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Commodity computer systems
Chapter 1 1946—2003: Serial. Clock frequency: ~ay-1945

Chapter 2 2004--: Parallel. #”cores”: ~dy-2003 Clock freq: flat.
Programmer’s IQ? Flat..
Need A general-purpose parallel computer framework that:
(i) is easy to program;
(ii) gives good performance with any amount of parallelism

provided by the algorithm; namely,  up- and down-scalability 
including backwards compatibility on serial code; 

(iii) supports application programming (VHDL/Verilog, OpenGL, 
MATLAB) and performance programming; and 

(iv) fits current chip technology and scales with it.
PRAM-On-Chip@UMD is addressing (i)-(iv).
Rep speed-up [Gu-V, JEC 12/06]: 100x for VHDL benchmark. 



Parallel Random-Access Machine/Model (PRAM)
Serial RAM Step: 1 op (memory/etc). 
PRAM Step: many ops. 

Serial doctrine                                                 Natural (parallel) algorithm

time = #ops                                            time << #ops 

1979- : THEORY figure out how to think algorithmically in parallel
(Also, ICS07 Tutorial)
“In theory there is no difference between theory and practice but

in practice there is”
1997- : PRAM-On-Chip@UMD: derive specs for architecture; 

design and build

What could I do in parallel 
at each step assuming 
unlimited hardware #

ops
.. ..

..
.. ..

.. ..

#
ops

time time



Snapshot: XMT High-level language
XMTC: Single-program multiple-data (SPMD) extension of standard C. 
Arbitrary CRCW PRAM-like programs. 
Includes Spawn and PS - a multi-operand instruction. Short (not OS) threads. 
To express architecture desirables present PRAM algorithms as:
[ideally: compiler in similar XMT assembly; e.g., locality, prefetch]

Cartoon Spawn creates threads; a thread progresses at its own speed and 
expires at its Join. 
Synchronization: only at the Joins. 
So, virtual threads avoid busy-waits by expiring. 
New: Independence of order semantics (IOS).
Unique First parallelism. Then decomposition
[ideally: given XMTC program, compiler provides decomposition]



Compare with
Build-first figure-out-how-to-program-later architectures.
J. Hennessy 2007: “Many of the early ideas were 

motivated by observations of what was easy to 
implement in the hardware rather than what was easy 
to use”

No proper programming model: poor programmability.
Painful to program decomposition-first step in other 

parallel programming approaches. 
Culler-Singh 1999: “Breakthrough can come from 

architecture if we can somehow…truly design a 
machine that can look to the programmer like a 
PRAM”



The PRAM Rollercoaster ride 

Late 1970’s Theory work began
UP Won         the battle of ideas on parallel algorithmic 

thinking. No silver or bronze!
Model of choice in all theory/algorithms communities. 

1988-90: Big chapters in standard algorithms 
textbooks.

DOWN FCRC’93: “PRAM is not feasible”. [‘93+ despair 
no proper alternative!  Puzzled: where do vendors 

expect good alternatives to come from in 2007?]
UP eXplicit-multi-threaded (XMT) FPGA-prototype 

computer (not simulator), SPAA’07; towards realizing 
PRAM-On-Chip vision:





PRAM-On-Chip 

n=m 64

# TCUs 1024 

Block diagram of XMT

- Multi GHz clock rate
- Get it to scale to cutting edge technology
- Proposed answer to the many-core era: 
“successor to the Pentium”?

FPGA Prototype built n=4, 
#TCUs=64, m=8, 75MHz.

- Cache coherence defined away: Local cache 
only at master thread control unit (MTCU)
- Prefix-sum functional unit (F&A like) with 
global register file (GRF)
- Reduced global synchrony
- Overall design idea: no-busy-wait FSMs

Specs and aspirations



What is different this time around?
crash course on parallel computing

– How much processors-to-memories bandwidth?
Enough                                            Limited 

Ideal Programming Model: PRAM          Programming difficulties

In the past bandwidth was an issue. 
XMT: enough bandwidth for on-chip interconnection 

network. This paper!
Glad to fail Einstein’s test for insanity “do the same thing, yet 
expect different results”.
One of several basic differences relative to “PRAM realization comrades”: NYU 
Ultracomputer, IBM RP3, SB-PRAM and MTA.

PRAM was just  ahead of its time, and we are getting 
there…



A Common Problem of Networks

• Interference
– Path of A interferes with 

path of B
– Packets are interleaved
– Throughput is reduced 

to both directions

d = i 

d = j 

To port i

To port j

Packet A

Packet B

Network Switches

Physical channel
(wire)



Mesh-of-TreesTopology
• Traditional Topology

– From leaves to leaves via roots
– Interference possible

• Our Topology
– From roots to roots via common leaves
– Avoid interference

• Characteristics
– Switch degree : 2 
– Levels : 2 log N

• Fan-out (route) : log N
• Fan-in (arbitrate) : log N

– Average hop count: 2 log N
– Min Bisection BW : N flits/cycle
– Ideal Throughput : N flits/cycle 

