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ABSTRACT
All students at our high school are required to take at least
one course in Computer Science prior to their junior year.
They are also required to complete a year-long senior project
associated with a specific in-house laboratory, one of which is
the Computer Systems Lab. To prepare students for this ex-
perience the lab offers elective courses at the post-AP Com-
puter Science level. Since the early 1990s one of these elec-
tives has focused on parallel computing. The course enrolls
approximately 40 students each year for two semesters of in-
struction. The lead programming language is C and topics
include a wide array of industry-standard and experimental
tools. Since the 2007-2008 school year we have included a
unit on parallel algorithmic thinking (PAT) using the Ex-
plicit Multi-Threading (XMT) system [11, 12]. We describe
our experiences using this system after self-studying the ap-
proach from a publicly available tutorial. Overall, this arti-
cle provides significant evidence regarding the unique teach-
ability of the XMT PAT approach, and advocates using it
broadly in Computer Science education.
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1. INTRODUCTION
Thomas Jefferson High School for Science and Technol-

ogy is a member of the National Consortium for Specialized
Secondary Schools of Mathematics, Science, and Technol-
ogy. Admission is competitive and students are drawn from
a region whose total population is over one million people.
Through a national contest in the early 1990s the Computer
Systems Lab won an ETA supercomputer and subsequently
created a one-semester elective course in Supercomputing
Applications.

The original ETA was damaged by a leaky roof and later
replaced with a cluster of Linux workstations running PVM
and MPI. In 2003 the ETA was exchanged for a Cray SV1
which is still housed in the lab, but the main environment
for computing continues to be approximately 50 mixed-use
Linux workstations, a few dedicated high-performance Linux
and Solaris servers, and a recently acquired eight-node clus-
ter. System administration and maintentance are handled
by a small group of the high school students themselves.

The recognition that parallel programming is becoming
mainstream Computer Science knowledge is supported by
texts such as [4] that wrote: “for the first time in history,
no one is building a much faster sequential processor. If you
want your program to run significantly faster..., you’re going
to have to parallelize your program”. In 2007 this evolution
of the field led us to expand the offering from one semester to
two semesters and change the name of the course to Parallel
Computing.

2. STUDENT POPULATION
The students in our course have either already completed

or are currently enrolled in AP Computer Science and many
have also taken two-semesters of another elective in Artifi-
cial Intelligence. Thus they typically come into the Parallel
Computing course with two years experience in Java and one
year in Python, as well as exposure to Big-Oh analysis and
data structures including queues, heaps, trees, and graphs.
Mathematically they are at least through Algebra II and
many are in Calculus, so they are familiar with matrices,
exponentials, and logarithms. They are highly motivated in
this area and many will eventually become undergraduate
Computer Science majors.



3. GOALS OF THE COURSE
Essentially all aspects of the course have changed from the

original conception and continue to change as needed.

3.1 Language and Tools
At various times the course has been taught in C, C++,

and Fortran. We currently teach the course in C and one
major goal is to expose students to aspects of C (e.g., point-
ers) that they would not have seen in either Java or Python.
This choice also facilitates discussions of system-level archi-
tecture which play a minor but important role in the course.

We have long abandoned PVM but still spend a semester
covering MPI at the level of send/receives, focusing first on
the Manager-Worker paradigm for the embarrassingly par-
allel problems and then later on more complicated commu-
nication schemes. In the second semester we cover XMT,
pthreads, OpenMP, sockets, and Nvidia’s CUDA [2].

3.2 Principles
We begin with embarrassingly parallel problems such as

parameter search, fractal generation, and cellular automata,
using 2-D OpenGL graphics (students have previously used
Java’s Swing) to visualize speedup when possible. Then we
move to coupled problems such as heat transfer and orbital
mechanics, before returning again to such problems as iter-
ative matrix solvers, image compression, and ray tracing.

