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Abstract

We present Lazy Binary Splitting (LBS), a user-level scheduler of
nested parallelism for shared-memory multiprocessors that builds
on existing Eager Binary Splitting work-stealing (EBS) imple-
mented in Intel’s Threading Building Blocks (TBB), but improves
performance and ease-of-programming. In its simplest form (SP),
EBS requires manual tuning by repeatedly running the application
under carefully controlled conditions to determine a stop-splitting-
threshold (sst) for every do-all loop in the code. This threshold
limits the parallelism and prevents excessive overheads for fine-
grain parallelism. Besides being tedious, this tuning also over-fits
the code to some particular dataset, platform and calling context
of the do-all loop, resulting in poor performance portability for the
code. LBS overcomes both the performance portability and ease-
of-programming pitfalls of a manually fixed threshold by adapting
dynamically to run-time conditions without requiring tuning.

We compare LBS to Auto-Partitioner (AP), the latest default
scheduler of TBB, which does not require manual tuning either but
lacks context portability, and outperform it by 38.9% using TBB’s
default AP configuration, and by 16.2% after we tuned AP to our
experimental platform. We also compare LBS to SP by manually
finding SP’s sst using a training dataset and then running both
on a different execution dataset. LBS outperforms SP by 19.5%
on average. while allowing for improved performance portability
without requiring tedious manual tuning. LBS also outperforms
SP with sst=1, its default value when undefined, by 56.7%, and
serializing work-stealing (SWS), another work-stealer by 54.7%.
Finally, compared to serializing inner parallelism (SI) which has
been used by OpenMP, LBS is 54.2% faster.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Run-time environments

General Terms Algorithms, Performance, Languages
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1. Introduction

Efficient dynamic (run-time) scheduling of fine-grain nested paral-
lelism on shared-memory multiprocessors has been a popular topic
lately [4, 12, 15, 18, 20, 24]. The goal is to allow the programmer
to express all the available parallelism, no matter how fine-grained,
and let the run-time system execute the program efficiently, possi-
bly by coarsening very fine-grain parallelism to reduce overheads.
But all existing approaches have limitations as to how fine-grained
parallelism can be without incurring significant performance loss or
requiring programmer input for determining the parallelism gran-
ularity, so the ideal of relieving the programmer from granularity
considerations has not been achieved yet.

Parallelism arises broadly in two ways on MIMD multicores1:
i.) as parallel do-all loops, where each iteration can be executed
in parallel, and ii.) as parallel function calls (or futures) where
the result of some computation is not needed until later and can
be done in parallel. Most recent work on dynamic scheduling has
focused on the second type of parallelism, but we will focus on
the first, parallel do-all loops, because it enables crucial compiler
optimizations, as will be discussed below, and is arguably a natural
way to express parallelism for an important number of applications.

Motivation for Dynamic Scheduling Static scheduling of do-
all loops is easy: the number of iterations can be divided by the
number of processors at run-time to yield how many iterations each
processor should execute. While this works well when the iterations
of the do-all loop perform approximately the same amount of
work, such as for several regular affine (dense-matrix) scientific
codes, it results in load imbalance and poor performance when the
iterations of the do-all loop perform unpredictable and differing
amounts of work. For example, Figure 1 shows a do-all loop where
each iteration calls function foo which, depending on the input,
may perform vastly different amounts of computation in different
iterations. Here a dynamic scheduler is likely to achieve better
load-balance and perform better because it will allocate work to
processors at run-time when they are free.

Any dynamic scheduling method must handle both non-nested
do-all loops (e.g., Figure 1), and nested do-all loops. Nested do-all

1 SIMD and ILP parallelism are beyond the scope of this paper.



spawn ( low , h igh ) {
A[ $ ] = foo ( $ ) ;

}

Figure 1: Non-nested do-all loop in XMTC. spawn is the do-all
loop and it starts iterations with IDs $ ∈ N : low ≤ $ ≤ high.

loops arise not only in simple syntactic nesting (not shown), but
in recursive parallelism as well. For example, Figure 2 shows the
parallel code for quicksort. The quicksort routine shown sorts the
array in the range start to end. First the partition procedure chooses
a pivot value from the subarray [start, end], places all the elements
less than the pivot before it, and all the other elements after it, and
returns the position of the pivot. Next, it calls quicksort recursively
in parallel on both subarrays defined by the pivot. Deeply nested
parallelism arises in quicksort because each recursive invocation
introduces a new do-all loop level.

vo id q u i c k s o r t ( i n t A[ ] , i n t s t a r t , i n t end ) {
i n t p i v o t = p a r t i t i o n (A, s t a r t , end ) ;
spawn ( 0 , 1 ) {

i f ( $ ==0) q u i c k s o r t (A, s t a r t , p i v o t ) ;
e l s e q u i c k s o r t (A, p i v o t +1 , end ) ;

}
}

Figure 2: Recursively nested do-all loops: Quicksort in XMTC. The
two parallel iterations sort the two subarrays defined by the pivot.

Our goal is to support natural programming idioms and ease
of programming, and let the scheduler deliver good performance
on any code the programmer happens to write. Indeed, the most
natural and succinct way of writing quicksort is using recursively
nested parallelism, which our scheduler supports. Many divide-
and-conquer (and other) algorithms are also written most naturally
with recursively nested parallelism, and should be supported. Of
course, one can argue that sorting (or other divide-and-conquer al-
gorithms) can be rewritten iteratively, or that scheduling in such
codes can be handled by the programmer. Unfortunately both op-
tions tend to greatly increase the burden on the programmer.

Supporting nested parallelism (and not just outer parallelism) is
essential for performance for the following reasons. First, the outer
parallelism – parallelism created by the original (serial) thread
– might not create enough threads. In quicksort the outer paral-
lelism only creates one additional thread, which in most cases is
not enough to feed all processors. Second, the outer parallelism
might contain vastly different amounts of computation and harm
load-balance. In quicksort, depending on the pivot found by the par-
tition procedure, the two outer threads might sort arrays of vastly
different sizes, so if inner parallelism is serialized the potential for
load-imbalance and an insufficient number of threads is lurking.
Conversely, supporting nested parallelism enables creating more
threads and with dynamic scheduling it leads to better load balance
and ultimately better performance. Third, a successful program-
ming language should have modularity to allow the programmer
to write a function once and be able to call it from serial or parallel
contexts alike; thus supporting nested parallelism (through function
calls) is needed for modularity. These reasons make a compelling
case for the need of nested-parallelism.

Existing Work Stealing Dynamic parallel scheduling by Work

Stealing [9] has gained popularity in academia and industry for its
good performance, ease of implementation and theoretical bounds
on space and time. The basic idea of work stealing is for each
processor to place work when it is discovered in a local deque
(a work-pool data structure), greedily perform that work from its
local deque, and “steal” work from the deques of remote processors
when the local deque is empty.

Several implementations and variants of work stealing have
been proposed [2, 3, 4, 9, 18, 12, 23], but have focused on par-
allelism introduced by parallel function calls, not do-all loops. Un-
like parallel function calls that create one new parallel work unit
at a time, do-all loops allow creating multiple iterations simultane-
ously which allows for crucial optimizations: all the iterations can
be packed into a single Task Descriptors (TD) by specifying their
range, and the work can be distributed to processors as needed by
splitting the TD. Thereafter the scheduler can decide at run-time
when to stop splitting TDs to avoid unnecessary and expensive
deque operations2. The compiler can also estimate the cost of very
short iterations and decide to combine them into fewer longer itera-
tions, avoiding overheads again. Using parallel function calls hides
the (logically) simultaneous creation of parallelism from the com-
piler and the runtime system and disables the above optimizations,
partly leaving the programmer responsible for keeping parallelism
somewhat more coarse-grained to reduce the scheduling overheads.