(1 flit/cycle per port)

N x N grid of nodes

Fan−out (column) trees

Fan−in (row) trees

N x N mesh of trees



Flow Control
• Three primitive circuits

– Route (Fan-out tree)
– Arbitrate (Fan-in tree)
– Pipeline (if needed)

• Simple control logic
– Increase clock rate

• Localized decisions
– Previous node
– This node
– Next node

• 2 data registers per 
input port

R

A

d = i 

d = j 

d = j

To port i

To port j

To port j

P



Area Complexity
• Wire : O(N2 log2 N) 
• Switch : O(N2)

• IBM 90nm (9SF)
8 levels of metal
standard cell based design
– Wire area < Switch area

• Projection to 32nm
– N=128, 80 bits per flit
– Wire area     :  12.5 mm2

– Switch area  :  27.5 mm2 IBM 90nm process Cell vs Wire Area (mm2)



Latency and Throughput
• Earlier results with 

software simulation [1]
• Hypercube
• Butterfly 
• MoT

• MoT network has 
higher throughput and 
lower latency

Simulations with N=64 terminal network

[1] A.O. Balkan, G. Qu, U. Vishkin, 
A Mesh-of-Trees Interconnection Network 
for Single-Chip Parallel Processing, 
Proceedings of ASAP 2006



Cycle-Accurate Validation
• Earlier results with in-house 

simulator
• Verified with verilog RTL 

and netlist simulations
• Uniform traffic
• 1 flit per packet
• Measured after warm-up
• 64-terminal network

– Avg Tput 0.96 flits/cycle
– Lat (10% traffic) 16.9 cycles
– Lat (90% traffic) 21.6 cycles

Simulations with N=64 terminal network



Arbitration Options
• Network packets:

– Load : 1 flit/packet
– Store: 2 flits/packet

• Options
– Wide flits
– Separate store flits

• Fair arbitration
• Extra buffers and logic 

outside of network
– Linked store flits

• Winner-take-all
• Extra logic in network, 

no additional buffer



Layout-Accurate 
Area and Performance

• Layout 
– Area, Clock Rate
– Netlist 

• Simulated switching activity 
Power

• Pipelining 
– Recovers performance
– High level heuristic
– Higher cell area
– Higher power consumption

• One terminal can serve 16 
light-weight processors [2]
– 8 terminal   128 processors
– 32 terminal 512 processors

Clock Rate in MHz Throughput in Gbps
Latency in cycles Area in mm2

Low trf: 10% High trf 90% Power in mW

[2] X. Wen, U. Vishkin, PRAM-on-Chip: 1st commitment to Silicon
ACM-SPAA June 2007



Summary of Technical Part
• Mesh-of-Trees network

– Provides high performance 
– High throughput allows multiple processors per terminal (e.g. 16)
– High wire complexity, but cell area dominates for several future

technology generations
• Performance verified with verilog simulations
• Arbitration options evaluated

– Linked address and data flits in store instructions
• Layout generated for 4 to 32 terminal networks

– Clock Rate Throughput in Gbps
– Area
– Power

• 8-terminal network chip fabricated
(August 2007)

Bare die photo of 8-terminal chip
IBM 90nm process, 9mm x 5mm



Conclusion
Badly needed: HOT Alg. & Programming Models.
Just think: How to teach algorithms & programming to 

students in HS &College & other programmers?
Multi-decade evidence of commercialization problems in 

parallel computing due to poor programmability. 
Currently, only PRAM provides strong-enough theory
[Hot Interconnects, Hot Chips, compilers, etc, are crucial 

for bridging theory and practice]
IOHO: (i) Competition to PRAM unlikely 
(ii) It is only a matter of time & money for us to complete 

a basis for ubiquitous general-purpose parallel 
computing  



Experience with new FPGA computer
Included: basic compiler [Tzannes,Caragea,Barua,V].
New computer used: to validate past speedup results.

Zooming on Spring’07 parallel algorithms class @UMD
- Standard PRAM class. 30 minute review of XMT-C.
- Reviewed the architecture only in the last week.
- 6(!) significant programming projects (in a theory course). 
- FPGA+compiler operated nearly flawlessly.
Sample speedups over best serial by students Selection: 13X. 

Sample sort: 10X. BFS: 23X. Connected components: 9X.
Students’ feedback: “XMT programming is easy” (many), “The 

XMT computer made the class the gem that it is”, “I am excited 
about one day having an XMT myself! ”

12,000X relative to cycle-accurate simulator in S’06. Over an hour 
sub-second. (Year 46 minutes.)



More “keep it simple” examples
Algorithmic thinking and programming

- PRAM model itself; and the following plans:
- Work with motivated high-school students, Fall’07.
- 1st semester programming course. Recruitment tool: 

“CS&E is where the action is”. Spring’08.
- Undergrad parallel algorithms course. Spring’08

XMT architecture and ease of implementing it
Single (hard working) student (X. Wen) completed 

synthesizable Verilog description AND the new FPGA-
based XMT computer (+ board) in slightly more than 
two years.  No prior design experience. 
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