We want students to appreciate the breadth of parallel
computing’s current landscape while at the same time see
some depth in the context of classic problems, their solu-
tions in parallel, and a generalizable approach to writing
parallel code. Formal analysis, which has long been an inte-
gral part of our serial algorithmic thinking courses, has only
been included in the parallel course since our introduction
of XMT.

4. EXPLICIT MULTI-THREADING
The parallel random-access machine/model (PRAM) the-

ory of algorithms [6, 7], developed mostly in the 1980s, pro-
vides a well-established, easy approach to parallel algorith-
mic thinking (PAT). The Explicit Multi-Threading (XMT)
system from the University of Maryland was designed to im-
plement PRAM-like programming. As such, XMT provides
students a simple-to-use alternative to MPI. As has been
noted by others [3, 5, 8, 9, 10] the complexity of coding in
MPI or even OpenMP can be quite overwhelming for a be-
ginning student. With XMT the coding overhead is instead
very light.

The programming language for XMT, called XMT-C, adds
only two constructs to ANSI C: spawn and prefix-sum. So
far we have only used the spawn construct, within which the
dollar-sign ($) variable acts like an MPI rank or a thread
ID, and shared access to previously declared arrays makes
send/receives of data unnecessary. Installation of the emu-
lator [1] is easy and provides cycle and time estimates for
comparison calculations. Most importantly from an instruc-
tional perspective, XMT has allowed us to cover a range
of algorithms that we had never considered covering using
MPI.

5. ALGORITHM ANALYSIS
We make extensive use of timing data to show speedups

for embarrassingly parallel problems but had not ventured
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Figure 1: Tree representation of a simple sum.
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Figure 2: The widely used prefix-sum calculation.

into formal analysis of algorithms until we began using XMT.
The main reason for parallel algorithms is performance and
it was important to be able to match their performance anal-
ysis with that of serial algorithms.

5.1 Summation Example
We began our XMT unit with a simple example: calcu-

lating the sum of an array of integers. A serial version can
be constructed easily and runs in O(N) time. In parallel
we take advantage of a tree structure as shown in Figure 1.
The operations at each level of the tree are independent and
can be done in parallel using a spawn block in O(1) time. If
we then run a loop over the levels we will arrive at the top
node of the tree in O(log N) time. Note that the amount of
work (i.e., total number of operations) is still O(N) but the
amount of time has been reduced drastically. A code listing
is provided in the Appendix.

5.2 Prefix-Sum
We do not have the students code the simple summa-

tion example. Instead we use it as a basis for discussing
the prefix-sum problem whose main idea will be used for
many other algorithms. For a given position in the array
the prefix-sum is the sum of all the values up to that point.
Having completed a bottom-to-top pass of the tree to calcu-
late the overall sum we then complete a top-to-bottom pass
to calculate all the prefix-sums, as shown in Figure 2. Again
the operations at each level can be done independently in
parallel. We walked through the parallel algorithm with
the students, modified the summation pseudocode to cal-
culate these prefix-sums, and the students then wrote their
own XMT-C code. This served as a first check for us as to
whether or not the system was working properly and also
that the students understood the basic style of approach we
planned to follow.



5.3 Matrix Multiplication
At this point we were able to have a very powerful discus-

sion about matrix multiplication. How can we multiply two
N ×N matrices in parallel? We began from the perspective
of the N2 elements in the resulting matrix. Each of these
elements is calculated by taking the dot product of a given
row and column from the input matrices. Since each of these
dot products is independent they can all be done in paral-
lel. In turn, each dot product consists of N multiplications
and a summation. The multiplications are independent and
each summation, as we have seen, can be done in O(log N)
time and independently of the other summations. Thus the
entire matrix multiplication takes the normal O

`

N3
´

work
but an astonishingly low O(log N) time. The “wow” factor
resulting from this discussion cannot be overstated.