Do-all loops also deserve direct support because recreating a
do-all loop with parallel function calls is inconvenient and ineffi-
cient. To do so, the programmer must either write a sequential loop
with a parallel function call in its body, or code the creation of
parallelism recursively, using a divide-and-conquer approach. The
first approach leads to serialized creation or parallelism – the per-
formance will be very poor for short iterations because the over-
heads of creation and scheduling will overwhelm the parallelism.
The second approach leads to parallel (fast) creation of parallelism
in a binary tree, but is tedious and error-prone for the program-
mer. A work-stealer for do-all loops should automate the second
solution (divide-and-conquer) and not hide the simultaneous paral-
lelism creation in do-all loops from the compiler.

TBB [1, 27] and Cilk++ [21] are the only work-stealing ap-
proaches we are aware of that explicitly support do-all loops3 and
they both implement Eager Binary Splitting (EBS). In EBS, all the
iterations created by a do-all loop are initially placed in a single task
descriptor (TD). Thereafter the TD’s range of iterations is equally
split in two TDs. When the resulting TDs are themselves split, con-
ceptually the result is that the initial range is split into sub-ranges
found at the leaves of a binary tree, while the intermediate nodes of
the tree represent split operations. EBS is eager because splitting
proceeds regardless of run-time conditions such as load.

An important concern for performance in EBS is when to stop
splitting. While splitting TDs to create enough parallelism and
to load-balance is crucial, excessive splitting induces unnecessary
overheads which can hurt performance. It can be preferable to
coarsen parallelism by stopping the splitting of TDs before they
contain a single iteration and execute all the iterations in the coarser
TDs serially. Finding this stop-splitting-threshold is hard because it
depends on several factors such as the number of available hard-
ware threads (processors), the number of iterations of each do-all
loop (which can be a function of the size of the input), and the
calling context of a do-all.

TBB offers two options for controlling when to stop the split-
ting: simple partitioner (SP), and auto partitioner (AP).
Figure 3 shows SP, where a TD is split if the number of iterations
in its sub-range is above a stop-splitting-threshold (sst), referred to
as grain-size in TBB’s manual [1]. The programmer is responsible
to manually follow a detailed series of repeated experiments to find
good sst values for each do-all loop using a training dataset and
platform, and then use that value for all datasets. If an sst is not
specified, it defaults to 1.

2 Deque operations typically require expensive memory-fences
3 Other approaches that support do-all loops but not work-stealing are dis-
cussed in the related work section.



Figure 3: Processing a TD with Simple Partitioner EBS (SP).

A problem with SP is that any static choice of sst (chosen by the
programmer as suggested, or even by an automatic compile-time
method) is only optimal for a given loop, a given dataset, a given
number of processors, and a given calling context of that loop.
Unfortunately that optimal choice will not remain optimal when
a different loop is considered; hence there is no fixed optimal sst
for the whole program and the programmer is left with the arduous
task of finding a good threshold for each loop separately. Further,
the optimal choice of sst will not remain optimal even for the same
loop when the code for the loop is run on a different number of
cores, dataset or context than in the training dataset and platform.
This execution dataset and platform may be very different from
the training dataset and platform. This leads to a sub-optimal non-
adaptive choice of sst and results in poor performance portability
across datasets, number of cores and context.

TBB’s other option for controlling splitting, Auto-Partitioner
(AP), splits TDs into T sub-ranges, regardless of the number of
iterations in the range. AP was recently chosen as TBB’s default
scheduler because it relieves the programmer from manually pick-
ing the sst while delivering good performance. AP has two fixed
parameters, K and V , as well as an additional TD field chunks
(called n in [27]). AP’s goal is to split do-all iterations into K × P
TDs, where P is the number of hardware threads (processors), and
potentially split them further if thefts occur. When executing a do-
all loop and creating its TD, chunks is initialized to K × P . Ev-
ery time the TD is split, chunks is also halved, and when a TD
is stolen chunks is forced to be at least V , which gives AP some
limited run-time granularity adaptivity. A TD is not split further if
chunks ≤ 1. K and V are set to four in [27].

While AP overcomes the performance portability issues of SP
related to differing datasets and number of processors by initializ-
ing the number of chunks to K × P which depends on the number
of processors but not the number of iterations of a do-all, it fails
to adapt to different calling contexts. Although the initial value of
chunks (K × P ) is good for outer do-all loops, it will cause ex-
cessive splitting with nested do-alls: (K × P )i chunks for i levels
of nesting. Given that K is a small constant, the excessive splitting
will become a noticeable problem for a large number of threads P .

Cilk++[21] does not mention combining iterations to coarsen
parallelism. Therefore, we assume that the TDs are split all the
way down to single iterations at which point they are executed (i.e.
Figure 3 with sst=1). We will show that this approach is very in-
efficient for very fine-grain iterations. Cilk++ has a mechanism in-
herited from Cilk for reducing parallelism overheads by creating
two versions of functions and choosing at run-time which one to
execute: one for fast local and serialized execution with simplified
synchronizations, or one for true parallel execution. This mecha-
nism is orthogonal to our approach which focuses on scheduling so
we believe that combining the two approaches would be beneficial.

Improving SP and AP The lack of performance portability in the
best existing schedulers (SP and AP) is a serious issue for general-
purpose mainstream computing because not only do we want code
to run efficiently for different input sets and and contexts, but we
also want it to run faster on a variety of different existing and fu-
ture parallel platforms with different numbers of cores. Ease-of-
programming is also a crucial consideration: freeing the program-
mer from manually determining a fixed threshold for each do-all
loop will shorten their development cycle and make them more pro-
ductive. While AP does not require manual tuning, we will show
that in cases with nested fine-grain parallelism its performance de-
grades, and picking an sst to further reduce splitting would help.

We present a new dynamic scheduling algorithm for parallel
do-all loops called the Lazy Binary Splitting (LBS) scheduler. It
overcomes the above drawbacks related to performance portability
in SP and AP by not using any statically determined threshold to
decide when to stop splitting. Instead, it uses run-time conditions
alone in deciding when to stop splitting. To understand LBS’s
approach, consider our first insight: it is unlikely to be profitable
for a processor to split and create more task descriptors (TDs) for
other processors to steal if the other processors are themselves busy
with other work. In such a situation, it is better for the processor to
first execute some iterations from its current TD without splitting,
and then check again whether to split the remaining TD. In this way,
unnecessary splitting (and its overhead) is avoided, but splitting is
done when other cores are looking for work.

Directly implementing LBS to follow the above intuition will be
slow, however, since checking whether other processors are busy
requires remote accesses in the multi-processor. Here the second
insight which LBS relies on is used: we can check whether the local
deque for the current processor is empty as an approximation to
whether other processors are likely to be busy. This is because if
the local deque is not empty, it means no other processor has stolen
its work yet, which is a very good indication that most or all other
processors are busy. Conversely, if the local deque is empty, then
there is a fair chance that other processors are looking for work,
and splitting a TD to create such work will be profitable. LBS thus
checks if the local deque is empty and only then splits the current
TD. Figure 4a shows how LBS works including a deque-is-empty
check for the reasons described above. Unlike deque transactions
that require expensive memory-fences, a deque-check doesn’t and
is therefore a very cheap operation.

