
FFT on XMT: Case Study of a Bandwidth-Intensive
Regular Algorithm on a Highly-Parallel Many Core

James Edwards and Uzi Vishkin
University of Maryland Institute for Advanced Computer Studies (UMIACS)

University of Maryland
College Park, Maryland, USA

Email: {jedward5, vishkin}@umd.edu

Abstract—FFT has been a classic computation engine for
numerous applications. The bandwidth-intensive nature of FFT
capped its performance on off-the-shelf parallel machines that
are bandwidth-limited, and forced application researchers into
seeking easier-to-speedup alternatives to FFT, even when inferior
to FFT. But, what if effective support of FFT is feasible? Using
FFT as an example, we examine the impact that adoption of
some enabling technologies, including silicon photonics, would
have on the performance of a many-core architecture. The results
show that a single-chip many-core processor could potentially
outperform a large high-performance computing cluster.

Index Terms—data movement; Fast Fourier Transform (FFT);
many-core; PRAM

I. INTRODUCTION

The parallel computing community has increasingly shifted
its attention to communication avoidance as a way to address
the end of Dennard scaling and the attendant difficulty in scal-
ing down power consumption: see for example the National
Academies report [1], work by Jim Demmel’s group [2] on
communication avoidance upper and lower bounds and many
of the recent books in the computer architecture series by
publisher Morgan and Claypool such as [3]. However, there are
limits to the performance improvements that can be attained by
focusing on reducing data movement. The strength of current
parallel architectures lies in solving problems, such as dense-
matrix multiplication, that can be solved by algorithms that
are regular and require limited communication. For other al-
gorithms, which are irregular or require high bandwidth, these
platforms have been able to demonstrate limited speedups.
Furthermore, the challenges of communication avoidance have
arguably harmed programmers’ productivity [4].

Still, the default mode for parallel programming research
is reliance on off-the-shelf hardware. But what if alternative
machines, or hardware features, are feasible, and can offer
significant advantages? Clearly, such out-of-the-box hardware
and the enabling technologies it may require are unlikely
to ever be developed before their advantages are sufficiently
understood. In contrast to work that seeks to avoid data
movement, the current work examines the problem from an
alternate angle: assuming that is it possible to reduce the
energy cost of data movement, is it possible to obtain strong
speedups on problems for which such speedups have proven
elusive?

This question has been partially answered in the affirma-
tive by prior work on the Explicit Multi-Threading (XMT1)
general-purpose architecture [5], which aims to improve
single-task completion time and ease-of-programming for
parallel applications by supporting Parallel Random Access
Model (PRAM) programming [6], [7]. Such work, discussed
in Section III (in part, by way of reference to [8]), has focused
largely on speedups for highly irregular parallel algorithms.
Here, we begin to examine another class of algorithms that also
appear too challenging for current platforms, namely, those
that are regular but communication intensive.

Specifically, we examine one such algorithm, the fast
Fourier transform (FFT). The FFT is an important numeri-
cal algorithm used in fields such as signal processing and
scientific computing. What sets the FFT apart from other
regular numerical algorithms is its high communication needs;
given O(S) local memory, it requires O(n log n/ logS) I/O
operations [9], which suggests that caches are of limited
use in reducing the bandwidth required by the FFT. Indeed,
prior work using existing platforms obtained modest speedups
relative to the hardware invested; see Section I-A for some
speedup examples, and for a comparison of prior speedups
and hardware invested in them with the results (speedups and
assumed hardware) of the current paper, see Section VI-A
and Table VI.

Companion work on XMT [10] investigates the use of
enabling technologies including 3D VLSI and microfluidic
cooling to increase communication bandwidth on chip to
shared cache, concluding that these technologies indeed enable
XMT to scale up to 8x larger than would be possible without
them. It also briefly considers the potential of photonics to
extend this improvement off chip to greatly increase bandwidth
to DRAM. The companion work uses XMT as a vehicle for
performing a quantitative feasibility analysis of the enabling
technologies in terms of temperature and power.

The intellectual merit of the work presented here is to
complement the foregoing feasibility analysis with a quan-
titative analysis of the corresponding performance benefit,
again using XMT as a vehicle. The two combined lay the
groundwork for future analysis of the enabling technologies.

1XMT at the University of Maryland, not to be confused with the code
name Cray XMT used during 2007-2011



In particular, the purpose of this work is to resolve the chicken-
and-egg problem posed by enabling technologies: development
of enabling technologies will not advance without evidence
of their benefit, while such evidence apparently cannot be
obtained until these technologies have already been developed.
In order to resolve this impasse, we obtain preliminary results
using a simulator (Section III-A), which does not require
actual hardware to already exist. We recognize that the validity
of these results is limited and will only reach the level of
those for existing systems once we are able to obtain results
on actual hardware.