5.4 Other Examples
The students next solved a series of problems related to

prefix-sum. We did not reveal any solutions until the stu-
dents had a chance to attempt the problems themselves,
which included prefix-min, compaction, nearest-one, and seg-
mented prefix-sum. Even without fully knowing where all
of this was leading the students became very engaged in
these problems. One student even coined the term “micro-
parallelism” to describe the radically different approach we
were taking with XMT as compared to MPI. Not only were
they successful at solving the problems but the students also
realized immediately that this bottom-up approach to build-
ing algorithms in parallel was of a fundamentally different
nature from what they had previously seen.

5.5 Communication Schemes
No one wanted to try coding these algorithms in MPI

with send/receives and the careful up-and-down tree-based
communication that would be needed to pass data, manage
tasks, and avoid deadlock. Since communication is a major
difficulty in writing MPI code we wait as long as possible
to attempt even simple schemes like nearest-neighbor and
round-robin. The ease of implementing tree communication
is a major difference between XMT and MPI.

5.6 Student Work
Not only was the language overhead far less with XMT

than it had been with MPI but it was small enough that
upon returning from a week-long winter break students re-
quired essentially no review before resuming productive work.
In addition, the algorithmic problems considered sparked
real creativity. It was no longer the case that everyone in
the lab was chasing the same canonical solution but instead
students were actually inventing different methods for solv-
ing these problems.

6. RANKING AND MERGING

6.1 Big-Oh Analysis
Once the students had gained some experience coding in

XMT we attempted a much more ambitious problem but one
whose big-picture usefulness they could immediately grasp.
When the students were introduced to Big-Oh analysis in the
AP Computer Science course, the first application they saw
was sorting. That course considers the selection, insertion,
merge, quick, and heap sorts. This made writing a mergesort
for XMT a natural fit and a powerful example of how to

Table 1: Big-Oh comparison for rank-merge.

Serial Binary Search Partitioning
Work O(N) O(N log N) O(N)
Time O(N) O(log N) O(log N)

evaluate the quality of a parallel algorithm. Our goal was
to find an algorithm that balances a small amount of work
with a small amount of time.

6.2 Statement of the Problem
The problem was presented as follows: given two sorted

arrays merge them into one sorted array. Due to their prior
experience learning the mergesort the students knew that a
parallel solution to this problem would lead to a technique
for sorting in parallel. We discussed the idea of determining
for each element from one list where it would fall in the other
list, and that once we knew where it fell in both lists (we
already knew where it fell in its own list) we could calculate
its ultimate location in the sorted list. We could also move
everything into place with a single spawn block in O(N)
work and only O(1) time. This concept, known as ranking,
tells us how many elements are smaller than we are, which
in turn tells us our index in the merged array.

6.3 A First Attempt
We can calculate the rank of each element using a binary

search on the other list. This takes O(log N) work for each
of N elements for a total of O(N log N) work. The binary
searches are all independent so they require only O(log N)
time. Already students were impressed by this result be-
cause if a mergesort requires O(log N) levels of recursion
then we have just described a parallel sort that runs in a
mere O

`

log2 N
´

time! But we can still improve the amount
of work being done; a serial merge takes only O(N) work
which our first parallel attempt has increased by a factor of
log N .

6.4 Big Idea: Partitioning
We consider breaking the rank-merge problem into pieces

in order to reduce the asymptotic behavior of the work with-
out changing the time. We partition each of the sorted input
arrays into O(N/ log N) pieces of size O(log N) and perform
the binary search ranking process on only the endpoints of
these partitions. This still takes O(log N) time but now only
O (log N · (N/ log N)) = O(N) work. To rank the remaining
elements we perform O(N/ log N) serial-style merges, all of
which are independent and can be done in parallel.

Each serial-merge is linear in both work and time. That
is, the serial-merge is linear in terms of the amount of data
being merged by this particular instance of the serial-merge
code. We are not merging all the data at once but rather in
small pieces, the partitions. Since the partitions have been
carefully constructed so that their sizes are O(log N) this
amounts to only O(log N) work and time for each merge
instance.

