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Short answer to John’s questions
1. Make sure that your machine can look to the programmer like 

a PRAM. Without PRAM, evidence of dead-end.. assuming 
human programmers. 

2. Possible to work out the rest: “PRAM-On-Chip” built at UMD; 
this presentation 10 yrs in <7 min

Envisioned general-purpose chip parallel computer succeeding 
serial by 2010 in 1997: Speed-of-light collides with 20+GHz 
serial processor. [Then came power ..]

View from our solution Several patents, but lots known. 
A bit alarmed. Appear as architecture cluelessness. Especially for 

single task completion time. Must be addressed ASAP:
Architecture instability bad for business: why invest in long-term 

SW development if architecture is about to change.
Please do not stop with this workshop: Have coherent solutions 

presented ASAP. Examine. Pick winners. Invest in them. 



Commodity computer systems
Chapter 1 1946—2003: Serial. Clock frequency: ~ay-1945

Chapter 2 2004--: Parallel. #”cores”: ~dy-2003 Clock freq: flat.
Prime time is ready for parallel computing. But, is parallel 

computing ready for prime time: is there a general-purpose 
parallel computer framework that:

(i) is easy to program;
(ii) gives good performance with any amount of parallelism

provided by the algorithm; namely,  up- and down-scalability 
including backwards compatibility on serial code; 

(iii) supports application programming (VHDL/Verilog, OpenGL, 
MATLAB) and performance programming; and 

(iv) fits current chip technology and scales with it.

Answer: YES. PRAM-On-Chip@UMD is addressing (i)-(iv).
Performance programming is PRAM-like.

Rep speed-up [Gu-V, JEC 12/06]: 100x for VHDL benchmark. 



Parallel Random-Access Machine/Model (PRAM)
Abstraction Concurrent accesses to memory, same time as one

ICS07 Tutorial: How to think algorithmically in parallel? 

Serial doctrine                                                 Natural (parallel) algorithm

time = #ops                                           time << #ops 

Where did the PRAM come from?
1960-70s: how to build and program parallel computers?
PRAM direction (my take)
1979- : figure out how to think algorithmically in parallel
1997- : use this in specs for architecture; design and build

What could I do in parallel 
at each step assuming 
unlimited hardware #

ops
.. ..

..
.. ..

.. ..

#
ops

time time



The PRAM Rollercoaster ride 

Late 1970’s Dream
UP Won         the battle of ideas on parallel algorithmic 

thinking. No silver or bronze!
Model of choice in all theory/algorithms communities. 

1988-90: Big chapters in standard algorithms 
textbooks.

DOWN FCRC’93: “PRAM is not feasible”. BUT, even the 
1993+ despair did not produce proper alternative
Not much choice beyond PRAM!

UP Dream coming true? eXplicit-multi-threaded (XMT) 
computer; realize PRAM-On-Chip vision: FPGA-
prototype (not simulator), SPAA’07:





What is different this time around?
crash course on parallel computing

– How much processors-to-memories bandwidth?
Enough                                            Limited 

Ideal Programming Model: PRAM          Programming difficulties

In the past bandwidth was an issue. 
XMT: enough bandwidth for on-chip interconnection 

network. [Balkan,Horak,Qu,V-HotInterconnects’07: 
9mmX5mm, 90nm ASIC tape-out—”Layout-accurate”]

One of several basic differences relative to “PRAM realization comrades”: NYU 
Ultracomputer, IBM RP3, SB-PRAM and MTA. 

PRAM was just  ahead of its time. Extra push needed is 
much smaller than you would guess.



Snapshot: XMT High-level language
XMTC: Single-program multiple-data (SPMD) extension of standard C. 
Arbitrary CRCW PRAM-like programs. 
Includes Spawn and PS - a multi-operand instruction. Short (not OS) threads. 
To express architecture desirables present PRAM algorithms as:
[ideally: compiler in similar XMT assembly; e.g., locality, prefetch]

Cartoon Spawn creates threads; a thread progresses at its own 
speed and expires at its Join. 
Synchronization: only at the Joins. 
So, virtual threads avoid busy-waits by expiring. 
New: Independence of order semantics (IOS).



PRAM-On-Chip 

n=m 64

# TCUs 1024 

Block diagram of XMT

- Multi GHz clock rate
- Get it to scale to cutting edge technology
- Proposed answer to the many-core era: 
“successor to the Pentium”?

Prototype built n=4, #TCUs=64, 
m=8, 75MHz.

- Cache coherence defined away: Local cache 
only at master thread control unit (MTCU)
- Prefix-sum functional unit (F&A like) with 
global register file (GRF)
- Reduced global synchrony
- Overall design idea: no-busy-wait FSMs

Specs and aspirations



Experience with new FPGA computer
Included: basic compiler [Tzannes,Caragea,Barua,V].
New computer used: to validate past speedup results.