While it is expected that increased bandwidth enabled by
such technologies would lead to improved performance the
(high) rate of improvement shows great promise. Of particular
interest is the potential benefit of silicon photonics. Devel-
opment of photonic technologies advanced enough to enable
the largest systems considered herein would require non-trivial
engineering effort. Although photonics is a topic of current in-
terest, even the most recent progress has been modest in scale
(e.g., [11]). In order to motivate more ambitious effort, we
demonstrate that photonics could enable a single-chip many-
core processor to outperform a much larger high-performance
computing (HPC) cluster of nodes interconnected via tradi-
tional optics. This is especially true when the application, such
as FFT, greatly underutilizes the peak computational capacity
of the HPC system due to limited inter-node bandwidth. Here,
XMT is a natural fit as the high off-chip bandwidth is coupled
with matching on-chip bandwidth, permitting significantly
higher utilization of available computational resources.

Our analysis consists of two parts. First, we measure the
speedup of FFT on XMT relative to existing platforms. Specif-
ically, we compare against FFTW [12], a highly-optimized
implementation of the FFT, running on a single core of a
modern Intel processor and also on multiple cores. In addition,
we compare against a tuned FFT implementation running on
Edison, a large HPC cluster. Second, we use the Roofline
[13] model to evaluate how close our FFT implementation
comes to achieving the peak performance possible on selected
configurations of XMT and how performance may be further
improved.

A. Comparison to prior work on the FFT

GPGPU Researchers at Microsoft [14] demonstrated per-
formance of up to 300 GFLOPS on the NVIDIA GTX 280,
with speedups of 2-4X over NVIDIA’s cuFFT and 8-40X over
Intel’s MKL. The best result for a 2D FFT was around 120
GFLOPS, achieved with an input size of 1024 × 1024. No
results are reported for 3D FFT.

Using a hybrid GPU-CPU algorithm, Chen and Li [15]
achieved up to 43 GFLOPS for a 2D FFT and up to 27
GFLOPS for a 3D FFT on an NVIDIA Tesla C2075.

MPI Recent work [16] considers large 3D FFT on two high-
end Cray systems using up to 32,768 cores. For an input of
size 10243, the best result was 13,603 GFLOPS using 32,768
cores. Weak scaling results ranged from 159 GFLOPS for an

input of size 5123 to 17,611 GFLOPS for an input of size
4096× 4096× 2048.

Similar work on large MPI clusters [17] shows that a 3D
FFT on an input of size 10243 can be computed in as little
as 49 milliseconds (i.e., 3287 GFLOPS) using 16384 cores of
an IBM-BlueGene/Q cluster.

Prior work on XMT Prior work on the FFT on XMT
[18] did not consider 3D FFT and was limited to fixed-point
arithmetic. Also, the prior work focused exclusively on FFT
as an application rather than as a benchmark for evaluating the
benefit of augmenting a computer architecture with enabling
technologies.

II. BACKGROUND

A. XMT Architecture

The Explicit Multi-Threading (XMT) general-purpose ar-
chitecture [5] is a many-core architecture which aims to
improve single-task completion time and ease-of-programming
for parallel applications by supporting Parallel Random Access
Model (PRAM) programming [6], [7]. For some advantages
of XMT, see Section III.

The XMT processor includes a master thread control unit
(MTCU); processing clusters, each comprising several light-
weight thread-control units (TCUs); a high-bandwidth low-
latency interconnection network; memory modules (MM),
each comprising on-chip cache and off-chip memory; prefix-
sum (PS) unit(s); and global registers. The shared-memory-
modules block (bottom left of Fig. 1) suppresses the sharing of
a memory controller by several MMs. The processor alternates
between serial mode (in which only the MTCU is active) and
parallel mode. The MTCU has a standard private data cache
(used in serial mode) and a standard instruction cache. The
TCUs, which lack a write data cache, share the MMs with the
MTCU.

C
LU

ST
ER

 0
C

LU
ST

ER
 1

C
LU

ST
ER

 2

C
LU

ST
ER

 N

TC
U

 0
TC

U
 1

TC
U

 2

TC
U

 t Read Buffers
TCU I-Cache
Register File

FU interconnection network

Cluster-Memory Interconnection Network

LSU with Hashing Function

Shared Functional Units
FU 0 FU 1 FU p

Shared Memory Modules

MM 0
L1 Cache

MM 1
L1 Cache

MM M
L1 Cache

Master TCU
Functional Units
and Register File

Private
L1 D-Cache

Private
L1 I-Cache

PS
Unit

PS Unit
(and global register)

Instruction
Broadcast

PS
N

et
w

or
k

DRAM Ports

Port 0 Port 1 Port P

Chip Boundary

Fig. 1. Block Diagram of the XMT Architecture



The overall XMT design is guided by a general design ideal
we call no-busy-wait finite-state-machines, or NBW FSM,
meaning the FSMs, including processors, memories, functional
units, and interconnection networks comprising the parallel
machine, never cause one another to busy-wait. It is ideal
because no parallel machine can operate that way. Nontrivial
parallel processing demands the exchange of results among
FSMs. The NBW FSM ideal represents our aspiration to
minimize busy-waits among the various FSMs comprising a
machine.

