
Evaluating Multi-threading in the Prototype XMT Environment

Dorit Naishlos1 * , Joseph Nuzman2 3 * , Chau-Wen Tseng1 3 , Uzi Vishkin2 3 4 *

1 Dept of Computer Science, University of Maryland, College Park, MD 20742
2 Dept of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742

3 University of Maryland Institute of Advanced Computer Studies, College Park, MD 20742
4 Dept of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel

Tel: 301-405-8010, Fax: 301-405-6707

{ dorit, jnuzman, tseng, vishkin} @cs.umd.edu

* Supported by NSF grant 9820955

Abstract
XMT is a multi-threaded programming model designed to
exploit explicit specification of parallel threads. Its main
features are a simple thread execution model and an efficient
prefix-sum instruction for synchronizing shared data accesses.
This paper presents and evaluates the performance of multi-
threading in the XMT programming environment. A
prototype XMT compiler converts parallel regions into
procedure calls, which are then executed efficiently in XMT
hardware. An architecture simulator similar to SimpleScalar
is used to evaluate the performance of the XMT system for
twelve benchmark codes. Results show the XMT architecture
generally succeeds in providing low-overhead parallel threads
and uniform access times on-chip. However, compiler
optimizations to cluster (coarsen) threads are still needed for
very fine-grained threads.

Keywords
Parallel programming, compilers, processor architectures.

1. Introduction

Conditional branches, variable memory access
latencies, and other barriers to instruction-level parallelism
prevent computers from fully exploiting the large number
of transistors available in modern processors. XMT, an
explicit multi-threading computation framework, attempts
to overcome these obstacles by providing efficient
hardware support for fine-grained parallel programs.

The basic premise behind XMT is that instead of
forcing the hardware to find instruction-level parallelism

at run-time, the instruction set architecture should provide
programmers (or the compiler) with the ability to
explicitly specify parallelism when it is available. In
addition, the XMT architecture attempts to provide more
uniform memory access latencies, taking advantage of
faster on-chip communication times. The programming
model is simplified further by letting threads always run to
completion without synchronization (no busy-waits), and
synchronizing accesses to shared data with a prefix-sum
instruction.

Previous papers on XMT have discussed in detail its
fine-grained SPMD multi-threaded programming model,
architectural support for concurrently executing multiple
contexts on-chip, and preliminary evaluation of several
parallel algorithms using hand-coded assembly programs
[VDB+98] [DV99]. In this paper, we evaluate XMT for
the first time as a complete environment, including
compiler and hardware simulator.

The main contributions of this paper are as follows:
� We present details of a prototype implementation of

XMT, including compiler and code shape.
� We experimentally validate the efficiency of XMT

using a much larger number of benchmark codes than
before.

� We show a number of compiler optimizations for
improving the performance of XMT programs.

We begin in Section 2 by reviewing the XMT multi-
threaded programming model [VDB+98]. The model is
further enhanced with updates to allow nested forking
[Vishkin00]. Section 3 reviews the XMT architecture,
especially features which support multi-threading. Section

4 presents the prototype XMT compiler and code
generation model. Section 5 describes our XMT
evaluation environment, including a behavioral simulator.
Section 6 evaluates the efficiency of the XMT multi-
threaded system implementation. To demonstrate the
competitiveness of fine-grained parallel programs, we
compare speedups versus efficient serial programs.
Section 7 presents a comparison with related work.
Section 8 concludes.

2. XMT programming model

The XMT programming model has a number of key
features:

� Explicit spawn-join parallel regions
� Threads run to completion (do not busy-wait)
� Shared accesses synchronized with prefix-sum

instruction
� Uniform accesses to shared memory

The programming model underlying the XMT
framework is an arbitrary CRCW (concurrent read
concurrent write) SPMD (single program multiple data)
programming model. In the XMT programming model, an
arbitrary number of virtual threads, initiated by a spawn
and terminated by a join, share the same code. At run-
time, different threads may have different lengths, based
on control flow decisions made at run time. The arbitrary
CRCW aspect dictates that concurrent writes to the same
memory location result in an arbitrary one committing.
No assumption can be made beforehand about which will
succeed. This permits each thread to progress at its own
speed from its initiating spawn to its terminating join,
without ever having to wait for other threads; that is, no
thread busy-waits for another thread. An advantage of
using this SPMD model is that it is an extension of the
classical PRAM model, for which a vast body of parallel
algorithms is available in the literature.

