
Layout-Accurate Design and Implementation
of a High-Throughput Interconnection Network

for Single-Chip Parallel Processing

Aydin O. Balkan 2nd speaker
Michael N. Horak

Gang Qu
Uzi Vishkin 1st speaker

Hot Interconnects 2007

Commodity computer systems
Chapter 1 1946—2003: Serial. Clock frequency: ~ay-1945

Chapter 2 2004--: Parallel. #”cores”: ~dy-2003 Clock freq: flat.
Programmer’s IQ? Flat..
Need A general-purpose parallel computer framework that:
(i) is easy to program;
(ii) gives good performance with any amount of parallelism

provided by the algorithm; namely, up- and down-scalability
including backwards compatibility on serial code;

(iii) supports application programming (VHDL/Verilog, OpenGL,
MATLAB) and performance programming; and

(iv) fits current chip technology and scales with it.
PRAM-On-Chip@UMD is addressing (i)-(iv).
Rep speed-up [Gu-V, JEC 12/06]: 100x for VHDL benchmark.

Parallel Random-Access Machine/Model (PRAM)
Serial RAM Step: 1 op (memory/etc).
PRAM Step: many ops.

Serial doctrine Natural (parallel) algorithm

time = #ops time << #ops

1979- : THEORY figure out how to think algorithmically in parallel
(Also, ICS07 Tutorial)
“In theory there is no difference between theory and practice but

in practice there is”
1997- : PRAM-On-Chip@UMD: derive specs for architecture;

design and build

What could I do in parallel
at each step assuming
unlimited hardware #

ops
.. ..

..
.. ..

.. ..

#
ops

time time

Snapshot: XMT High-level language
XMTC: Single-program multiple-data (SPMD) extension of standard C.
Arbitrary CRCW PRAM-like programs.
Includes Spawn and PS - a multi-operand instruction. Short (not OS) threads.
To express architecture desirables present PRAM algorithms as:
[ideally: compiler in similar XMT assembly; e.g., locality, prefetch]

Cartoon Spawn creates threads; a thread progresses at its own speed and
expires at its Join.
Synchronization: only at the Joins.
So, virtual threads avoid busy-waits by expiring.
New: Independence of order semantics (IOS).
Unique First parallelism. Then decomposition
[ideally: given XMTC program, compiler provides decomposition]

Compare with
Build-first figure-out-how-to-program-later architectures.
J. Hennessy 2007: “Many of the early ideas were

motivated by observations of what was easy to
implement in the hardware rather than what was easy
to use”

No proper programming model: poor programmability.
Painful to program decomposition-first step in other

parallel programming approaches.
Culler-Singh 1999: “Breakthrough can come from

architecture if we can somehow…truly design a
machine that can look to the programmer like a
PRAM”

The PRAM Rollercoaster ride

Late 1970’s Theory work began
UP Won the battle of ideas on parallel algorithmic

thinking. No silver or bronze!
Model of choice in all theory/algorithms communities.

1988-90: Big chapters in standard algorithms
textbooks.

DOWN FCRC’93: “PRAM is not feasible”. [‘93+ despair
no proper alternative! Puzzled: where do vendors

expect good alternatives to come from in 2007?]
UP eXplicit-multi-threaded (XMT) FPGA-prototype

computer (not simulator), SPAA’07; towards realizing
PRAM-On-Chip vision:

PRAM-On-Chip

n=m 64

TCUs 1024

Block diagram of XMT

- Multi GHz clock rate
- Get it to scale to cutting edge technology
- Proposed answer to the many-core era:
“successor to the Pentium”?

FPGA Prototype built n=4,
#TCUs=64, m=8, 75MHz.

- Cache coherence defined away: Local cache
only at master thread control unit (MTCU)
- Prefix-sum functional unit (F&A like) with
global register file (GRF)
- Reduced global synchrony
- Overall design idea: no-busy-wait FSMs

Specs and aspirations

What is different this time around?
crash course on parallel computing

– How much processors-to-memories bandwidth?
Enough Limited

Ideal Programming Model: PRAM Programming difficulties

In the past bandwidth was an issue.
XMT: enough bandwidth for on-chip interconnection

network. This paper!
Glad to fail Einstein’s test for insanity “do the same thing, yet
expect different results”.
One of several basic differences relative to “PRAM realization comrades”: NYU
Ultracomputer, IBM RP3, SB-PRAM and MTA.

PRAM was just ahead of its time, and we are getting
there…

A Common Problem of Networks

• Interference
– Path of A interferes with

path of B
– Packets are interleaved
– Throughput is reduced

to both directions

d = i

d = j

To port i

To port j

Packet A

Packet B

Network Switches

Physical channel
(wire)

Mesh-of-TreesTopology
• Traditional Topology

– From leaves to leaves via roots
– Interference possible

• Our Topology
– From roots to roots via common leaves
– Avoid interference

• Characteristics
– Switch degree : 2
– Levels : 2 log N

• Fan-out (route) : log N
• Fan-in (arbitrate) : log N

– Average hop count: 2 log N
– Min Bisection BW : N flits/cycle
– Ideal Throughput : N flits/cycle

(1 flit/cycle per port)

N x N grid of nodes

Fan−out (column) trees

Fan−in (row) trees

N x N mesh of trees

Flow Control
• Three primitive circuits

– Route (Fan-out tree)
– Arbitrate (Fan-in tree)
– Pipeline (if needed)