This critical point must be explained with great care or
only the best students will catch it. Then, multiplying by the
O(N/ log N) number of partitions gives us a total of O(N)
work. Since we’re still only using O(log N) time this means
the parallel mergesort will be as good as serial in terms of
work, O(N log N), for only O

`

log2 N
´

time.



6.5 Comparison of Algorithms
A summary of these three approaches is shown in Table 1.

This kind of development of a non-trivial algorithm, drawing
from previous experience and refining with subtle ideas, was
in no way a part of our program prior to using XMT. Stu-
dents continue to be impressed by the timing data speedups
of a big MPI run but now we can also appeal to their more
sophisticated abilities of anaylsis, to extend those skills in
a parallel environment, and to build general purpose tech-
niques in a highly-coupled context.

7. TEACHER PREPARATION
Prior to the emulator being available for download a pi-

lot was conducted during the spring semester of 2008 as a
proof-of-concept. After XMT proved to be a viable tool the
instructor self-taught himself the material only by reviewing
a series of online video lectures in preparation for the 2008-
2009 year. He was in regular contact with the XMT team
before, during, and after the five-week instructional unit.

8. CONCLUSIONS
The students in this course would be classified as very

good in Computer Science even if they weren’t studying par-
allel computing. Our challenge is to present them a broad
array of meaningful, inspiring, real-world, eye-opening ex-
periences. Our use of XMT as described here has provided
them with a level of insight that MPI just couldn’t do given
their backgrounds and the instructional timeframe we have
to work with. It has earned itself a permanent place in
our curriculum and we look forward to improving our pre-
sentation of this material each year. Specifically, we plan
on extending our instructional unit to include the selection
problem (that will require use of the prefix-sum construct)
and the general technique of accelerating cascades. For the
2009-2010 school year this will begin the first week of Febru-
ary at the start of the second semester and continue until
the first week of March, covering five weeks of instruction.

Compared to OpenMP, which requires a laundry list of
preprocessor directives that are also hardware specific, we
found the XMT interface was easier for students to pick
up and use. Compared to CUDA, we found the additional
syntax features to be far more intuitive in XMT with the
added benefit that no specialized graphics cards had to be
purchased, installed, and configured in order to run student
programs.

As a high school we have the luxury of assuming that an
undergraduate education will follow anything we do with
our students. Thus, our end-product goal is not a ready
professional heading into the job market but rather a mo-
tivated, activated, and stimulated teenager entering a uni-
versity setting prepared for many more years of learning.
While our presentations do not always contain the same level
of abstraction that might be found in a college-level lecture,
wherever possible we want to challenge our students with the
most rigorous problems they can reasonably be expected to
solve. The XMT system has allowed us to expand these of-
ferings with both a new style of question and a user-friendly
environment for writing parallel code.

Overall, this article provides significant evidence regard-
ing the unique teachability of the XMT PAT approach, and
advocates using it broadly in Computer Science education.

9. POSTSCRIPT
In response to SIGCSE reviews, we describe also experi-

ences and strategies teaching more typical groups of K-12
and a freshman course to college students.

9.1 K-12 Settings
D. Ellison, a K-12 mathematics teacher, taught more typ-

ical students with minimal or no programming experience
at:

1. Baltimore Polytechnic Institute, a majority African-
American high school. The class met bi-weekly over
two months and was offered to 11th grade students
who happened to take AP Chemistry as an alternative
to their Lego Mindstorms robot programming class.

2. Montgomery Co. Public Schools, middle-school sum-
mer camp for underrepresented students. The class
met nine mornings from 8:30 AM until 12:30 PM.

9.2 Pedagogy
Consistent with a constructivist theory of learning and re-

form education methods at this elementary level we posed
problem solving tasks designed to prompt student construc-
tion of algorithms, generally in small groups of 3-4. Dur-
ing class discussions we considered students’ proposed al-
gorithms especially in light of the following three questions
designed to promote an understanding of parallelism:

• How can I introduce parallelism into my algorithm?