The programming model also incorporates the prefix-
sum statement. The prefix-sum operates on a base
variable, B, and an increment variable, R. The result of a
prefix-sum (similar to an atomic fetch-and-increment) is
that B gets the value B + R, while R gets the initial value
of B. The primitive is especially useful when several
threads simultaneously perform a prefix-sum against a
common base, because multiple prefix-sum operations can
be combined by the hardware to form a multi-operand
prefix-sum operation. Because each prefix-sum is atomic,
each thread will receive a different value in its local
storage R. The parallel prefix-sum command can be used
for implementing efficient and scalable (i) load balancing
(parallel implementation of queue/stack), and (ii) inter-
thread synchronization.

The XMT high-level language is an extension of
standard C. A parallel region is delineated by spawn and

join statements. Every thread executing the parallel code
is assigned a unique thread ID, designated TID. The
spawn statement takes as arguments the number of threads
to spawn and the ID of the first thread (other TIDs will
follow consecutively). Prefix-sum takes the form of the ps
function. It adds its second argument (the increment) to
the first argument (the base) and returns the original value
of the base.

Consider the following example of a small XMT
program. Suppose we have an array of n integers, A, and
wish to “compact” the array by copying all non-zero
values to another array, B, in an arbitrary order. The code
below spawns a thread for each element in A. If its
element is non-zero, a thread performs a prefix-sum to get
a unique index into B where it can place its value.

m = 0;
spawn(n,0);
 {
 int TID;

 if (A[TID] != 0) {
int k;
k = ps(&m,1);

 B[k] = A[TID];
 }
 }
join();

The SpawnMT model of [VDB+98] does not allow for
nested initiation of an arbitrary-size spawn within a
parallel spawn region. Such a feature, while useful, would
be difficult to realize efficiently with hardware support.
As an alternative, [Vishkin00] extended the programming
model to support a fork operation. A thread can perform a
fork operation to introduce a new virtual thread as work is
discovered. Forks must be executed one-at-a-time by a
single thread, but forks from multiple threads can be
performed in parallel. A parallel region ends after all the
threads, whether specified by the original spawn or
initiated by subsequent forks, have been executed. The
fork extension allows the programmer to approach many
problems in a more asynchronous and dynamic manner.

The fork is implemented by using a parallel prefix-sum
to increment the number of virtual threads to be executed.
The caller can use the result of the prefix-sum to set up
initialization for the new thread. In XMT C, fspawn is
used when forking may be necessary, and xfork performs
the fork operation.

3. XMT architecture

The XMT programming model allows programmers to
specify an arbitrary degree of parallelism in their code.
Clearly, real hardware has finite execution resources so all
threads can’ t run simultaneously. In an XMT machine, a
thread control unit (TCU) executes an individual virtual

thread. Upon termination, the TCU performs a prefix-sum
operation in order to receive a new thread ID. The TCU
will then emulate the thread with that ID. All TCUs repeat
the process until all the virtual threads have been
completed.

This functionality is enabled by support at the
instruction set level. With our architecture, all TCUs
independently execute a serial program. Each accepts the
standard MIPS instructions, and possesses a standard set
of MIPS registers locally. The expanded ISA includes a
set of specialized global registers, called prefix-sum
registers (PR), and a few additional instructions

Four new instructions are used for thread management.
A spawn instruction interrupts all TCUs and broadcasts a
new PC at which all TCUs will start. The next three
instructions operate on the PR registers: pinc performs a
parallel prefix-sum with value 1, pread performs a parallel
read (prefix-sum with value 0) of a PR register, and pset is
used (serially) to initialize a PR register.