• Simple control logic
– Increase clock rate

• Localized decisions
– Previous node
– This node
– Next node

• 2 data registers per
input port

R

A

d = i

d = j

d = j

To port i

To port j

To port j

P

Area Complexity
• Wire : O(N2 log2 N)
• Switch : O(N2)

• IBM 90nm (9SF)
8 levels of metal
standard cell based design
– Wire area < Switch area

• Projection to 32nm
– N=128, 80 bits per flit
– Wire area : 12.5 mm2

– Switch area : 27.5 mm2 IBM 90nm process Cell vs Wire Area (mm2)

Latency and Throughput
• Earlier results with

software simulation [1]
• Hypercube
• Butterfly
• MoT

• MoT network has
higher throughput and
lower latency

Simulations with N=64 terminal network

[1] A.O. Balkan, G. Qu, U. Vishkin,
A Mesh-of-Trees Interconnection Network
for Single-Chip Parallel Processing,
Proceedings of ASAP 2006

Cycle-Accurate Validation
• Earlier results with in-house

simulator
• Verified with verilog RTL

and netlist simulations
• Uniform traffic
• 1 flit per packet
• Measured after warm-up
• 64-terminal network

– Avg Tput 0.96 flits/cycle
– Lat (10% traffic) 16.9 cycles
– Lat (90% traffic) 21.6 cycles

Simulations with N=64 terminal network

Arbitration Options
• Network packets:

– Load : 1 flit/packet
– Store: 2 flits/packet

• Options
– Wide flits
– Separate store flits

• Fair arbitration
• Extra buffers and logic

outside of network
– Linked store flits

• Winner-take-all
• Extra logic in network,

no additional buffer

Layout-Accurate
Area and Performance

• Layout
– Area, Clock Rate
– Netlist

• Simulated switching activity
Power

• Pipelining
– Recovers performance
– High level heuristic
– Higher cell area
– Higher power consumption

• One terminal can serve 16
light-weight processors [2]
– 8 terminal 128 processors
– 32 terminal 512 processors

Clock Rate in MHz Throughput in Gbps
Latency in cycles Area in mm2

Low trf: 10% High trf 90% Power in mW

[2] X. Wen, U. Vishkin, PRAM-on-Chip: 1st commitment to Silicon
ACM-SPAA June 2007

Summary of Technical Part
• Mesh-of-Trees network

– Provides high performance
– High throughput allows multiple processors per terminal (e.g. 16)
– High wire complexity, but cell area dominates for several future

technology generations
• Performance verified with verilog simulations
• Arbitration options evaluated

– Linked address and data flits in store instructions
• Layout generated for 4 to 32 terminal networks

– Clock Rate Throughput in Gbps
– Area
– Power

• 8-terminal network chip fabricated
(August 2007)

Bare die photo of 8-terminal chip
IBM 90nm process, 9mm x 5mm

Conclusion
Badly needed: HOT Alg. & Programming Models.
Just think: How to teach algorithms & programming to

students in HS &College & other programmers?
Multi-decade evidence of commercialization problems in

parallel computing due to poor programmability.
Currently, only PRAM provides strong-enough theory
[Hot Interconnects, Hot Chips, compilers, etc, are crucial

for bridging theory and practice]
IOHO: (i) Competition to PRAM unlikely
(ii) It is only a matter of time & money for us to complete

a basis for ubiquitous general-purpose parallel
computing

Experience with new FPGA computer
Included: basic compiler [Tzannes,Caragea,Barua,V].
New computer used: to validate past speedup results.

Zooming on Spring’07 parallel algorithms class @UMD
- Standard PRAM class. 30 minute review of XMT-C.
- Reviewed the architecture only in the last week.
- 6(!) significant programming projects (in a theory course).
- FPGA+compiler operated nearly flawlessly.
Sample speedups over best serial by students Selection: 13X.

Sample sort: 10X. BFS: 23X. Connected components: 9X.
Students’ feedback: “XMT programming is easy” (many), “The

XMT computer made the class the gem that it is”, “I am excited
about one day having an XMT myself! ”

12,000X relative to cycle-accurate simulator in S’06. Over an hour
sub-second. (Year 46 minutes.)

More “keep it simple” examples
Algorithmic thinking and programming

- PRAM model itself; and the following plans:
- Work with motivated high-school students, Fall’07.
- 1st semester programming course. Recruitment tool:

“CS&E is where the action is”. Spring’08.
- Undergrad parallel algorithms course. Spring’08

XMT architecture and ease of implementing it
Single (hard working) student (X. Wen) completed

synthesizable Verilog description AND the new FPGA-
based XMT computer (+ board) in slightly more than
two years. No prior design experience.

	Layout-Accurate Design and Implementation of a High-Throughput Interconnection Network for Single-Chip Parallel Processing
	Commodity computer systems
	Parallel Random-Access Machine/Model (PRAM)
	Snapshot: XMT High-level language
	Compare with
	The PRAM Rollercoaster ride �
	PRAM-On-Chip
	What is different this time around?
	A Common Problem of Networks
	Mesh-of-Trees Topology
	Flow Control
	Area Complexity
	Latency and Throughput
	Cycle-Accurate Validation
	Arbitration Options
	Layout-Accurate �Area and Performance
	Summary of Technical Part
	Conclusion
	Experience with new FPGA computer
	More “keep it simple” examples

