
For General-Purpose Parallel Computing:
It is PRAM or never

Uzi Vishkin

Short answer to John’s questions
1. Make sure that your machine can look to the programmer like

a PRAM. Without PRAM, evidence of dead-end.. assuming
human programmers.

2. Possible to work out the rest: “PRAM-On-Chip” built at UMD;
this presentation 10 yrs in <7 min

Envisioned general-purpose chip parallel computer succeeding
serial by 2010 in 1997: Speed-of-light collides with 20+GHz
serial processor. [Then came power ..]

View from our solution Several patents, but lots known.
A bit alarmed. Appear as architecture cluelessness. Especially for

single task completion time. Must be addressed ASAP:
Architecture instability bad for business: why invest in long-term

SW development if architecture is about to change.
Please do not stop with this workshop: Have coherent solutions

presented ASAP. Examine. Pick winners. Invest in them.

Commodity computer systems
Chapter 1 1946—2003: Serial. Clock frequency: ~ay-1945

Chapter 2 2004--: Parallel. #”cores”: ~dy-2003 Clock freq: flat.
Prime time is ready for parallel computing. But, is parallel

computing ready for prime time: is there a general-purpose
parallel computer framework that:

(i) is easy to program;
(ii) gives good performance with any amount of parallelism

provided by the algorithm; namely, up- and down-scalability
including backwards compatibility on serial code;

(iii) supports application programming (VHDL/Verilog, OpenGL,
MATLAB) and performance programming; and

(iv) fits current chip technology and scales with it.

Answer: YES. PRAM-On-Chip@UMD is addressing (i)-(iv).
Performance programming is PRAM-like.

Rep speed-up [Gu-V, JEC 12/06]: 100x for VHDL benchmark.

Parallel Random-Access Machine/Model (PRAM)
Abstraction Concurrent accesses to memory, same time as one

ICS07 Tutorial: How to think algorithmically in parallel?

Serial doctrine Natural (parallel) algorithm

time = #ops time << #ops

Where did the PRAM come from?
1960-70s: how to build and program parallel computers?
PRAM direction (my take)
1979- : figure out how to think algorithmically in parallel
1997- : use this in specs for architecture; design and build

What could I do in parallel
at each step assuming
unlimited hardware #

ops
.. ..

..
.. ..

.. ..

#
ops

time time

The PRAM Rollercoaster ride

Late 1970’s Dream
UP Won the battle of ideas on parallel algorithmic

thinking. No silver or bronze!
Model of choice in all theory/algorithms communities.

1988-90: Big chapters in standard algorithms
textbooks.

DOWN FCRC’93: “PRAM is not feasible”. BUT, even the
1993+ despair did not produce proper alternative
Not much choice beyond PRAM!

UP Dream coming true? eXplicit-multi-threaded (XMT)
computer; realize PRAM-On-Chip vision: FPGA-
prototype (not simulator), SPAA’07:

What is different this time around?
crash course on parallel computing

– How much processors-to-memories bandwidth?
Enough Limited

Ideal Programming Model: PRAM Programming difficulties

In the past bandwidth was an issue.
XMT: enough bandwidth for on-chip interconnection

network. [Balkan,Horak,Qu,V-HotInterconnects’07:
9mmX5mm, 90nm ASIC tape-out—”Layout-accurate”]

One of several basic differences relative to “PRAM realization comrades”: NYU
Ultracomputer, IBM RP3, SB-PRAM and MTA.

PRAM was just ahead of its time. Extra push needed is
much smaller than you would guess.

Snapshot: XMT High-level language
XMTC: Single-program multiple-data (SPMD) extension of standard C.
Arbitrary CRCW PRAM-like programs.
Includes Spawn and PS - a multi-operand instruction. Short (not OS) threads.
To express architecture desirables present PRAM algorithms as:
[ideally: compiler in similar XMT assembly; e.g., locality, prefetch]

Cartoon Spawn creates threads; a thread progresses at its own
speed and expires at its Join.
Synchronization: only at the Joins.
So, virtual threads avoid busy-waits by expiring.
New: Independence of order semantics (IOS).

PRAM-On-Chip

n=m 64

TCUs 1024

Block diagram of XMT

- Multi GHz clock rate
- Get it to scale to cutting edge technology
- Proposed answer to the many-core era:
“successor to the Pentium”?

Prototype built n=4, #TCUs=64,
m=8, 75MHz.

- Cache coherence defined away: Local cache
only at master thread control unit (MTCU)
- Prefix-sum functional unit (F&A like) with
global register file (GRF)
- Reduced global synchrony
- Overall design idea: no-busy-wait FSMs

Specs and aspirations

Experience with new FPGA computer
Included: basic compiler [Tzannes,Caragea,Barua,V].
New computer used: to validate past speedup results.

