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ABSTRACT
Explicit-multithreading (XMT) is a parallel programming model
designed for exploiting on-chip parallelism. Its features include a
simple thread execution model and an efficient prefix-sum
instruction for synchronizing shared data accesses. By taking
advantage of low-overhead parallel threads and high on-chip
memory bandwidth, the XMT model tries to reduce the burden on
programmers by obviating the need for explicit task assignment
and thread coarsening.

This paper presents features of the XMT programming model, and
evaluates their utility through experiments on a prototype XMT
compiler and architecture simulator. We find the lack of explicit
task assignment has slight effects on performance for the XMT
architecture. Despite low thread overhead, thread coarsening is
still necessary to some extent, but can usually be automatically
applied by the XMT compiler. The prefix-sum instruction
provides more scalable synchronization than traditional locks, and
the simple run-until-completion thread execution model (no busy-
waits) does not impair performance. Finally, the combination of
features in XMT can encourage simpler parallel algorithms that
may be more efficient than more traditional complex approaches.

1. Introduction
When discussing parallel programming models, the parallel
computing community usually considers two models: message-
passing and shared-memory. Both models usually require domain
partitioning and load balancing. For dynamic, adaptive
applications this effort can amount to 25% of the entire code and
become a significant source of overhead [Henty00], [SSC+00].
Message-passing in addition requires distributing data structures
across processors and explicitly handling inter-processor
communication. Performance also decreases for fine-grained
parallelism under both models, as the effects of synchronization
and communication overhead become a bigger factor.

Many of these issues, however, are of lesser importance for
exploiting on-chip parallelism, where parallelism overhead is low
and memory bandwidth is high. This observation motivated the
development of the Explicit Multi-threading (XMT) programming
model. XMT is intended to provide a parallel programming model
which is simpler to use, yet efficiently exploits on-chip
parallelism

Previous papers on XMT have discussed in detail its fine-grained
SPMD multi-threaded programming model, architectural support
for concurrently executing multiple contexts on-chip, and
preliminary evaluation of several parallel algorithms using hand-
coded assembly programs [VDB+98] [DV99]. A more recent
paper describes the prototype XMT programming environment,

including the XMT compiler and simulator [N+00]. In this paper,
we describe features of the XMT programming model that were
designed for exploiting on-chip parallelism, and evaluate their
impact on both programmability and performance using the XMT
programming environment.

The main contributions of this paper are as follows:

• We discuss and evaluate features of XMT designed to exploit
on-chip parallelism.

• We examine their effect on programmability for several
interesting application kernels.

• We experimentally evaluate the impact of XMT features on
performance using the XMT compiler and simulator.

We begin by reviewing the XMT multi-threaded programming
model. We then briefly discuss the XMT architecture and
environment, including a compiler and behavioral simulator. We
examine the impact of each feature of XMT on programmability
and performance. Finally, we present a comparison with related
work and conclude.

2. XMT Programming Model
The basic premise behind XMT is that instead of forcing the
hardware to find instruction-level parallelism at run-time, the
instruction set architecture should provide programmers (or the
compiler) with the ability to explicitly specify parallelism when it
is available. In addition, the XMT architecture attempts to provide
more uniform memory access latencies, taking advantage of faster
on-chip communication times. The programming model is
simplified further by letting threads always run to completion
without synchronization (no busy-waits), and synchronizing
accesses to shared data with a prefix-sum instruction.

The user-level XMT language is an extension of standard C. The
following example XMT program copies all non-zero values of
array A to B in an arbitrary order:

m = 0;
spawn(n,0);
  {
    int TID;
    if (A[TID] != 0) {

int k = ps(&m,1);
      B[k] = A[TID];
    }
  }

join();

The programming model has a number of key features:

• Explicit spawn-join parallel regions

• Shared accesses synchronized with prefix-sum instruction

• Threads run to completion (do not busy-wait)
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• Dynamic forking of additional virtual threads

A parallel region is delineated by spawn and join statements.
Every thread executing the parallel code is assigned a unique
thread ID, designated TID. Shared accesses are synchronized with
a prefix-sum instruction (SV), similar to an atomic fetch-and-
increment. It can be combined by the hardware to form a multi-
operand prefix-sum operation. For both simplicity and efficiency,
threads always run to completion without busy-waiting. XMT
does not allow for nested initiation of a spawn within a parallel
spawn region [VDB+98], but a thread can perform a fork
operation to introduce a new virtual thread as work is discovered
[Vishkin00].