• How can I measure the benefits of parallelism?

• How can I justify when parallelization is exhausted?

Quantifying operations in algorithms proved useful as we
guided students to an understanding of a PRAM computer
model and more general notions of work and depth. Again
we posed questions:

• What is this serial algorithm doing for us? What is
enabling it in the computer?

• What is this parallel algorithm doing for us? What is
enabling it in the computer?

9.3 Findings
Under these methods we find typical students, even at the

middle school level, are capable of viewing the computer as
PRAM and are able to gain deeper understandings of their
algorithms including time complexities. We found students’
initial struggling with C coding can be rather tedious. After
some problem solving activities described in detail below we
supplied them with nearly completed XMT-C code to speed
things along. With help from the XMT team at the Univer-
sity of Maryland we produced elegant and understandable
code representing both serial and parallel algorithms.

The next phase of the curricula included compiling and
executing the XMT-C code during class. We encouraged
students to compare serial and parallel time cycles and num-
ber of operations by running progressively larger data sets.
Students analyzed their results via spreadsheets. The pur-
pose of examining the data in this way was to help students
quantify the benefit of the parallelism over serial, to form
and test their conjectures regarding the PRAM model, to



test the limit of parallelism’s benefit, and to help them de-
velop a sense of the time complexity of their algorithms.
These activities strengthened the impact of previous discus-
sions.

9.4 Activities
From our presentation at the 2009 CS4HS workshop [11]:

1. Introduction to algorithms (via problem solving activ-
ities from the CSTA Curriculum Statement, 2007)

2. MS LOGO activities, especially at the middle school
level as a warm-up to coding algorithms in XMT-C

3. The Exchange Problem (introduces the use of variables
and exchanging array values in serial and parallel)

4. The Bill Gates Problem (Mr. Gates completes morning
activities illustrating that independent tasks can be
conducted simultaneously under parallelism)

5. Vector + Vector addition (naive parallelism compared
to serial for constant time operations)

6. Parallel addition (the binary tree technique supported
students understanding of algorithms and strength-
ened their mathematical notions of the binary expo-
nential and its logarithm)

7. Matrix Multiplication (and exploring the potential of
log time using nested spawn commands)

8. Merge Ranking (middle school students actually formed
themselves into two lines and performed the ranking)

9.5 College Freshman Setting
U. Vishkin taught an elective freshman course at the Uni-

versity of Maryland in Spring 2009. Most of the 19 students
were not Computer Science or Computer Engineering ma-
jors. Programming assignments included parallel algorithms
for radix sort, finding the median, sample sort (an extension
of Quicksort), and merge sort. Similar assignments would
be acceptable in a serial programming course for freshmen.
Pedagogy: Revisiting the performance (complexity) analy-
sis of an assignment after completion was helpful towards
the next assignment. Findings: We found that nearly all
students were able to produce correct working code that
achieved satisfactory speed-ups for each of the assignments.
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APPENDIX

A. CODE LISTING FOR SIMPLE SUM

#include <xmtc.h>

#include <xmtio.h>

#define n 8

#define log_n 3

int main()

{

int h,p,B[log_n+1][n+1];

int A[n+1]={0,3,1,4,1,5,9,2,6};

// copying elements of an array to be summed A

// into the leaves of a balanced binary tree B

spawn(1,n) // for i, 1<=i<=n pardo

{

int i; // index for left-to-right

i=$; // XMT-C uses dollar sign

B[0][i]=A[i];

}

// at each point in time p=2^h and n/p gives the

// number of nodes at level h of the binary tree

h=1;

for(p=2;p<=n;p*=2) // move up the tree

{

spawn(1,n/p)

{

B[h][$]=B[h-1][2*$-1]+B[h-1][2*$];

}

h+=1; // h goes from 1 to log_n

}

} // output uses printf and is not shown here