The psm instruction allows for communication and
synchronization between threads. It performs a prefix-
sum operation with an arbitrary increment to any location
in memory. It is an atomic operation, but due to hardware
limitations, is not performed in parallel (i.e., concurrent
psm’s will be queued). This is equivalent to a fetch-and-
increment.

Additional instructions exist to support the nested
forking mechanism. A new thread to be forked likely
requires some form of initialization. This initialization
can be performed by the forking thread with the aid of
psalloc and pscommit. The psalloc instruction works like
a pinc, but the increment to the PR register is not visible to
anyone else until the forking thread performs the
corresponding pscommit. This allows the forking thread
to initialize data before a forked thread starts. Note that
like the pinc instruction, psalloc/pscommit from many
TCUs can be performed in parallel batches.

The last new instruction, suspend, is also used when
forking may occur. An idle TCU can suspend, waiting for
its assigned thread ID to become valid, without consuming
any execution resources.

4. XMT compiler

This section describes how the XMT compiler
generates a C source from an XMT program. Parallel

execution in the XMT architecture requires handling the
following issues:
1. Transition to parallel mode: activating all the TCUs

and setting up their environment.
2. Thread creation and termination: emulate the virtual

threads on each TCU – obtain a thread ID for each,
and verify that it is a valid ID (i.e., less than the
spawn size).

3. Transition back to serial mode: detect when all
threads have terminated, and resume serial execution.

In previous presentations, these tasks were handled
entirely by hardware automatons. In this paper, we
present a scheme whereby the preceding tasks are
orchestrated by compiler. This choice pays off in
performance and flexibility. For example, the compiler is
free to schedule certain operations to have a per-TCU cost
rather than a per-thread cost. Additionally, the more
general hardware allows for various extensions, such as
different forking schemes, and can easily support
parallelization models other than XMT.

The prototype XMT compiler consists of two phases,
the front end (Xpass) and the back end (gcc). Figure 1
presents the XMT compilation process. The front end
(Xpass) is a source-to-source translator based on SUIF
[Wilson94]. This phase converts the XMT code with its
parallel constructs into regular C code with specialized
assembly templates for run-time threading support.

The general scheme used by Xpass is based on
transforming parallel codes into parallel procedures. The
compiler transforms the parallel region (the code in the
spawn-join block) into the body of the procedure. When
the procedure is called, the processing units are awakened,
and each starts to execute the procedure body, which
emulates the threads on each TCU. Figure 2 presents a
high level example of the transformations performed by
our compiler. Producing this structure involves two tasks:
1. Outlining. Detect all parallel regions (spawn-join

blocks) and create a function definition for each (a
“spawn-function”). Replace the spawn-join block with
a call to the spawn-function.

2. Spawn-function transformation. Add TCU
initialization code and thread emulation constructs to
the spawn-function. These constructs include
wrapping the body of the spawn-join block with a
loop to emulate the threads, and inserting assembly
templates.

Figure 1: XMT compilation system

Xpass C compiler assembler

f.xmt f.c f.s

Xpass is preceded by a number of SUIF passes, and
may be followed by a number of future XMT
optimizations passes. The back end builds an executable
for the C code produced by Xpass. As we based our
simulator implementation on the SimpleScalar ISA, we
used the version of gcc from the SimpleScalar 2.0 package
– gcc 2.6.3.

5. XMT evaluation environment

A behavioral simulator, comparable to SimpleScalar
[BA97], has been developed for an XMT architecture.
The fundamental units of execution for the simulated
machine are the multiple TCUs, each of which contains a
separate execution context. In hardware, an individual
TCU basically consists of the fetch and decode stages of a
simple pipelined processor.