Figure 4a shows an additional improvement in LBS – that it also
stops splitting when the number of iterations in the TD is equal
or below a statically-determined profitable-parallelism-threshold
(ppt). This is present because creating very small amounts of paral-
lel work is never profitable regardless of number of cores, datasets,
or context, since the the overheads of parallelism creation and syn-
chronization will negate any gain from parallelism. Because ppt is
is relatively independent of number of cores, datasets or context
and depends only on the work per iteration and the architectural
cost of creating parallelism, it can can be easily statically deter-
mined for each do-all loop by the compiler without sacrificing per-
formance portability. The performance portability comes from the
deque-is-empty check which ensures that enough but not too much
parallelism is created for good load-balancing by adapting to run-
time conditions. In some cases, when the do-all loop contains long-
running code such as other nested do-alls, loops, or recursive calls,
then LBS sets the profitable-parallelism-threshold to 1. Figure 4b
shows the equivalent decision-diagram in this case.

Summary of Results We compare the performance achieved by
different schedulers on a set of 8 benchmarks. Fist we compare
LBS to SP. Our first goal is to show that LBS can equal or nearly
equal the performance of SP, but without the manual tuning re-
quired in SP. Indeed, we do better – our results shows that LBS



(a) Processing a TD with Lazy Binary Splitting (LBS). The
profitable parallelism threshold (ppt) is statically chosen by
the compiler (see Section 3.2).

(b) Equivalent decision-diagram when the ppt is set to 1. One
such case is when the iterations contain a nested do-all loop.

Figure 4: Processing of a TD with LBS.

(which needs no tuning) does 3.8% better than SP, even when SP is
manually tuned and executed on the same data set (SPex/ex) using
the procedure the TBB manual [1] recommends. This shows that
LBS accomplishes its first goal of freeing the programmer from
manual tuning without any loss in performance even compared to
the ideal (and unrealistic) case for SP.

However this situation is completely unrealistic and gives SP
too much credit, since in typical use the training and execution data
sets are different. (Indeed, there is no point having the same execu-
tion set as the training set since the training data set is repeatedly
executed during tuning and its answer is known!) In typical use, SP
is tuned on a training data set and executed on different data sets
(SPtr/ex). In this realistic scenario LBS does significantly better,
outperforming SPtr/ex by 19.5% on average, only falling behind
on one benchmark (by 2.2%), and doing up to 65.7% better. This
result demonstrates the superior performance portability of LBS to
different datasets.

Then we compare LBS to AP, the new default scheduler of TBB
which, like LBS, does not require manual tuning. We tried different
values for AP’s parameters K and V and present APdefault which
uses K=V=4 as in [27] and APxmt which uses K=1, V=4 and was
the best configuration for our experimental platform. Compared to
APdefault LBS performs 38.9% better and compared to APxmt it
performs 16.2%. The result shows the run-time adaptivity of LBS
and the lack of context portability of AP.

We also compare LBS to SP1 (SP without a manually deter-
mined threshold, i.e., sst = 1) and serializing work stealing (SWS
will be defined in Section 2.2) to show the gap in performance given
the same amount of programmer effort and also because Cilk++
seems to be using SP1. LBS performs 56.7% better than SP1 and
54.7% better than SWS. Additionally we compare LBS against
simply serializing inner parallelism which some OpenMP imple-
mentations do, and outperform it by 54.2% on average. Finally, we
also show almost linear speedups (62.3x) to a significant number of
cores (64) which advocates for the scalability of LBS.

2. Work Stealing Background

Since our approach is based on work-stealing scheduling, in this
section we present background on work-stealing, then present seri-
alizing work-stealing, and Eager Binary Splitting with Simple Par-
titioner (SP) and Auto Partitioner (AP) which are work-stealing
schedulers in TBB, and outline some serious pitfalls that our LBS
scheduler overcomes.

2.1 Work Stealing

Work-Stealing is a popular scheduling algorithm with desirable
properties [9], but also some shortcomings presented below. LBS,
while based on work-stealing, overcomes these shortcomings.

In work-stealing each processor that encounters parallel work
starts executing some of that work and places the continuation (the
remaining parallel work and the rest of the parent) on a shared
data-structure. When a processor runs out of work, it searches
for available work on that shared data-structure. The design of
the shared data-structure is what makes work-stealing unique: it
consists of N double-ended queues, known as deques, where N
is the number of processors. They are called double-ended because
data is accessed from both ends: each processor treats its own deque
as a stack by pushing and popping work from its bottom, and the
other deques as queues by dequeuing (stealing) work from their
top, when its own deque is empty.

Four major benefits of work-stealing are that (i) it promotes lo-
cality by first working on one’s own deque, (ii) the scheduling or-
der (breadth-first stealing, depth first execution) keeps the mem-
ory footprint under control and (iii) provides load-balancing, and
(iv) the deques can be implemented efficiently with low synchro-
nization overheads. A disadvantage of work-stealing is its stealing
phase, when idle processors randomly probe deques for work, caus-
ing potentially unnecessary interprocessor communication.

Task descriptors (TDs), also known as work descriptors, are
used to describe ranges of do-all iterations. The overheads of cre-
ating individual descriptors per fine-grain iteration warrant the de-
cision of describing multiple iterations using a single TD. Each TD
contains four fields: the number of iterations, the iteration ID of the
first iteration, a pointer to the code to be executed, and a pointer to
the stack frame of its parent to allow access to its variables. Option-
ally, TDs can contain additional fields such as sst for SP, chunks for
AP and ppt for LBS.

2.2 Serializing Work Stealing (SWS)

When presented with a TD, work stealing has two choices: either
run only the first iteration and push the continuation on the deque,
which Cilk does for parallel functions, or split the TD. The draw-
back of the first approach, which we will call serializing work steal-
ing (SWS), is that the TD is never split and accesses to it by proces-
sors contending for work will be serialized. The second approach
doesn’t have this drawback since the TD is split, but has it other
pitfalls as will be described in Section 2.3.

We illustrate with a simple example how serializing work-
stealing works with task descriptors (TDs) and discuss its short-
comings next. Assume processor A encounters a do-all loop with
16 iterations; A will create a TD with iterations 2 through 16, place
it on its deque and start executing the first iteration. For simplic-
ity assume those iterations don’t create nested parallelism. In the
mean-time, processor B steals the TD from A’s deque, takes itera-
tion 2, places the remaining TD (iterations 3-16) on its deque and
starts executing iteration 2. A eventually finishes executing itera-
tion 1, looks for work on its deque which it finds empty, so it tries
to steal work from B; it is successful, takes iteration 3, places the
remaining TD on its deque and starts executing iteration 3.

This example illustrates three shortcomings: i) if more than one
processors end up working on a TD, they will keep stealing the



TD from each-other, effectively serializing accesses to that TD; ii)
each time a processor needs more work, it removes a single itera-
tion from a TD; this means that TDs (and thus deques) will be ac-
cessed as many times as they have iterations, which for fine-grain
iterations introduces significant overheads; iii) because the code af-
ter a do-all can be executed only after all its iterations have com-
pleted, iterations need to synchronize upon termination, usually by
atomically decreasing a variable representing the number of pend-
ing iterations. Because iterations are executed one-at-a-time, syn-
chronization will also happen individually for each iteration.

