment prior benchmarking efforts by eval-
uating the performance of the Paraleap system and compare
it with a state-of-the-art existing processor. A set of bench-
marks and input sizes was recommended to us as constitut-
ing a fair comparison. For each benchmark, we wrote two
implementations: (i) a parallel program, written in XMTC
to be executed on Paraleap and (ii) a serial C program for
the Intel Core 2 Duo architecture. We used the following
three benchmarks for evaluation:

SpMYV: A sparse matrix, stored in Compact Sparse Row
(CSR) format, is multiplied by a dense vector. The im-
plementation is straightforward: the serial version simply
multiplies each row with the vector one at a time, while the
parallel implementation processes all rows in parallel, using
exactly one thread per row.

FFT: 1-D Fast Fourier Transformation. We used the
Radix-2 Cooley-Tukey algorithm as the basis of our imple-
mentations. The algorithm runs in stages; first, a “twiddle”
table, used to combine the input and output of stages, is
computed. Next, a binary bit reversal pass prepares the in-
put data. The main part of the algorithm consists of log NV
“butterfly” computation stages. The serial implementation
follows this algorithm. For the parallel version, we paral-
lelized each of the stages using the XMT parallel program-
ming model. Note that at the present time, Paraleap has
only integer arithmetic support; to allow for a fair compar-
ison, we implemented both the serial and parallel versions
using fixed-point arithmetic with the same precision.

Quicksort: Sorting an array of integer values. For the se-
rial implementation of this benchmark, we implemented the
standard Quicksort algorithm found in any serial algorithms
textbook. The parallel version of quicksort follows the al-
gorithm introduced in [2]: in the first phase, the array is
iteratively partitioned using a fetch-and-add based parallel
scheme, taking advantage of the XMT prefix-sum primitive.
When the number of partitions exceeds a threshold, the ex-
ecution switches to its second phase, where each partition is
sorted by exactly one thread.

Table 2 describes the input data used in our experiments.
For each benchmark, we created two datasets: a small one,
that is comparable in size to the on-chip cache, and a larger
one that exceeds the cache size for both Paraleap and the
Intel Core 2 Duo processor.

Experimental Setup.

We collected cycle counts for the parallel XMTC programs
running on Paraleap and for the serial C implementations
on the Intel Core 2 Duo system as follows:

Parallel execution We compiled each benchmark using
the XMTC compiler, which is a port of GCC 4.0.2 to the
XMT platform. We used the maximum level of optimization



Small Large

Program N | Footprint N | Footprint
SpMV 22K 200KB AM 33MB
FFT 8K 192KB 4M 96MB
Quicksort | 100K 781KB | 20M 153MB

Table 2: Datasets used. Footprints represent the
total amount of memory used at runtime.

supported (-O3), and activated data prefetching optimiza-
tions tuned for XMT. Instructions to use the cluster read-
only buffers were introduced manually in the code, but we
expect this process to be automated in a future version of
the compiler. We ran the compiled benchmarks on Paraleap
and collected the cycle counts reported by the system.

Serial execution For the second part of our experiment,
we used a desktop system with an Intel Core 2 Duo E6300
CPU rated at 1.86GHz, with 64KB L1 and 2MB L2 cache
per processor and 2GB DDR2-667 DRAM. Choosing a com-
piler for the Intel x86 architecture can have a significant in-
fluence on execution performance, since different compilers
utilize the large array of features of the architecture in differ-
ent ways. We used two compilers in our experiments: (i) the
widely used open-source GNU C Compiler (GCC) and (ii)
the Intel C++ Professional Compiler for Linux (ICC v11.0),
the most recent version at the time of writing. Just as for
the Paraleap compiler, we used the highest level of optimiza-
tion for both compilers. In addition, we enabled the ad-
vanced optimizations available for the ICC compiler on the
Core 2 Duo architecture: SIMD vectorization using SSE3,
software data prefetching and auto-parallelization. We ran
each benchmark 5 times and collected cycle counts using
the Time Stamp Counter 64-bit register instead of the more
coarse-grained system timers. This ensured better precision
and factored out OS interferences.