To increase resource utilization and to hide latencies,
sets of TCUs are grouped together to form a cluster. The
TCUs in a cluster share a common pool of functional
units, as well as memory access and prefix-sum resources.
The clusters can be replicated repeatedly on a given chip.
More details about the simulated architecture is described
elsewhere [BNF+99]. Unlike previous designs, the
simulated architecture does not have hard-wired thread
management, and uses a banked memory rather than a
monolithic memory.

For our experiments, we specify 8 TCUs in each
cluster. Each cluster contains 4 integer ALUs, 2 integer
multiply/divide units, 2 floating point ALUs, 2 floating
point multiply/divide units, and 2 branch units. All
functional unit latencies are set to the SimpleScalar sim-
outorder defaults. Each cluster has a L1 cache of 8 KB,
and a shared, banked L2 cache of 1 MB. The number of
banks is chosen to be twice the number of clusters. A

penalty of 4 cycles is charged each way for intercluster
communication.

Configurations are simulated with 1, 4, 16, 64, and 256
TCUs. (The 1 and 4 TCU configurations obviously have
fewer than 8 TCUs per cluster.) Keep in mind that these
numbers indicate the number of simultaneous execution
contexts, and do not imply hardware functionality
equivalent to the same number of standard
microprocessors.

The highest-end configuration simulated uses 32
clusters. At this point, connectivity to this degree has not
been demonstrated for a single-chip system. The
interconnection implementation is an important element of
a scalable XMT hardware architecture. The simulator
used reflects results of VLSI experiments with a specific
design, but the details of these experiments are beyond the
scope of this document. For the purposes of this paper,
then, the results for the high-end configuration can be
considered to be indicative of the potential for the XMT
threading model to scale to high degrees of parallelism.
This scalability is one of the most important features of the
methods presented here.

For our evaluation, we used a set of twelve benchmark
codes taken from a variety of application areas. Their
characteristics are shown in Table 1.

6. XMT evaluation

This section evaluates the efficiency of our
implementation by examining 1) the speedups that we
obtain relative to serial programs; 2) the overheads that
the parallel constructs incur; 3) the load balance and
memory behavior. We demonstrate the effect of different
programming styles, scalability with the number of TCUs,
and the effect of certain compiler optimizations on these
parameters.

Original XMT-C program Transformed to

main() {

spawn(num_threads, offset);
{

int TID;

THREAD-CODE
}
join();

}

main() {
spawn_setup(num_threads, offset);
main_0_spawn();

}

main_0_spawn () {
int TID, maxtid, offset;
spawn_init(&max_tid, &offset);
TID = TCUID + offset;
while (TID < max_tid) {

THREAD-CODE

TID = get_new_tid();
};
tcu_halt_suspend();

}

Figure 2: XMT code shape

6.1 Speedups

We examine the performance of XMT on a variety of
realistic applications. The speedups that XMT programs
obtain over serial programs demonstrate the applicability
of the XMT framework and its efficiency across a variety
of problem domains. Table 1 summarizes the benchmarks
we use.

The speedups we present in Figure 3 are relative to the
best serial version for each application. The upper graph
displays applications that are considered to be relatively
parallelizable. The lower graph shows results for
programs that have resisted parallel solutions due to the
dynamic, irregular access patterns of the computation.

Radix and dag are both examples of programs that are
known to be very problematic with regard to obtaining
speedups by parallelization. Both require a lot of all-to-all
communication under other programming models.
SPLASH-2 reports very low speedups on their shared
memory multiprocessor, “due to a parallel prefix
computation in each phase that can not be completely
parallelized” [WOT+95]. To maximize scalability, our
implementation of radix uses fine-grained parallelism
wherever possible. This algorithm is much more work-
intensive than the serial version, and hence does not
achieve speedups for less than 16 TCUs.

The parallelism present in the dag computation is
limited by the input graph. The unpredictable nature of

the computation lends itself to a solution involving the
nested fork operation.

Perimeter and treeadd both involve traversing a tree
from the root down, forking threads along the way, until
the leaves are reached. Then, the threads work their way
up the tree performing the fine-grained computation.