2.3 Eager Binary Splitting (SP & AP)

Intel Threading Building Blocks[1] implements an Eager Binary-
Splitting (EBS) work stealing scheduler: upon creating, stealing, or
popping a TD off one’s own deque, a processor splits it in two TDs
of approximately equal number of iterations, and pushes one TD on
its deque. Then it continues splitting the remaining TD until some
threshold. TBB offers two options for controlling that threshold,
simple-partitioner (SP) and auto-partitioner (AP).

Simple Partitioner SP stops splitting TDs when the number of it-
erations becomes smaller than a threshold (sst) determined by the
programmer, as shown in Figure 3. If the programmer doesn’t de-
termine a stop-splitting-threshold (sst) (called grain size in [1]), the
default value of 1 is used, which causes a TD to be eventually cre-
ated per iteration. This eagerness to split may result in an excessive
number of TDs being created, which is why the programmer is ex-
pected to define an appropriate sst to stop the splitting earlier. To
determine the appropriate sst the TBB manual [1] suggests the fol-
lowing approach:

1. Set the stop-splitting-threshold parameter of the do-all loop
to 10,000. This value is high enough to amortize scheduler
overhead sufficiently for practically all loop bodies, but may
unnecessarily limit parallelism.

2. Run your algorithm on one processor.
3. Start halving the threshold parameter and see how much the

algorithm slows down as the value decreases.
⇒ A slowdown of about 5-10% is a good setting for most pur-

poses.

There are two problems with this approach. First, it is extremely
tedious. Not only does the programmer have to provide a threshold,
they have to run their program several times to find the appropriate
threshold. Moreover, if the code has multiple do-all loops, a dif-
ferent threshold has to be determined for each loop which means
more runs. Ideally we would want the 5 to 10% slowdown to be
only compared to the code of the do-all loop, not of the whole ap-
plication, so the programmer will have to isolate the do-all loops
during this tuning process. Finally, because the code will run on a
single processor, this tuning process will also be very slow. Second,
another equally serious problem is that the resulting fixed threshold
limits the performance portability of the code to a different number
of processors, dataset and context as elaborated in the introduction.

In conclusion, SP is an improvement over serializing work-
stealing because i.) splitting TDs solves the problem of serial-
ized access to TDs and ii.) the number of deque transactions and
synchronizations can be reduced using a stop-splitting-threshold
(sst) greater than 1. Unfortunately this threshold is manually de-
termined, which is extremely tedious, and it is fixed, which harms
performance portability.

Auto Partitioner Instead of coarsening parallelism by combining
iterations with sst, AP uses chunks to determine into how many
pieces to split a TD, as described in the introduction. This is prefer-
able because it does not require programmer tuning, allows plat-
form and dataset portability (but still not context portability), and

performs well in most cases. The sst is still available to the pro-
grammer however, in case more aggressive coarsening is required.

The lack of context portability in AP is a serious problem. While
splitting iterations into K ×P TDs for a do-all loop executed from
the original serial thread is a good heuristic, if that same do-all
is executed in a nested context, the outer do-all loops will have
likely created enough parallelism and fewer chunks are preferable.
But reducing K to reduce the number of chunks may result in
insufficient splitting (and parallelism) for non-nested do-alls, so it’s
not a viable solution, and the lack of context portability seems to
be inherent to AP. Our LBS approach overcomes the portability
pitfalls of SP and AP without requiring programmer tuning.

3. Lazy Binary Splitting (LBS)

Lazy Binary Splitting (LBS) builds on EBS but overcomes its
shortcomings. Processors still have a deque each, treat their own
deque as a stack and other deques as queues, and work on their
deque before trying to steal work. The difference is how task-
descriptors (TDs) are processed, shown in darker background in
Figure 4a: LBS pushes work on its deque only if it is empty,
otherwise it postpones the splitting, and keeps the whole TD locally
while it works on the first ppt iterations; when these ppt iterations
complete, the deque is checked again which may lead to splitting
or a renewed decision to postpone splitting.

As we explained in the introduction, LBS adapts dynamically to
runtime conditions using the size of the local deque as an estimate
for the system load. When the local deque is not empty, the decision
to split is put on hold while some iterations from the TD are exe-
cuted which eliminates unnecessary splits but also avoids making
an irrevocable decision to run all iterations in the TD serially, since
the decision to split will be revisited many times. Thus, LBS avoids
using a fixed threshold such as SP’s sst or AP’s chunks to control
how much parallelism to create and thus achieves superior perfor-
mance portability than SP and AP not only to different platforms
but to different datasets and contexts on the same platform.

We now come back to the example we used to illustrate the
shortcomings of serializing work-stealing to show how LBS over-
comes them. When LBS is run, assuming processor A encounters a
do-all loop with 16 iterations and a threshold (ppt) of 1, it creates a
TD with those 16 iterations and starts processing it (see Figure 4a):
since it has more than one iteration, it proceeds to check if the deque
is empty; assuming it is, it splits the TD and places half (iterations
9 to 16) on its deque. Then A starts working on iteration 1. Note
that SP and AP would have continued splitting the TD and pushing
TDs with 4, 2, . . . iterations before doing some actual work. In the
meantime processor B steals A’s TD and processes it: since it was
stolen, B’s deque is empty, so B splits the TD and places half on
its deque (iterations 13-16), and starts working on iteration 9. Then
A finishes executing iteration 1, and processes its remaining TD (2-
8). Since A’s deque is empty because of B’s theft, A splits its TD,
places half (5-8) on its deque and starts working on iteration 2. B
finishes iteration 9, its deque is not empty so it continues with the
remaining iterations in its TD (10-12) checking between each itera-
tion execution if the deque is empty. Similarly A continues with its
TD (3-4). When their TDs run out of iterations, A and B pop the
TDs off their deques, split them, push half back on their deque4 ,
and work on their half.

The example shows how LBS overcomes the serializing of TDs
accesses by splitting TDs (like EBS), but also keeps the number
of splits to a minimum by checking frequently the deque, allowing

4 This sequence of pop-split-push is implemented as a pop-half where half
the TD is popped if the TD has more than ppt iterations. This is done
to further reduce the number of deque transactions. For serializing work-
stealing the pop-take-an-iteration-push sequence is implemented similarly.



LBS to be more performance portable. The next section provides
a detailed comparison of the number of deque transactions and
synchronizations for LBS, SP, AP and SWS and illustrates the
power of LBS’s run-time adaptivity of splitting TDs.

3.1 Comparing LBS to SP, AP and SWS

Unlike SP and AP, LBS is able to effectively combine iterations at
run-time by postponing splitting a TD while the local deque is not
empty. This saves useless and expensive deque transactions (trig-
gered by TD splits) which require memory-fences. It is easiest to
appreciate the difference between SP, AP and LBS by analyzing
the number of deque transactions and parent-child synchronizations
(the main sources of overhead for work-stealing) needed to sched-
ule an N iteration do-all loop in three scenarios described below.
We call these three scenarios worst, intermediate and best because
they require a decreasing number of deque transactions and syn-
chronizations from all compared schedulers and especially LBS.
Moreover any execution can be approximated as a hybrid of these
three scenarios, which is why it is important to understand how the
compared schedulers operate in these cases.