3. XMT Environment
The XMT environment consists of a prototype XMT compiler and
behavioral simulator. The XMT compiler consists of two passes.
The front end is a translator based on the SUIF compiler system
[Wilson94] that converts XMT constructs into regular C code
with assembly templates. It also detects all parallel regions
delineated by spawn-join statements and transforms them into
parallel function calls. The back end is based on GNU’s gcc and
builds an executable for the C code output by the front end
[N+00].

The XMT behavioral simulator is comparable to SimpleScalar
[BA97].  The fundamental units of execution for the simulated
machine are the multiple thread control units (TCUs), each of
which contains a separate execution context.  In hardware, an
individual TCU basically consists of the fetch and decode stages
of a simple pipelined processor.  To increase resource utilization
and to hide latencies, sets of TCUs are grouped together to form a
cluster.  The TCUs in a cluster share a common pool of functional
units, as well as memory access and prefix-sum resources.  The
clusters can be replicated repeatedly on a given chip [BNF+99].

For our experiments, we specify 8 TCUs in each cluster.  Each
cluster contains 4 integer ALUs, 2 integer multiply/divide units, 2
floating point ALUs, 2 floating point multiply/divide units, and 2
branch units.  All functional unit latencies are set to the
SimpleScalar sim-outorder defaults.  Each cluster has a L1 cache
of 8 KB, and a shared, banked L2 cache of 1 MB.  The number of
banks is chosen to be twice the number of clusters.  A penalty of 4
cycles is charged each way for inter cluster communication.

4. XMT Programming and Performance
Features
Traditional shared memory programming consists of assigning
chunks of work to processes, usually as coarse-grained as
possible, while locks and barriers are used for synchronization.
The following are the main programming concepts that
distinguish XMT from traditional parallel programming:

1) No task assignment.

2) Fine-grained parallelism.

3) No busy-wait.

In this section we examine each of the above features, and how
they affect the way programs are written in XMT. Furthermore,
we study the effects of these features on performance.

4.1 No Task Assignment
XMT relieves the programmer from the task of assigning work to
processors. The programmer can think in terms of virtual threads,
without worrying about low-level considerations such as the
number of processing units and load balance between them.
Instead of directly spawning a thread for each block of work,
traditional parallel programming puts a lot of effort into the task
of grouping blocks of work together in a good way (with respect
load-balance and locality). This effort is translated to programmer
time, line count, and code complexity. Sometimes, a program
benefits from grouping because it may allow saving duplicate
work.  If the blocks of work are very small, this grouping serves
as thread coarsening. However, in some cases, by incurring extra
work, it can even result in a less efficient program.

We evaluate the effects of task composition on each of three
programs by comparing two versions – XMT and Traditional.
The traditional version always spawns exactly one thread for each
TCU, and a loop is added to the thread body to span through all
the blocks of work that are assigned to the thread:

XMT Traditional

spawn(N*N,0);

{

  x = C[0][TID];

  i = TID/N; j = TID%N;  

  for (k=0; k<N; k++){

    x +=

       A[i][k]*B[k][j];

  }

  C[0][TID] = x;

}

join();

spawn(tcus,0);

{

  lb =N*N*TID/tcus;

  ub =N*N*(TID+1)/tcus;

  for(m=lb;m<ub;m++){

    x = C[0][m];

    i = m/N; j = m%N;

    for (k=0;k<N;k++){

      x +=

       A[i][k]*B[k][j];

    }

    C[0][m] = x;

  }

}

join();



Note that even when the entire task of assignment involves only
the few source lines (in bold font), we may still get up to 30%
increase in length of code, in some cases accompanied with a
decrease in performance.