In quicksort we use a hybrid algorithm, where we start
in a synchronous, fine-grained fashion until sufficient
partitions have been created. We then switch to handling
all the partitions in parallel. The first part involves a lot of
spawning and joining, where as the second part is a single
spawn that forks threads as new partitions are created.
Results show speedups topping out at 64 TCUs.

The remaining programs allow a very simple
parallelization scheme: mmult, jacobi and convolution all
update array entries independently of one another, and so
the parallelism is straight forward and involves minimal
extra overhead. This is also true for dbscan where each
thread examines a single entry in the relation, and in
dbtree, where each thread handles a single transaction.
Note that these programs directly spawn a thread for each
unit of work, while traditional parallel programming uses a
more coarse-grained task distribution.

Tomcatv involves updating matrix columns
independently, where each step of the computation
requires 6 spawn-join blocks. The problem size (64
columns) limits the available parallelism for this scheme.
Dot uses an array reduction scheme to attack the dot
product problem.

Domain Program Description Source Input Data Set # of CPU Cycles
jacobi 2D PDE kernel 512 x 512 7739190Scientific

Computations tomcatv Mesh generation program SPEC95 64 x 64 209250860

mmult Matrix multiplication Livermore loops 300 x 300 529615119Linear Algebra

dot Inner product Livermore loops 2 x 64K 2064536

dbscan SQL Select query on a non-indexed
attributes relation.

[AUS98] 2100000 nodes 128975233Database

dbtree A batch of indexed-tree searches. MySQL 131072 nodes 3504809

convolution Image Convolution [AUS98] 128 x 128 64228266Image
processing perimeter Compute the total perimeter of a

region in a binary image represented
by a quadtree

Olden 128 x 128 pixel
quadtree

1632686

quicksort Recursive sort using pivots 16K nodes 7645175Sorting
algorithms radixsort Integer sort into buckets 16K nodes 2112779

treeadd Summation of binary tree nodes Olden 64K nodes 5209216Misc

DAG Find maximum path in a DAG. 1024 nodes,
131157 edges

1140753

Table 1: Benchmark programs

In summary, the results above demonstrate that XMT
programs are able to obtain good speedups. Programs that
achieve lower speedups do so usually as a result of one of
the following: 1) The program doesn’ t perform a lot of
computation (a small problem size was used); 2) The
parallel algorithm involves a lot of work compared to the
serial one; 3) An extremely fine-grained parallelism is
used. The last case suffers from the overheads that are
involved in creating a thread. These overheads are
generally very low, but become significant in very fine-
grained programs. The next section discusses this issue in
more detail, and presents an optimization designed to
overcome this problem, allowing efficient fine-grained
programming.

6.2 Thread overhead and coarsening

Setting up a parallel region and managing the threads
incur an overhead. We can break down this cost to the
following different elements:

� Spawn Setup: setting up the environment,
broadcasting data.

� TCU-Init: initializing the TCUs context.
	 Thread Overhead: emulating threads on each TCU -

obtain a thread ID and verify that it is less than the
spawn size.

 Load Imbalance: idling at the end of a spawn until all
threads complete, then transitioning back to serial
mode.

We examined the costs that the different kinds of
overheads incur. We observed several trends. 1) overheads
are generally very low. In particular, even for very small
problem sizes, and very fine-grained parallelism – the
system obtains good speedups, which are further improved
by our optimizations. 2) Setting up the parallel region is a
cheap operation. The Spawn Setup and TCU-Init
overheads are in general negligible, and remain low under
increasing problem sizes and increasing number of TCUs.
As a result, programs that involve lots of spawns and joins
still perform well. 3) The most dominant overhead is the
one charged to thread creation. We therefore concentrate

Speedups

0

50

100

150

200

250

jacobi tomcatv mmult dot dbscan dbtree convolution
tcus

sp
ee

d
u

p
 o

ve
r

b
es

t
se

ri
al

1 4 16 64 256

Speedups

0

20

40

60

80

100

120

perimeter quicksort radix treeadd DAG
tcus

sp
ee

d
u

p
 o

ve
r

b
es

t
se

ri
al

1 4 16 64 256

Figure 3: Speedups on XMT simulator

on optimizations that aim to reduce this overhead.
Furthermore, as the number of TCUs increases, the
opportunity cost of idle TCUs at the end of the parallel
region becomes more significant. Our optimization tries to
approach this problem by adjusting for the number of
TCUs. 4) The thread structure of the parallel algorithm
greatly affects the overhead distribution. Tradeoffs
between different choices made by the programmer are
clearly illustrated by the overhead distribution.