The results are summarized in Table 1 where SWS is also in-
cluded. In the analysis below we treat the sst and ppt thresholds (in
SP and LBS respectively) as parameter t and without loss of gener-
ality we assume that N is divisible by t and both are powers of 2.
As we see both metrics (transactions and synchronizations) are lin-
ear in N for SWS and SP, with SP also having t in the denominator
to reduce overheads. The situation for LBS is much different: the
metrics go from linear in the worst case, to logarithmic in the in-
termediate case, to constant in the best case. AP’s metrics go from
linear in the worst case, to constant in the other two cases but with
a higher constant than LBS in the best case, which results in LBS
performing better on our set of benchmarks.

# Transactions
Worst Intermediate Best

LBS(t) 2
`

N
t
− 1

´

log N
t

+ 1 0

SP(t) 2
`

N
t
− 1

´

3N
2t

− 1 3N
2t

− 1

AP(K, V ) 2(N − 1) 3K×P
2

− 1 3K×P
2

− 1

SWS 2(N − 1) N N

# Synchronization Points
Worst Intermediate Best

LBS(t) N
t

log N
t

+ 1 1

SP(t) N
t

N
t

N
t

AP(K, V ) N K × P K × P
SWS N N N

Table 1: Transaction and Synchronization Costs

Worst Case: When a processor encounters a do-all loop creating
N iterations and there are enough idle processors to immediately
steal all TDs, effectively keeping all deques empty. This happens,
for example, when parallelism is first created by the original serial
thread and it is barely enough to make all processors active (N ≤
P ). In this case SP and LBS behave identically: LBS always finds
an empty deque because of the thefts, and keeps splitting and
pushing TDs. Similarly the stolen TDs are split and stolen so
eventually N/t TDs are created. That means that N/t parent-child
synchronizations occur, one for each TD. Also 2(N/t − 1) deque
transactions happen: N/t− 1 because one of the N/t TDs is never
pushed on a deque, but is locally executed by the core that created
the iterations, and the factor of 2 because for every push transaction
there is a steal transaction. Similarly, for SWS, which does not have
a threshold t, we have N synchronizations and 2(N − 1) deque

transactions, and AP has the same metrics since it will split a TD
into at most K × P chunks, but N ≤ P ≤ K × P (for K ≥ 1).

Intermediate Case: When a processor encounters a do-all loop
creating N iterations, the local deque is empty and no thefts occur.
This can happen when a processor encounters a nested do-all loop
while the outer parallelism was enough to feed all processors,
but not enough to fill the deques. In the intermediate case all N
iterations will be executed on the processor creating them.

For SP, and SWS, the difference of this intermediate case com-
pared to the worst case is that some deque transactions can be com-
bined, bringing their total number down. For SP N/t TDs will be
created over the course of this execution, as in the worst case. One
will never be pushed on the deque, but the rest will, resulting in
2(N/t − 1) pushes and pops. This number can be reduced if we
use the pop-half transaction which combines a pop and a subse-
quent push of half of the popped TD. It can be shown in a straight
forward manner that the number of such pop-half transactions is
equal to the number of nodes in a perfect binary tree5 with N/t
leaves, excluding the leaves and their parent nodes, i.e., N

2t
− 1.

Therefore the number of transactions becomes 3N
2t

− 1. The num-
ber of synchronizations remains N/t as before. For AP K×P TDs
will be created and following the same logic the number of trans-
actions will be 3K×P

2
− 1 and the number of synchronizations is

K × P . For SWS the number of transactions is N : one push of
N − 1 iterations initially, followed by N − 2 pop-one operations
removing one iteration each, and finally a pop of the last iteration.
The number of synchronizations is also N : one after each iteration.

For LBS the situation here is much different. Initially half the
iterations (N/2) are pushed on the deque. The other half are exe-
cuted, checking the status of the deque every t iterations but find-
ing it full. Then a pop-half operation reclaims half of the pushed
iterations (i.e., N/4) which will be executed. Then a pop-half will
reclaim N/8 iterations and so on until the last N

2k
= t iterations are

popped and executed. This amounts to log N
t

+1 transactions. The

number of synchronizations is also log N
t

+ 1 because it happens
before every pop, pop-half and at the very end.

Best Case: When a processor encounters a do-all loop creating
N iterations, no thefts occur and the deque is not empty. This
happens when nested parallelism is encountered and the outer par-
allelism was sufficient to fuel all processors and deques, and it is
particularly common for recursively nested parallelism.

For SP, AP and SWS nothing changes from the previous case,
as these schedulers do not change their behavior based on the status
of the deque. For LBS things are very simple: no transactions
occur and synchronization occurs only once, after all iterations
have executed. We call this the best case because LBS incurs almost
zero overhead in terms of deque transactions and synchronizations.

Deque Checks So far we have focused on the overhead of deque
transactions and synchronizations, but there is one more source of
overheads in LBS: the checks to the local deque to decide whether
to postpone splitting or not. These checks are very light-weight
and fast but are linear (N/t − 1) in the number of iterations in
all three cases presented above, so for very fine-grain iterations
they can become a significant source of overhead. SP, AP and
SWS also perform deque checks, but they do them to determine if
pushing a TD will overflow the deque. In all three cases described
above, both LBS and SP perform N/t− 1 deque checks, while AP
performs K × P − 1 checks and SWS N − 1. When iterations are
very fine-grained, the linear overhead of these checks can become
more important than the logarithmic or constant overhead of deque

5 A binary tree that has all leaf nodes at the same depth and all internal
nodes have exactly two children.



transactions and synchronizations of LBS. This motivates the need
for having a profitable-parallelism-threshold (ppt 6= 1) for LBS, as
will be described in the next section.

3.2 The Profitable Parallelism Threshold (ppt)

As outlined in the introduction, the function of the threshold (ppt)
in LBS is different than (sst) in SP. In SP its main role is to
control the number of deque transactions and synchronizations by
stopping the splitting. In LBS postponing the splitting of TDs based
on the deque size controls the number of deque transactions and
synchronizations, and ppt is used to reduce the frequency of deque
checks. There is also a second source of overheads associated
with the deque checks: the scheduler executes iterations through
a function call, and to check a deque the execution must return to
the scheduler code, so for each deque check LBS also pays the
overhead of a function call. Since these overheads are linear in the
number of iterations, it is important to combine fine-grain iterations
by means of the ppt.

Fortunately the overheads associated with checking the deque
affect mostly very fine-grain iterations and detecting those stati-
cally by the compiler is relatively easy. Our heuristic for determin-
ing the threshold is simple because we only look at the code in
the do-all loop, but it works well for our benchmarks: we don’t
coarsen (i.e. ppt = 1) if the iteration contains a function call, a
nested do-all, or a loop with unknown bounds because in those
cases the granularity of iterations is assumed to be large enough;
otherwise we estimate the cost of each iteration based on its code
and use that estimate to coarsen them so that their combined cost
is above a threshold T . For expressions and straight-line code we
use estimates of the costs (in cycles) of different operations (e.g.
ALU latency, branch penalty, multiply/divide latency) on the target
machine. For if-then-else statements, because we don’t have profile
information to determine how frequently the if-expression evalu-
ates to true, we compute the cost of the statement by giving equal
weights (of 1/2) to the true and false branches. We chose a threshold
T of 1000 cycles because it is enough to amortize the deque check-
ing overheads, but not too large, which could harm load balancing
by significantly reducing the available parallelism.