We now examine the experimental results for the three programs
(Figure 1). For both matrix multiplication and 2-D image
convolution, the XMT version spawns a thread for each entry,
while the traditional version clusters the entries, and spawns a
thread for each cluster. A more irregular computation, the third
program finds maximum paths in a DAG. The XMT version
spawns a thread for each node, while in the traditional version

each thread handles a cluster of nodes.  (Note that we choose to
show here the “xmt-sync” variant, as it is the closest to traditional
version, though not the most efficient. Details on this and other
DAG implementations appear in section 4.3.)

For mmult and convolution, both versions achieve similar
speedups. The traditional mmult is able to amortize some
duplicate work, while the XMT version of convolution takes the
lead by avoiding some task assignment overhead.  For DAG, load
balancing issues come into play, penalizing static assignment in
the traditional version. For 16 TCUs, costs due to load imbalance
constitute 35% of the traditional program running time versus
16% for XMT.

4.2 Fine-grained Parallelism
The XMT programming methodology encourages the programmer
to express any parallelism, regardless of how fine-grained it may
be. The low overheads involved in emulating the threads allow
this fine-grained parallelism to be competitive. However, despite
the efficient implementation, extremely fine-grained programs can
benefit from coarsening. The XMT compiler detects such cases,
and automatically transforms them such that fewer but longer
threads are used.

To evaluate the effects of granularity on performance, we use the
following three programs: LU, a linear algebra program that
computes lower-upper matrix factorization. Jacobi, a 2-D PDE
kernel, and dbscan – a database kernel that emulates an SQL
query on a non-indexed attributes relation. We compare several
versions for each: 1) fine-grained: each thread handles one entry,
2) by-row: each thread computes an entire row, 3) clustered: the

fine-grained version coarsened by the XMT compiler, 4)
traditional: by-row, with the work assigned to processors (as
described in the section above). (For dbscan we compare only 3
versions - fine-grained, clustered, and traditional).

All three programs demonstrate the same behavior (Figure 2).  For
the smallest problem sizes, the best speedups are achieved by the
fine-grained version, where the coarsest version (traditional)  gets
the lowest speedups. As the problem size increases, the coarser
versions beat the fine-grained one, while the by-row version is the
fastest version. Though the advantage that the fine-grained
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versions demonstrate for the smaller sizes is not decisive, it
suggests that in the general case, algorithms for more irregular
applications may benefit. As an example, in section 4.4 we
describe how our implementations of radixsort and quicksort take
advantage of fine-grained parallelism. For more regular
applications however, the XMT compiler can make fine-grained
programs competitive with the coarse-grained versions by
automatically clustering the parallel regions. This allows the
programmer to ignore granularity considerations, and directly
write the easier fine-grained version.

4.3 Synchronization: Scalable Mechanisms
and Asynchronous Algorithms
Traditional parallel programs typically use locks and barriers for
synchronization. As we will demonstrate, these synchronization
mechanisms can be efficiently supported in XMT. However,
typically XMT addresses synchronization in a manner that
minimizes busy-waiting. In many cases, the parallel prefix sum
operation can be used instead of a lock, and the join serves as a
barrier. Alternatively, an XMT methodology can often suggest an
entirely different algorithm.  We examine these alternatives with
two representative programs, dot and DAG.  We show results for
relatively small input sizes, where the relative costs of the various
techniques are easily seen.  While differences tend to be less
dramatic with larger workloads, the same trends are evident.

Dot product is an example of a common reduction task.  We
compare the following versions for dot:

1) XMT-algorithmic-style programs, using a binary tree
structure for no-busy-wait synchronization [Vishkin00]. We
wrote two programs in this style, one propagates values up
the tree in a synchronous fashion, involving a spawn and join
for each layer of the tree (“xmt-sync”). The other version
propagates the values in an asynchronous fashion, involving
only one spawn-join block, within which the threads advance
as far as they can (”xmt-async”).