We use the jacobi kernel to demonstrate how our light-
weight mechanisms allow even very fine-grained programs
to obtain speedups. Jacobi computes matrix elements
independently of one another, and thus allows handling all
the entries in parallel. The parallel version consists of one
spawn block. For a problem size N, N square threads are
spawned. The body of a thread consists of the following 3
source lines:

i = TID/size + 1;
j = (TID%size) + 2;
A[i][j]=B[i-1][j] + . . .;

The above is translated to 29 assembly instructions,
that take between 44 to 66 cycles. The overhead involved
in obtaining a new thread takes 20 cycles - constituting a
significant portion of the actual work the thread performs.
We examined a different parallel version of jacobi, in
which we spawn only N threads, where each one operates
on an entire row of the matrix. Here load balancing
becomes the dominant factor, and overall, the coarser-
grained version performs better.

Thread coarsening is a common technique to improve
the performance of multi-threaded programs. However,
when programming in XMT, we would like the
programmer to be relieved of this consideration – in fact,
the programmer is encouraged to express as much
parallelism as possible, as fine-grained as it may be. Cases

in which the low overhead thread constructs are not
efficient enough (as is the case for jacobi) are
automatically detected by our compiler and optimized.
The optimization changes the thread structure of the
spawn block - instead of having many short threads, the
spawn-block is transformed to have fewer but longer
threads (“clustered-threads”).

Figure 4 presents the overhead breakdown with
different decomposition granularities. We report results
for three problem sizes, comparing three versions for each:
1) “ fine” – the original fine-grained program; 2)
“clustered” – the fine-grained version automatically
coarsened by the XMT compiler; 3) “byrow” – the coarse-
grained version. Observe that fine pays a heavy penalty
for thread overhead, while byrow’s most significant cost is
due to load imbalance. The relative cost of thread
overhead increases as the problem size becomes larger.
The clustered version is able to eliminate most of the
thread overhead, making it competitive with the coarse-
grained program. As mentioned before, this optimization
can be tuned to reduce the load imbalance cost by
reserving unclustered threads at the tail of a spawn, at the
expense of a minimal increase in thread overheads.

6.3 Nested fork evaluation

To demonstrate the potential of the thread forking
capability, we highlight the difference between
synchronous and asynchronous programming styles on the
dag computation. The synchronous version uses frequent
spawns and joins, while the asynchronous forks new
threads to explore nodes as they are discovered. Figure 5
shows overhead breakdowns and speedups for both
versions on two different graph sizes. As illustrated, the
synchronous version pays a heavy price in load imbalance.
The forking version is able to adapt to the unpredictable
computational demands and avoid these costs. This
advantage is evident in the speedups achieved, especially
with more TCUs.

6.4 Memory access costs

An interesting factor to examine is how memory stall
behavior scales with the number of TCUs. We found that
the ratio of time spent waiting on memory to time spent on
processing was largely constant from 1 to 256 TCUs for
most of the programs tested. As an example, Figure 6
shows the breakdown of TCU time between active
processing (CPU), memory stalls, and idling for dbtree.
As the number of TCUs increases, the memory stall share
does not excessively increase. (Also note idle time
becomes a larger share of TCU time in higher TCU
configurations, as may be expected.) We see this trend
quite consistently across a broad range of benchmarks in

Granularity: jacobi, 64 tcus

0%

5%

10%

15%

20%

25%

30%

fin
e

clu
ste

re
d

by
ro

w
fin

e

clu
ste

re
d

by
ro

w
fin

e

clu
ste

re
d

by
ro

w

problem size: 64X64, 128X128, 512X512

%
 o

f
fi

n
e-

g
ra

in
ed

 e
xe

cu
ti

o
n

 t
im

e

spawn setup TCU init

threadoverhead load imbalance

Figure 4: Thread overhead and coarsening

Figure 7. This can be attributed to the XMT architecture
design, which relies on a high-bandwidth, scalable on-chip
memory system.