Another thing to notice from the analysis in Section 3.1 is that
the ppt threshold in LBS in the intermediate and best cases, plays a
minimal role in controlling the number of transactions. The worst
case (which is triggered by thefts) is rare enough, as backed up
by our results showing better performance for LBS, that it is fair
to say that ppt is not the primary factor controlling the number of
transactions and synchronizations in LBS.

4. The Evaluation Platform

In this section we describe our experimental platform and explain
why we chose a somewhat unconventional architecture to run our
benchmarks. We were looking for a parallel system with more
than a few cores (to evaluate how well our approach scales) that
could efficiently exploit parallelism for general purpose computing,
without sacrificing ease-of-programming.

We chose the XMT architecture[32] developed at the Univer-
sity of Maryland6 because it is a single-chip many-core targeted at
general purpose computing that is easy to program without sac-
rificing performance. The ease-of-programming comes from the
straightforward work-flow programmers follow [31] to derive an
XMT program starting from a PRAM algorithm, where the pro-
grammer only needs to identify at each step operations that can
be executed concurrently. Since PRAM algorithms are well under-

6 Note that Cray’s XMT architecture is a much different system, most
importantly it is a huge multi-chip architecture with no on-chip cache that is
not designed for personal computing. For that reason it was not considered.

stood and studied, and knowledge of low level architectural details
is not needed to derive the XMT program, the programmer’s job
is simplified. For that reason it was possible to teach the XMT
approach to undergraduates, and even high-school students [30].
We consider this demonstration of teachability as a strong indicator
for ease-of-programming, and have actually been advocating using
teachability at various levels of learner developmental stages as a
benchmark for ease-of-programming.

Moreover, XMT is a good architecture for exploiting do-all
parallelism because outer do-all loops are efficiently scheduled by
the hardware, permitting excellent performance even on irregular
benchmarks, as we will show in Section 5 and as shown in [10,
28]. As a consequence to this hardware, work-stealing is needed
only for the inner do-all loops in XMT. Our results show that
XMT, in combination with the techniques in this paper, is able
to achieve strong speedups even on irregular programs such as
recursive divide and conquer algorithms.

4.1 XMT Background

The XMT architecture [32] is a UMA (uniform memory access)
many-core that supports frequent switches from serial to parallel
execution. It has one powerful processor (Master Thread Control
Unit, or MTCU) which runs the serial portions of the code, and a
plurality (of possibly 1000) light-weight parallel processors (TCUs)
which execute the parallel portions of the code. The TCUs are
grouped into clusters that share resources, such as multiply/divide
units and memory ports. TCUs have their own registers, ALUs and
prefetch buffers.

A high-bandwidth, low-latency interconnection network [6]
connects the clusters to the shared L1 cache memory modules.
Optionally, each L1 cache module is connected to an L2 cache
module for increased capacity. The absence of coherent cache at
the TCUs is a design decision for XMT based on the observation
that coherence protocols do not scale well for fine-grain parallelism
to a large number of processors. Other architectures that have made
the same design decision include the IBM Cell/BE and CUDA
enabled GPUs by nVidia. TCUs may have however non-coherent
memories such as read-only caches and scratch-pads. Thus, TCU
memory accesses have to travel through the interconnection net-
work, and prefetching and non-blocking stores are used to overlap
their latencies. The MTCU has a local “L0” cache, and thus high
latency memory access does not affect serial portions of the code.

5. Experimental Evaluation

We ran our experiments on a 75MHz XMT FPGA prototype similar
to the one in [32]. The FPGA has 64 TCUs organized in 8 clusters,
eight shared 32K L1 memory modules, and an 8x8 butterfly inter-
connection network connecting clusters to L1 cache. There is one
multiply/divide unit per cluster, each TCU has 4 prefetch buffers,
and 32 integer registers. Floating point operations are not supported
yet, so our benchmarks only have integer computations.

Benchmarks We ran our comparisons on a set of 8 benchmarks
chosen to have various computation and communication patterns as
recommended by [5]. matmult is a straight-forward dense matrix
by matrix multiplication. conv is an image by filter convolution.
FW is the Floyd-Warshall all-pairs shortest path algorithm; the
graph is represented by weighted adjacency matrix. qs is quicksort.
bfs is a breadth first traversal of a graph given in incidence lists
and the degree of each vertex is given; given a start vertex, a
level is assigned to all vertices. SpMV is a sparse matrix by dense
vector multiplication. tsp, the Travelling Salesperson Problem. is
the well known NP-Complete problem of finding the shortest cyclic
path that visits each vertex exactly once. queens finds all possible



solutions to placing N queens on an N ×N chess-board so that no
two queens can attack each-other.

All benchmarks are coded in the most natural way, which is
in line with our goal to provide good performance for natural
programming idioms. tsp, queens and quicksort have recursively
nested parallelism which is amenable to parallelism cut-off [13]
(i.e., deciding to call a serial version of the recursive function from
recursive depths greater than a threshold T ). For tsp and queens
we set the cut-off threshold to T=N/2. For qs instead of using the
depth of the recursion we use the size of the sub-array to be sorted
or partitioned for the cut-off threshold: we call a serial quicksort
when the subarray has less than 100 elements, and serial partition
when the subarray has less than T = 3 N

#Procs
elements. This last

threshold is more complicated because the parallel partition code
performs almost three times more work than the serial version; so
we want to call the parallel version only when several processors
are likely to be idle, such as at the onset of execution. Even with
such a high partition cut-off threshold, always calling the serial
partition is faster for SWS, SI, and SP with sst=1. In those cases
we always call the serial partition.

Table 2: Datasets and Thresholds.
Training Set (SP) Execution Set LBS

Name Size sst Size sst ppt
matmult 64x64 4 512x512 1 1

conv 64
2 image,

162 filter
1 1K

2 image,
162 filter

1 1

FW 64 nodes 32 512 nodes 64 91
qs 10K 16 1M 256 108
bfs G(10K,200K) 16 G(10K,8M) 64 53
SpMV 30Kx100,

60K non-zero
4 80Kx5K,

40M non-zero
64 77

tsp 9 nodes 1 11 nodes 1 1
queens N=9 4 N=11 1 1

Table 2 describes the training and execution datasets used for
our experiments, as well as the manually determined sst for each
dataset for SP, and the compiler determined ppt for LBS. For SP
the smaller dataset is chosen as the training set, since typically
programmers will use a smaller dataset for training given its time
consuming and tedious nature. LBS and AP need no training.

5.1 Results

We compared our LBS scheduler against several other configura-
tions shown in Table 3. All the compared approaches use the effi-
cient hardware scheduler for outer parallelism provided by XMT.

Table 3: Summary of Compared Configurations
Name Description
LBS LBS (with ppt automatically determined by com-

piler) // Recommended Method

LBS1 LBS with ppt=1 // Not Recommended; For compar-

ison only.

APdefault AP with K=V=4 as in [27]
APxmt AP with K=1, V=4, the best configuration for XMT
SPtr/ex SP with sst manually determined on training dataset

and run on the execution dataset // Realistic

SPex/ex SP with sst manually determined on execution
dataset; then run on execution dataset. // Unreal-
istic

SP1 SP with the default TBB threshold sst = 1

// Not Recommended; For comparison only.