2) Traditional style programs, in the sense that the problem is
decomposed in a coarse-grained fashion between the
processing units. However, XMT utilities are used for
synchronization. In the “x_trad-ps” version, the TCUs update
the global dot product atomically with their portion of the
computation using the parallel prefix–sum mechanism,
instead of locking. In the “x_trad-join” version, after all the
TCUs have completed computing their portion, they join,
instead of using a barrier, and the global dot product is
computed serially after the join by a single TCU.

3) Traditional style programs, using busy-wait synchronization.
The “trad_PRlock” uses the most efficient but somewhat
specialized parallel prefix-sum operation, while
“trad_memlock” uses a less scalable but more general fetch-
and-add mechanism. “trad-barr” uses a barrier.

The general trend is that programs using non-XMT
synchronization scale poorly with the number of TCUs compared
to the others (Figure 3). The exception is the “xmt-async” version
due to the amount of storage and extra work that it involves.

This trend in synchronization primitive scalability is further
reinforced when examining the performance of different versions
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for the DAG program.  In addition, the irregular nature of the
computation makes it a good candidate for a less synchronous
programming style.  Especially with sparser graphs, asynchronous
programs should excel by enabling parallelism as soon as it is
discovered.  We compare the following versions [Vishkin00]:

1) XMT style, synchronous fashion: “sync”.  A thread is
spawned for each node with in-degree 0.  Each thread steps
through the outgoing edges of the node, and decrements the
in-degree of the sink nodes.  After a join, threads are
spawned for newly in-degree 0 nodes.  The process is
repeated until all nodes are processed.

2) Traditional style. These versions are based on the “sync”
version, adding the necessary decomposition. One program
that uses the prefix-sum as a synchronization mechanism
(“trad”), and another that uses locks instead (“trad-lock”).

3) XMT style, asynchronous fashion: “async-node” and “async-
edge”.  The async-node spawns a thread for every node as in
“sync”.  Whenever a thread decrements the in-degree of a
sink node to zero, it forks a thread to process that node.
Async-edge is similar, but a thread processing a node forks a
thread to process every outgoing edge.  Async-edge is the
finest-grain, least-synchronous of the versions.

As expected, the more synchronous the algorithm is, the worse it
scales with the number of TCUs.  This trend can be seen by
comparing the relative performance of async-edge, async-node,
and sync (Figure 4).

We again see the effect of synchronization mechanism overhead
on scalability.  The relative performance of trad and trad-lock
illustrates the superiority of prefix-sum to traditional busy-wait
locking.

4.4 Two Case Studies
In this section we provide two examples of how the combination
of features in XMT enables new approaches that outperform more
traditional algorithms.

4.4.1 Radix
This integer sort consists of the stable radix sort routine that is
applied iteratively to each “digit” of the input until fully sorted.
For every value a digit might take, we say there is a bin for the
key to go in.  By counting the number of keys for each bin, we can
determine a final rank for each bin.

SPLASH radix uses the common parallel algorithm of [B+91].  It
operates with P processors on N input keys.  Each processor is
assigned a continuous partition of N/P keys, and locally computes
bin counts from its own partition.  Since each processor has its
own set of bin counters, a global ranking operation must be
performed.  A binary tree of bin counter arrays is formed.  Each
processor ranks its bins locally and then either sums results from
other processors further up the tree, or waits for partial sums to be
propagated back down the tree.  Finally, with globally ranked
bins, each processor can copy each of its keys in sequence to the
output array.

One of the hurdles to scalability is that each processor needs its
own set of bin counters.  The more processors that are applied to a
problem, the more time must be spent doing global ranking.  This
effectively limits the P for the SPLASH radix.  In an XMT style
program, significantly more parallelism can be expressed.

Due to the need to preserve equal-key order, we are limited to the
P sequential threads to serially copy keys within individual
partitions.  However, the bin counting step can be much more
fine-grained.  Provided that threads cope with simultaneous access
to the same bin counter (e.g. with the prefix-sum primitive), it is
possible to spawn a separate thread for each key of input.