7. Related work

XMT has tried to build on available technologies to the
extent possible. The relaxation in the synchrony of PRAM
algorithms is related to the work of [CZ89] on
asynchronous PRAMs. Basic insights concerning the use
of a prefix-sum like primitive go back to the Fetch-and-
Add or Fetch-and-Increment [FG91] primitives (cf.
[AG94]).

MIT’s Cilk [FLR98] provides a multi-threaded
programming interface and execution model. There are

two important differences in scope. First, since Cilk is
targeted at compatibility with existing SMP machines,
load balancing in software is an important element of the
project. XMT requires hardware support to bind virtual
threads to thread control units (TCUs) exactly as the
TCUs become available. The low-overhead of XMT is
designed to be applicable to a much broader range of
applications. Second, Cilk presents a programming model
that tries to match very closely standard serial
programming constructs. While XMT also bases its
programming model on standard C, the programmer is
expected to rethink the way parallelism is expressed. The
wide-spawn capabilities and prefix-sum primitive are
present to support the many algorithms targeted to the
PRAM model.

Time Breakdown, dbtree

� �

 � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

 � � �

1 4 16 64 256

tcus

%
 o

f
ex

ec
u

ti
o

n
 t

im
e

cpu memory idle

Figure 6: Memory and load balance, dbtree

memory/cpu

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 4 16 64 256

tcus

m
em

/C
P

U
 r

at
io

tomcatv

mmult

dot

dbscan

dbtree

convolution

perimeter

quicksort

radixsort

treeadd

dag

jacobi

Figure 7: Memory/cpu

DAG: async/sync, Overheads (64 tcus)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

async
100

sync async
1024

sync

problem size

%
 o

f
ex

ec
u

ti
o

n
 t

im
e

spawn setup TCU init
wait for tid thread overhead
load imbalance

DAG: sync/async, Speedups

0

5

10

15

20

25

30

35

1 4 16 64 256
tcus

sp
ee

du
p

s
o

ve
r

be
st

 s
er

ia
l

1024 sync 1024 async
100 sync 100 async

Figure 5: Fork versus synchronous programming

Another design point for on-chip parallelism is that
occupied by chip multiprocessors (CMP) [HNO97].
Research in this area has tended to focus on
multiprogramming, rather than fine-grained multithreading
of a single task.

Other proposed multi-threaded architectures, such as
Simultaneous Multithreading (SMT) or Multiscalar
[Franklin93], also feature multiple program counters and
make useful points of comparison. Recent work on SMT
[TLE+99] has proposed light-weight synchronization
methods for multithreading. In fact the Acquire primitive
is very similar to the suspend primitive presented here.
The two instructions share motivations, since an XMT
cluster with shared functional units is very similar in spirit
to an SMT processor. Threading support in SMT is not
targeted towards supporting a PRAM-style program.
XMT, with the parallel prefix-sum for example, aspires to
scale up to much higher levels of parallelism than other
multithreaded architectures consider currently.

The Tera Multi-Threaded Architecture (MTA)
[AC+90] supports many threads on a given processor.
The processors switch between threads to hide latencies,
rather than running multiple threads concurrently. The
MTA, like other MPP machines, is designed for big
computations with large inputs. XMT aims to achieve
speed-ups for smaller input computations, such as those in
desktop applications.

Tile based architectures, such as MIT’s Raw [WTS97],
also expect to scale to high levels of parallelism.
However, the Raw utilizes a message-passing model rather
than the shared-memory model of XMT.