SWS Serializing Work-Stealing
SI Serializing Inner parallelism

LBS vs. AP First we compare LBS to APdefault, the configu-
ration used in [27](K=V=4), and APxmt(K=1, V=4), the optimal
configuration for XMT. We found the values of K and V for APxmt

by trying all nine configurations with K, V ∈ {1, 2, 4} and picking
the one that gave the best average performance on our benchmarks.
We noticed that varying V for a given choice of K affected perfor-
mance negligibly, so we picked V=4. While K=1 is low, on XMT it
is acceptable because it will only be applied to nested do-alls, since
the outer do-all iterations are scheduled individually by the hard-
ware. Figure 5 shows that LBS is 16.2% better than APxmt tuned
for XMT, and 38.9% better than the default APdefault with AP
falling behind on the benchmarks with very fine-grain parallelism
(FW, bfs and SpMV). For those benchmarks, a manually determined
sst would be required to further reduce splitting in AP.

Figure 5: Comparing LBS to APxmt and APdefault
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LBS vs. SPtr/ex We compare LBS and SP in their recommended
configurations. For LBS this is when ppt is determined by the com-
piler. For SP this is when sst is manually tuned by the programmer
using a training data set, and thereafter run on the execution dataset
(SPtr/ex). Figure 6 shows that LBS is 19.5% better on average and
only falls behind on tsp (by 2.2%). For the other benchmarks LBS
is up to 65.7% better. This shows that LBS is not only easier to
use since it needs no tuning, it also allows for more performance-
portable code to any dataset (in this case ex) it sees for the first
time, because, as we will see in our next comparison, the perfor-
mance gap between LBS and SP diminishes when SP is tuned on
the execution dataset.

Figure 6: Comparing LBS to SPtr/ex
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LBS vs. SPex/ex Next, Figure 7 compares LBS to the hypothet-
ical best case for SP: when SP is both tuned and run on the same
execution dataset (SPex/ex). This SPex/ex case is not realistic since
it makes no sense for the user of the program to tune SP for each
new dataset that comes by, since typically datasets are different in
each run in deployment. After all, multiple tuning runs are a waste,
since after the first run of a dataset the program produces the re-
quired answer, and no further runs are needed.

This result is nevertheless presented to show that even in the
ideal case for SP with idealized manual tuning on every new
dataset, LBS (without tuning) still runs faster than SPex/ex by
3.8%, and falls behind only on tsp (by 2.2%). This means that even
in rare cases that the datasets for an application have nearly identi-
cal characteristics, LBS is still a better choice – it is slightly faster,



and a lot easier to use since no tuning is required. The greater gap
between LBS and SPtr/ex compared to SPex/ex shows the greater
portability of LBS to new datasets and run-time conditions.

Figure 7: Comparing LBS to SPex/ex
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LBS and LBS1 vs. SP1 and SWS Figure 8 first compares LBS,
SP, and SWS in their best configurations that do not require any
tuning, which are LBS, SP1 and SWS, respectively. The goal is to
compare performance at a constant user effort-level. SP is the only
one of the three that needs tuning, and its best suggested configura-
tion without tuning is SP1, when the sst threshold is set to 1 (this is
the default value in Intel’s TBB when the user chooses not to do any
tuning). SWS is the serialized work stealing scheme. Among these
three (LBS, SP1, and SWS), it is no surprise that LBS vastly out-
performs the other two, by 56.7% and 54.7%, respectively, showing
that without tuning, LBS is the best choice.

We also present results for LBS1 in Figure 8 to present an inter-
esting (but not necessarily very meaningful) comparison between
LBS1 and SP1. Neither has any compile-time restriction on split-
ting, and the comparison isolates the gain from the run-time adap-
tivity in LBS alone, which the figure shows is an impressive 47.2%.
However since both LBS and SP are run in sub-optimal configura-
tions, we should not read too much into this result.

What is also interesting is that SP1 is never better than SWS
which confirms our analysis in Table 1: when sst = 1 SP performs
approximately 3/2 more transactions than SWS in the intermediate
and best cases. It is important to recognize however that XMT’s
hardware scheduling of outer do-all loops practically eliminates
the serialization of TD accesses problem of SWS. Had we used
a different platform SWS might have been worse than SP1.

Figure 8: Comparing LBS and LBS1 to SP1 and SWS
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LBS+ vs. SI Serializing Inner parallelism (SI) simply serializes
all inner do-all loops. Since it is an easy way to provide some sup-
port for nested parallelism, it has been adopted by some OpenMP
implementations. We found that although LBS outperforms SI sub-
stantially on average, for three benchmarks (FW, bfs and SpMV)
LBS falls behind. The worst was FW where LBS was performing
much worse than SI because the inner parallelism was extremely
fine-grained and regular and the overhead of even creating TDs and

running the software scheduler (LBS) was excessive. But because
the bounds of the do-all loop were known at compile time, the com-
piler decided that it is not profitable to parallelize it and chose to
serialize it. LBS+ includes this additional optimization.

For bfs and SpMV the situation is more complex because the
bounds of the inner do-all loops are only known at run-time just
before they are executed. Our compiler injects a check in the code
just before the inner do-all loop to decide whether to run a serialized
clone of the inner do-all or the original parallel one. This decision
is based on the number of iterations of the do-all loop and on an
statically determined estimate of the amount of computation (in
cycles) each iteration will perform. We run the parallel version
when the total estimated computation of the do-all exceeds ten
thousand cycles. We call this configuration LBS+ to distinguish it
from the LBS configuration we used so far where the optimization
of static and dynamic serialization of inner parallelism was turned
off to make the comparison to the other approaches fairer. Note that
LBS+ and LBS are different only for FW, bfs and SpMV.

Figure 9 shows that LBS+ outperforms SI by 54.2% on aver-
age, doing much better than SI on code without enough outer paral-
lelism (tsp, queens, qs) and doing as well as SI on code with longer
iterations (matmult, conv). LBS+ still falls behind on bfs and SpMV
because the injected check to decide whether to run the parallel or
serialized version of the do-all loop can take several tens of cycles
(because it needs to access memory locations) which might be a
significant enough percentage of the computation of the inner do-
all. Overall however, injecting the checks is beneficial.

Figure 9: Comparing LBS+ to SI
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Scalability and Speedups Table 4 shows speedups of LBS+ run
all 64 TCUs (parallel cores) compared to running the same parallel
program with LBS+ on one TCU of the XMT prototype. The aver-
age speedup of 62.3x shows that LBS+ scales well to a significant
number of cores. Some of the speedups are super-linear which is
explained by complex cache behavior causing more cache misses
when only one TCU is active.

Table 4: Speedups of LBS+ vs. Parallel Program on 1 TCU
matmult conv FW bfs SpMV tsp queens qs

70.5 67.2 54.7 63.2 60.7 67.5 62.5 52.1

Average Speedup (arithmetic): 62.3

We also present speedups of our programs compared to an
optimized serial version that runs on the powerful MTCU of XMT
in Table 5. While the previous numbers reveal how well LBS scales
to many cores, these numbers show the attainable performance.
It is fairer to judge performance using these numbers for two
reasons: TCUs are much simpler, more light-weight processors
compared to the MTCU which is a powerful serial core that should
be our baseline, but also a serial program is usually simpler and
requires less computation than its parallel counterpart. For example
in tsp the parallel version uses dynamic memory allocation to build
possible solutions in parallel, whereas the serial version can use



a single, statically declared array, which is why tsp has a smaller
speedup than other benchmarks.