Zooming on Spring’07 parallel algorithms class @UMD
- Standard PRAM class. 30 minute review of XMT-C.
- Reviewed the architecture only in the last week.
- 6(!) significant programming projects (in a theory course). 
- FPGA+compiler operated nearly flawlessly.
Sample speedups over best serial by students Selection: 13X. 

Sample sort: 10X. BFS: 23X. Connected components: 9X.
Students’ feedback: “XMT programming is easy” (many), “I am 

excited about one day having an XMT myself! ”
12,000X relative to cycle-accurate simulator in S’06. Over an hour 

sub-second. (Year 46 minutes.)



Compare with
Build-first figure-out-how-to-program-later architectures.
Lack of proper programming model: programmability.
Painful to program decomposition step in other parallel 

programming approaches. 
(Appearance of) Industry cluelessness.

J. Hennessy 2007: “Many of the early ideas were 
motivated by observations of what was easy to 
implement in the hardware rather than what was easy 
to use”

Culler-Singh 1999: “Breakthrough can come from 
architecture if we can somehow…truly design a 
machine that can look to the programmer like a 
PRAM”



More “keep it simple” examples
Algorithmic thinking and programming

- PRAM model itself; and the following plans:
- Work with motivated high-school students, Fall’07.
- 1st semester programming course. Recruitment tool: 

“CS&E is where the action is”.
- Undergrad parallel algorithms course.

XMT architecture and ease of implementing it
Single (hard working) student (X. Wen) completed 

synthesizable Verilog description AND the new FPGA-
based XMT computer (+ board) in slightly more than 
two years.  No prior design experience. 



Conclusion 

Any successful general-purpose approach must (also) 
answer: what will be taught in the algorithms class? 
Otherwise dead-end

I concluded in the 1980s:  For general-purpose parallel 
computing it is PRAM or never. Had 2 basic options: 
preach or do

PRAM-On-Chip: Showing how PRAM can pull it is more 
productive  & fun.

Significant milestones toward getting PRAM ready for 
prime time. IMH0: Now, just a matter of time (& 
money)



Naming Context for New Computer

http://www.ece.umd.edu/supercomputer/

Cash award.

http://www.ece.umd.edu/supercomputer/


FPGA Prototype of PRAM-On-Chip:
1st commitment to silicon

Clock rate 75 MHz

Memory size 1GB DDR2

Mem. data rate 2.4GB/s

Number of TCUs 64 (4 X 16)

Shared cache size 256KB (32 X 8)

MTCU local cache 8KB

Specs of FPGA system: n=4; m=8

Block diagram of XMT

The system consists of 3 FPGA chips:
2 Virtex-4 LX200 & 1 Virtex-4 FX100
(Thanks Xilinx!)

[FPGA prototyping: “can build”.]



Back-up slides: Some experimental results
• AMD Opteron 2.6 GHz, RedHat 

Linux Enterprise 3, 64KB+64KB 
L1 Cache, 1MB L2 Cache (none 
in XMT), memory bandwidth 6.4 
GB/s (X2.67 of XMT)

• M_Mult was 2000X2000  QSort 
was 20M

• XMT enhancements: Broadcast, 
prefetch + buffer,  non-blocking 
store, non-blocking caches.

XMT Wall clock time (in seconds)
App. XMT Basic XMT      Opteron
M-Mult 179.14        63.7       113.83
QSort 16.71 6.59 2.61

Assume (arbitrary yet conservative)
ASIC XMT: 800MHz and 6.4GHz/s
Reduced bandwidth to .6GB/s and projected back 

by 800X/75

XMT Projected time (in seconds)
App. XMT Basic XMT      Opteron
M-Mult 23.53 12.46      113.83
QSort 1.97 1.42 2.61

Nature of XMT Enhancements
Question Can innovative algorithmic techniques exploit the opportunities and address 
the challenges of multi-core/TCU?
Ken Kennedy’s answer: And can we teach compilers some of these techniques?
Namely: (i) identify/develop performance models compatible with PRAM; (ii) tune-up 
algorithms for them (can be quite creative); (iii) incorporate in compiler/architecture.



Back-up slide: 
Explanation of Qsort result

The execution time of Qsort is primarily 
determined by the actual (DRAM) memory 
bandwidth utilized. The total execution time is 
roughly = memory access time + Extra CPU time

6.4GB/s is the maximum bandwidth that memory 
system provides. However, the actual utilization 
rate depends on the system and application.

So, XMT seem to have achieved higher bandwidth 
utilization than AMD.
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