8. Conclusion

The reliance on compiler and the extension of the
architecture simulator marks progress with respect to
previous XMT reports. Concretely, the work reported
here allows researchers who are interested in performance
hungry applications to start considering XMT.
(http://www.umiacs.umd.edu/~vishkin/XMT)

9. References

[AC+90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith, “The Tera Computer System,”
Proc. International Conference on Supercomputing, 1990.

[AG94] G.S. Almasi A. Gottlieb. Highly Parallel Computing,
Second Edition. Benjamin/Cummings, 1994.

[AUS98] A. Acharya, M. Uysal, J. Saltz. Active Disks:
Programming Model, Algorithms, and Evaluation. Proc.
ASPLOS’98, October 1998.

[BA97] D. Burger and T. M. Austin, “The SimpleScalar Tool
Set, Version 2.0,” Tech. Report CS-1342, University of
Wisconsin-Madison, June 1997.

[BNF+99] E. Berkovich, J. Nuzman, M. Franklin, B. Jacob, U.
Vishkin, "XMT-M: A scalable decentralized processor,"
UMIACS TR 99-55, September 1999.

[CZ89] R. Cole and O. Zajicek, “The APRAM: incorporating
asynchrony into the PRAM model,” Proc. 1st ACM-SPAA, pp.
169-178, 1989.

[DV99] S. Dascal and U. Vishkin, “Experiments with List
Ranking on Explicit Multi-Threaded (XMT) Instruction
Parallelism,” Proc. 3rd Workshop on Algorithms Engineering
(WAE-99), July 1999, London, U.K.

[Franklin93] M. Franklin, “The Multiscalar Architecture,” Ph.D.
thesis. Technical Report TR 1196, Computer Sciences
Department, University of Wisconsin-Madison, December 1993.

[FG91] E. Freudenthal and A. Gottlieb, “Process Coordination
with Fetch-and-Increment,” Proc. Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), 1991.

[FLR98] M. Frigo, C. Leiserson, K. Randall, "The
Implementation of the Cilk-5 Multi-threaded Language," Proc.
of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 1998.

[HMT95] H. Hum, O. Macquelin, K. Theobald, X. Tian, G.
Gao, P. Cupryk, N. Elmassri, L. Hendren, A. Jimenez, S.
Krishnan, A. Marquez, S. Merali, S. Nemawarkar, P.
Panangaden, X. Xue, and Y. Zhu. A design study of the EARTH
multiprocessor. In Proc. Int. Conf. on Parallel Architectures and
Compilation Techniques, 1995.
[HNO97] L. Hammond, B. Nayfeh, and K. Olukotun, ”A Single-
Chip Multiprocessor,” IEEE Computer, Vol. 30, pp. 79-85,
September 1997.

[TLE+99] D. Tullsen, J. Lo, S. Eggers, H. Levy, "Supporting
Fine-Grained Synchronization on a Simultaneous Multi-
threading Processor," Proc. of the 5th International Symposium
on High Performance Computer Architecture, 1999.

[VDB+98] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman,
“Explicit Multi-threaded (XMT) Bridging Models for
Instruction Parallelism,” Proc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 140-151,
1998.

[Viskin00] U. Vishkin, "A No-Busy-Wait Balanced Tree
Parallel Algorithmic Paradigm," Proc. 12th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), 2000.

[WTS97] E. Waingold, M. Tayor, D. Srikrishna, V. Sarkar, W.
Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, and A. Agarwal, ”Baring It All to Software: Raw
Machines,” IEEE Computer, Vol. 30, pp. 86-93, September
1997.

[Wilson94] R. Wilson et al, “SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers,” ACM
SIGPLAN Notices, v. 29, n. 12, pp. 31-37, December 1994.

[WOT+95] S. Woo, M. Ohara, E. Torrie, J. Singh, A. Gupta,
“The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. of the 22nd Annual
International Symposium on computer Architecture, pp. 24-36,
June 1995.