Table 5: Speedups of LBS+ vs. Serial Program on MTCU
matmult conv FW bfs SpMV tsp queens qs

63.9 28.2 37.6 12.8 26.0 11.1 20.1 6.9

Average Speedup (arithmetic): 25.8

Overall, the average speedup of 25.8x is impressive given that
the serial code is more efficient, the MTCU is much more powerful
than the TCUs, and that several of our benchmarks are irregular
and hard to parallelize. Unlike on XMT, for many other platforms
and compilers, irregular benchmarks yield little or no speedup with
parallelism.

6. Related Work

In this section we present previous work on two types of sched-
ulers: i.) schedulers that support parallel function calls or futures
but not do-all loops, ii.) schedulers that explicitly support do-all
loops. Then we present work on throttling parallelism: serializing
parallelism at run-time to minimize overheads.

Non Do-All Loop Schedulers. These approaches don’t explic-
itly support do-all loops; instead they introduce parallelism through
function calls or futures. Handling of do-all loops explicitly opens
optimization opportunities not available to parallel function calls,
since do-all loops create many iterations simultaneously, instead
of one at a time. Multiple iterations can be packaged into a single
TD, greatly reducing the number of TD transactions, and leading to
much better performance. Work stealers that don’t explicitly sup-
port do-all loops do not optimize for them and deliver much infe-
rior performance. This explains why EBS is our primary competitor
since it explicitly supports do-all loops. Nevertheless, methods for
parallel function calls are outlined below.

Cilk[15] implements work-stealing but was designed for par-
allel function calls (i.e. relatively coarse-grain parallelism) and is
not optimized for do-all loops. We have adopted a Cilk-like imple-
mentation which we call serialized work stealing (SWS), which our
results show performs much worse than LBS for do-all loops. This
result is not surprising since Cilk was not meant for do-alls. Other
approaches that focus on coarser parallelism, such as parallel func-
tion calls and futures, [19, 24, 16, 29] have the same limitations.

Arora et al.[4] propose a non-blocking implementation of work-
stealing which is well suited for multiprogrammed systems. Their
approach suffers from deque overflows which can cause the pro-
gram to crash. Two other approaches [17, 12] propose complicated
solutions to the overflow problem. LBS overcomes this problem
simply by implementing deques as constant-size circular arrays and
keeping work (TDs) temporarily on the stack if the deque is full.

Hendler et al. [18] propose stealing half the TDs of a deque
instead of just one, so as to better spread the work across the
system, and prove good theoretical bounds for load-balance. Their
approach is not applicable to LBS because each deque will have at
most one TD at all times.

Goldstein et al.[16] propose a lightweight thread creation mech-
anism for nested parallelism which has the same serializing prob-
lem as SWS because it relies on the parent thread activating nascent
threads upon request by a remote processor, to make them available
for execution on the remote processor.

Do-All Loop Schedulers Among the related work schemes, the
only ones that we are aware of that explicitly support do-all loops
by work-stealing are SP and AP in Intel’s TBB [1] and Cilk++[21]
which apparently implements SP1. As explained, to use SP the
programmer is expected to determine a good value for the stop-
splitting-threshold of each do-all loop, by trying out various val-

ues. Moreover this fixed threshold limits the performance portabil-
ity of the code to a different number of cores, datasets and contexts.
LBS frees the programmer from choosing a threshold manually and
adapts to run-time conditions to avoid excessive splitting, without
falling behind on performance. AP does not require programmer
tuning but it still falls behind LBS because it lacks context porta-
bility, as it is not run-time adaptive. Finally SP1 falls significantly
behind on code with fine-grain parallelism.

The rest of the schedulers in this sub-section support do-all
loops, but are not work stealing methods. OpenMP [26] recog-
nizes the need for nested parallelism by providing primitives, but
whether nesting is truly supported or not is implementation spe-
cific. Frequently OpenMP implementations serialize inner paral-
lelism which our results show has serious performance limitations.

The nano-threads library supports nested parallelism [22] and
can be used for OpenMP, but uses a ready queue, or a hierarchical
ready queue [25] for scheduling, both of which can have an arbi-
trarily higher memory footprint than work-stealing. Additionally,
access to the head or tail of a queue must be synchronized among
all threads, and a hierarchical ready queue (a tree of queues) has
a single enqueue point, the root, and requires multiple operations
to get work to the leaves where it is dequeued. This makes them
unsuitable for our goal of scalable fine-grain parallelism.

Duran et al.[14] propose a system that assigns processors to
tasks by instrumenting the code and getting run-time statistics to
refine the distribution. They assume however that the programmer
has clustered the outer parallelism into ngroups (similar to setting
the sst), and has also defined the grain-size (sst) of the inner paral-
lelism. Our scheme does not need to collect run-time statistics, and
does not place the burden of clustering on the programmer.

NESL[7] employs complex compiler transformations to support
nested parallelism by flattening[8]. NESL is an interpreted func-
tional language without side-effects which limits its scope. More-
over, it is unclear if good performance can be achieved since only
three benchmarks are evaluated (only one with nested parallelism)
on three architectures, and in most cases their approach falls behind
native code for these machines. The claim is that much better per-
formance will be achieved if the language is compiled instead of
interpreted, but we are unaware of a study quantifying this claim.

Parallelism Throttling Some have used run-time conditions to
decide whether to create more parallelism or execute work serially
[19, 11]. Unlike them we do not rely on maintaining extra informa-
tion (e.g., a global counter) indicating the state of the system and
accessing it to make serializing decisions, which creates a hot-spot
and doesn’t scale well. Instead LBS only uses local per-core infor-
mation already available avoiding extra overheads and creating a
hot-spot. Moreover, unlike both approaches that make irrevocable
serialization decisions, LBS only postpones parallelism creation by
running a few iterations before rechecking the system load.

Duran et al.[13] propose an interesting way to limit the creation
of excessive parallelism which is not related to scheduling. In fact
they experiment with several schedulers to show that their method
works well with all of them. They inject code that collects statistics
about the amount of work of different procedures as a function
of the depth (of the call-stack) at which they are called. When
enough statistics are collected, they turn off this profiling and use
the information to decide which procedures to serialize and at what
depth. Given a recursive parallel procedure such as quicksort, their
approach will decide at which depth of the recursion to start calling
a serial version of quicksort. This approach is orthogonal to LBS
because it does not solve the need to schedule the work, and can
be applied on top of it. In fact our recursively nested benchmarks
(tsp, queens, qs) have manual parallelism cut-off which achieves
the same performance benefits as Duran’s scheme. As our results
show, even for these benchmarks, LBS was able to schedule the



remaining parallelism more efficiently than some of the competing
schedulers without falling behind (on average) compared to the
others. It is important to note, however, that parallelism cut-off is
not applicable to all programs.

7. Conclusion

We have presented Lazy Binary Splitting, a work-stealing sched-
uler that builds on Eager Binary Splitting and compared it to the
two EBS alternatives offered by TBB, SP and AP. LBS performs
better in the typical SPtr/ex case and doesn’t fall behind in the
idealized but unrealistic SPex/ex case. Unlike SP, LBS does not re-
quire manual tuning and is performance portable. AP improves on
SP by not requiring manual tuning and being performance portable
across datasets and platforms, but it lacks context portability. That
is why LBS, which is context portable, outperforms AP.
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