The global ranking step can also be finer-grained.  SPLASH
operates with a granularity of an entire bin counter array.  The
XMT approach does not insist that the programmer wrestle with
data locality.  In this light, the global ranking step can be
considered to be a single, large prefix-sum operation, where the
inputs are the interleaved bin counters from all the processors.  It
is then a simple matter to apply a fine-grained binary-tree parallel
prefix algorithm.

There is certainly a cost to the more fine-grained algorithm.
Without automated coarsening of the XMT threads, the coarser-
threaded bin counting clearly has the work advantage.  With 1
TCU, the XMT algorithm performs nearly twice the work of
SPLASH (Figure 5). However, with 16 TCUs, the SPLASH
algorithm is already doing worse than it did with 4 TCUs.  In
contrast, the finer-grained program easily scales to 16 TCUs.
(Note that these results are for an input of 16K keys, while
SPLASH defaults to 256K keys.)

4.4.2 Quicksort
Quicksort provides another simple illustration of how XMT might
be able to express parallelism that is traditionally neglected.  A
classic example of the divide-and-conquer approach, quicksort is
a recursive sort using pivots.

The traditional parallel quicksort follows this divide-and-conquer
approach.  After splitting a partition, a thread forks a new thread
to sort the right side, and does the left side itself.

In XMT, the forking need not stop when the full machine
parallelism is reached.  Newly created partitions are queued up,
and automatically assigned to threads without complicated
programmer intervention.  This dynamic load balancing is
particularly useful for handling the unpredictable partitioning of
quicksort.
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0
0.5

1
1.5

2
2.5

3

1 4 16
tcus

S
p

ee
d

u
p

s

xmt splash

Figure 5 - XMT vs Splash



This approach is still less than ideal.  At the beginning of the
program, only one thread is active.  A machine can not be utilized
fully until enough partitions have been created.  Unfortunately,
the partitions encountered at the start of the computation are the
largest and therefore take the longest time to split.

A fine-grained XMT program can parallelize the partition step.  A
thread is spawned for each element of the partition.  A prefix-sum
to either a left counter or a right counter determines the output
rank of the element.

Since the latter method requires synchronization at each partition,
we do not wish to use this algorithm throughout the program.  The
optimal solution is to start with the fine-grained, synchronous
parallel partitioning algorithm, and then switch to the traditional
divide-and-conquer when a sufficient number of partitions are
available.  With a 64 TCU configuration operating on 16,384
elements, this hybrid approach is more than twice as fast as the
traditional approach.

5. Related Work
Recent work on comparing different parallel programming models
[Henty00], [CE00], [SSC+00], [CDS00], typically focuses on the
shared-memory and message-passing programming models on
multiprocessor systems. Our work attempts to examine parallel
programming with respect to the different assumptions implied by
an on-chip environment.

Various other projects explore on-chip parallel architectures:
CMP [HNO97], Multiscalar [Franklin93], SMT [TLE+99], and
Raw [WTS97].  The current paper is targeted toward exploring
shared-memory parallel algorithms as applied to scalable on-chip
architecture.

6. Conclusion
This paper presented features of XMT, a parallel programming
model designed for exploiting on-chip parallelism. With prototype
compiler and architecture simulator, we studied XMT
programming in areas where parallel computing has
underperformed in the past: very fine-grained parallelism; smaller
problem sizes; and unpredictable, irregular computations.

XMT features encourage programmers to write high level
programs with more fine-grained parallelism, without worrying
about assigning threads to processors.  We found the XMT
architecture and compiler can usually support this simple fine-
grained programming style with little loss in performance for on-
chip multiprocessors.

When overheads are low enough so that parallelism can be
leveraged even for small inputs, many more tasks can potentially
be sped up.

The flexible programming style also encourages the development
of new algorithms to take advantage of properties of on-chip
parallelism. We demonstrated that XMT is especially useful for
more advanced applications with dynamic, irregular access
patterns.
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