Zooming on Spring’07 parallel algorithms class @UMD
- Standard PRAM class. 30 minute review of XMT-C.
- Reviewed the architecture only in the last week.
- 6(!) significant programming projects (in a theory course).
- FPGA+compiler operated nearly flawlessly.
Sample speedups over best serial by students Selection: 13X.

Sample sort: 10X. BFS: 23X. Connected components: 9X.
Students’ feedback: “XMT programming is easy” (many), “I am

excited about one day having an XMT myself! ”
12,000X relative to cycle-accurate simulator in S’06. Over an hour

sub-second. (Year 46 minutes.)

Compare with
Build-first figure-out-how-to-program-later architectures.
Lack of proper programming model: programmability.
Painful to program decomposition step in other parallel

programming approaches.
(Appearance of) Industry cluelessness.

J. Hennessy 2007: “Many of the early ideas were
motivated by observations of what was easy to
implement in the hardware rather than what was easy
to use”

Culler-Singh 1999: “Breakthrough can come from
architecture if we can somehow…truly design a
machine that can look to the programmer like a
PRAM”

More “keep it simple” examples
Algorithmic thinking and programming

- PRAM model itself; and the following plans:
- Work with motivated high-school students, Fall’07.
- 1st semester programming course. Recruitment tool:

“CS&E is where the action is”.
- Undergrad parallel algorithms course.

XMT architecture and ease of implementing it
Single (hard working) student (X. Wen) completed

synthesizable Verilog description AND the new FPGA-
based XMT computer (+ board) in slightly more than
two years. No prior design experience.

Conclusion

Any successful general-purpose approach must (also)
answer: what will be taught in the algorithms class?
Otherwise dead-end

I concluded in the 1980s: For general-purpose parallel
computing it is PRAM or never. Had 2 basic options:
preach or do

PRAM-On-Chip: Showing how PRAM can pull it is more
productive & fun.

Significant milestones toward getting PRAM ready for
prime time. IMH0: Now, just a matter of time (&
money)

Naming Context for New Computer

http://www.ece.umd.edu/supercomputer/

Cash award.

http://www.ece.umd.edu/supercomputer/

FPGA Prototype of PRAM-On-Chip:
1st commitment to silicon

Clock rate 75 MHz

Memory size 1GB DDR2

Mem. data rate 2.4GB/s

Number of TCUs 64 (4 X 16)

Shared cache size 256KB (32 X 8)

MTCU local cache 8KB

Specs of FPGA system: n=4; m=8

Block diagram of XMT

The system consists of 3 FPGA chips:
2 Virtex-4 LX200 & 1 Virtex-4 FX100
(Thanks Xilinx!)

[FPGA prototyping: “can build”.]

Back-up slides: Some experimental results
• AMD Opteron 2.6 GHz, RedHat

Linux Enterprise 3, 64KB+64KB
L1 Cache, 1MB L2 Cache (none
in XMT), memory bandwidth 6.4
GB/s (X2.67 of XMT)

• M_Mult was 2000X2000 QSort
was 20M

• XMT enhancements: Broadcast,
prefetch + buffer, non-blocking
store, non-blocking caches.

XMT Wall clock time (in seconds)
App. XMT Basic XMT Opteron
M-Mult 179.14 63.7 113.83
QSort 16.71 6.59 2.61

Assume (arbitrary yet conservative)
ASIC XMT: 800MHz and 6.4GHz/s
Reduced bandwidth to .6GB/s and projected back

by 800X/75

XMT Projected time (in seconds)
App. XMT Basic XMT Opteron
M-Mult 23.53 12.46 113.83
QSort 1.97 1.42 2.61

Nature of XMT Enhancements
Question Can innovative algorithmic techniques exploit the opportunities and address
the challenges of multi-core/TCU?
Ken Kennedy’s answer: And can we teach compilers some of these techniques?
Namely: (i) identify/develop performance models compatible with PRAM; (ii) tune-up
algorithms for them (can be quite creative); (iii) incorporate in compiler/architecture.

Back-up slide:
Explanation of Qsort result

The execution time of Qsort is primarily
determined by the actual (DRAM) memory
bandwidth utilized. The total execution time is
roughly = memory access time + Extra CPU time

6.4GB/s is the maximum bandwidth that memory
system provides. However, the actual utilization
rate depends on the system and application.

So, XMT seem to have achieved higher bandwidth
utilization than AMD.

	For General-Purpose Parallel Computing: �It is PRAM or never
	Short answer to John’s questions
	Commodity computer systems
	Parallel Random-Access Machine/Model (PRAM)
	The PRAM Rollercoaster ride �
	What is different this time around?
	Snapshot: XMT High-level language
	PRAM-On-Chip
	Experience with new FPGA computer
	Compare with
	More “keep it simple” examples
	Conclusion
	Naming Context for New Computer
	FPGA Prototype of PRAM-On-Chip: � 1st commitment to silicon
	Back-up slides: Some experimental results
	Back-up slide: �Explanation of Qsort result