An FPGA prototyping/cycle-accurate emulation method-
ology for projecting the cycle counts for an 800MHz ASIC
implementation, using DDR2-800 SDRAM was introduced
in [6]. We are using the same configuration for our current
experiments.

Results.

The speed-ups for the three benchmarks between the Par-
aleap and the Intel Core 2 Duo systems are presented in
Table 3. The speed-up figures represent the ratio between
the number of clock cycles needed for the execution of
each of the benchmarks on the Paraleap and the Intel Core
2 Duo computers.

Core2-ICC |[ Core2-GCC
Program | small | large || small | large
SpMV 6.7 3.3 6.3 3.26
FFT 9.51 | 2.51 8.76 2.71
Quicksort | 13.07 | 7.75 || 13.89 8.18

Table 3: Clock cycle speed-ups of Paraleap vs. Intel
Core 2

The lower speed-up numbers for the large datasets can be
explained by the large difference in cache size between Par-
aleap and Core 2 Duo (256KB compared to 2x2MB). How-
ever, there is no reason that the cache size of a future XMT
system will be smaller than its contemporaries, addressing
this discrepancy.

Discussion.

In terms of silicon area, the comparison above is tilted
in favor of the Intel design. The silicon area of an ASIC
implementation of the 64-processor XMT design is roughly
the same as that of a single core of the Intel Core 2 Duo.
The same holds with regards to the compiler, since both
compilers used for the Intel platform are mature, established
products, while the XMTC compiler performs only basic
optimizations at this stage.

When it comes to clock speed, the comparison becomes
much more involved. An important reason for the compar-
ison is getting a feel for the scalability potential of XMT
relative to possible upgrades of the Intel. We felt that the
latter is too speculative for the current paper, but we do
not see why the clock speed of a 1024-TCU XMT should
be lower than a same-generation many-core processor that
incorporates cache-coherence and uses the same silicon area.

4. CONCLUSION

The XMT project provides a viable answer to the two
biggest challenges currently facing the architecture commu-
nity: ease of programing and scalability. The results of the
evaluation we performed show that the XMT Architecture,
even at this early stage of development, can outperform one
of the most widely used current processors.

Finally note that a complete programming environment
including a configurable cycle-accurate simulator and basic
compiler can be downloaded to any standard computer plat-
form (Windows, Linux, Mac) through the XMT software
release website [1], allowing anyone to evaluate the archi-
tecture and programming model without requiring access to
the hardware.

Acknowledgments

Pradeep Dubey, Intel suggested the benchmarks used in
the current paper as well as the comparison methodology.
We would also like to gratefully acknowledge the work of
Alexandros Tzannes and James Edwards on the compiler
infrastructure and experimental platform, as well as other
members of the XMT team. The name Paraleap was chosen
out of 6000 submissions in an open naming context con-
ducted by UMD.

5. REFERENCES

[1] Software release of the explicit multi-threading (XMT)
programming environment. www.umiacs.umd.edu/users
/vishkin/XMT /sw-release.html, August 2008.

[2] P. Heidelberger, A. Norton, and J. Robinson. Parallel Quicksort
Using Fetch-and-add. IEEE Transactions on Computers,
39(1):133-138, Jan 1990.

[3] M. Snir. Multi-core and parallel programming: Is the sky
falling? The Computing Community Consortium Blog,
www.cccblog.org/2008/11/17 /multi-core-and-parallel-
programming-is-the-sky-falling/, November 2008.

[4] U. Vishkin, G. C. Caragea, and B. C. Lee. Handbook of Parallel
Computing: Models, Algorithms and Applications, chapter
Models for Advancing PRAM and Other Algorithms into
Parallel Programs for a PRAM-On-Chip Platform. CRC Press,
2007.

[5] X. Wen and U. Vishkin. FPGA-based Prototype of a
PRAM-On-Chip Processor. In ACM-CF’08: Proceedings of the
2008 conference on Computing frontiers, pages 55—66, New
York, NY, USA.

[6] X. Wen and U. Vishkin. The XMT FPGA
Prototype/Cycle-accurate-simulator Hybrid. In WARPO08: The
3rd Workshop on Architectural Research Prototyping, Beijing,
China, June 2008. In conjunction with ISCA 2008.