We cite the example of how the MTCU orchestrates the
TCUs to demonstrate the NBW FSM ideal. The MTCU is
an advanced serial microprocessor that also executes XMT
instructions (such as spawn and join). Typical program exe-
cution flow can also be extended through nesting of sspawn
commands. The MTCU uses the following XMT extension to
the standard von Neumann apparatus of the program counters
and stored program. Upon encountering a spawn command
the MTCU broadcasts the instructions in the parallel section
starting with that spawn command and ending with a join
command on a bus connecting to all TCU clusters. The
largest ID number of a thread the current spawn command
must execute (Y) is also broadcast to all TCUs. The largest
ID (index) of the executing threads is stored in a global
register X. In parallel mode, a TCU executes one thread at a
time. Executing a thread to completion (upon reaching a join
command), the TCU does a prefix-sum using the PS unit to
increment global register X. In response, the TCU gets the ID
of the thread it could execute next; if the ID is ≤Y, the TCU
executes a thread with this ID. Otherwise, the TCU reports to
the MTCU that it finished executing. When all TCUs report
they have finished, the MTCU continues in serial mode. The
broadcast operation is essential to the XMT ability to start all
TCUs at once in the same time it takes to start one TCU.
The PS unit allows allocation of new threads to the TCUs that
just became available within the same time as allocating one
thread to one TCU. This dynamic allocation provides run-time
load-balancing of threads coming from an XMTC program.

We are now ready to connect with the NBW FSM ideal.
From the moment the MTCU starts executing a spawn com-
mand until each TCU terminates the threads allocated to
it, no TCU can cause any other TCU to busy-wait for it.
An unavoidable busy-wait ultimately occurs when a TCU
terminates and begins waiting for the next spawn command.

TCUs, with their own local registers, are simple in-order
pipelines, including fetch, decode, execute/memory-access,
and write-back stages. A cluster includes functional units
shared by several TCUs and one load/store port to the in-
terconnection network shared by all its TCUs.

The global memory address space is evenly partitioned
into the MMs through a form of hashing. The XMT design
eliminates the cache-coherence problem, a challenge in terms
of bandwidth and scalability. In principle, there are no local
caches at the TCUs. Within each MM, the order of operations
to the same memory location is preserved.

Quite a few performance enhancements have been incorpo-

rated into the XMT hardware, including compiler and run-time
scheduling methods for nested parallelism and prefetching
methods.

B. NoC (Network on Chip)

The high-throughput interconnection network required for
the XMT architecture presents an implementation challenge. A
unique data path can be provided for each pair of clusters and
cache modules, such that there is no blocking in the network,
using a mesh of trees (MoT) network. However, the number of
switches required is proportional the product of the number of
clusters and the number of cache modules, which translates to
a large silicon area. For example, an XMT architecture in 22
nm technology with 8k TCUs requires silicon area of 190 mm2

just for an MoT NoC. The area required for an MoT NoC of
an XMT architecture with 16k TCUs is 760 mm2, and would
not fit on a single silicon layer. In order to reduce network
area, a hybrid MoT and butterfly network can be used, where
the inner levels of the “pure” MoT network are replaced with
butterfly levels [19].

III. MOTIVATION FOR USING THE XMT FRAMEWORK IN
THIS PAPER

Our choice to use XMT in this paper is motivated by several
factors, described below.

A. Ease of experimentation

A practical reason for using XMT is the availability of
XMTSim, a cycle-accurate simulator of the XMT architecture.
XMTSim allows setting various architectural parameters such
number of clusters, number of cache modules, and number of
DRAM ports, which determines bandwidth to DRAM. This al-
lows us to model the various configurations given in Section V.
XMTSim and the XMTC compiler are described in [20] and
have already been the basis for several publications including
[21]. The most recent validation of the cycle-accuracy of the
simulator is [22], which shows that the simulator cycle counts
match those of the FPGA except in a minority of cases, where
the discrepancy may be up to 33%, due in part to interconnect
and DRAM technology limitations in the FPGA prototype
that would not exist in an ASIC product. For the FFT, the
difference due to these limitations is 5%.

B. Past XMT Speedups

For placing this debate in historical context, recall that
claims that the main reason that parallel machines provide
limited speedups is that the bandwidth between processors and
memories is so limited are not new, as formally demonstrated
in [23], [24].

PRAM is the main theory of parallel algorithms. A “proof-
of-performance” with respect to PRAM algorithms demon-
strated speedups between 1 and 2 orders of magnitude (up
to 129X) on the most advanced parallel algorithms in the
literature relative to the best known results on any machine
(e.g., on GPUs) for any algorithms for the same problem.
See Table I. Other published speedups include 20.4X on a



64-TCU XMT versus 4X on a 16-core AMD (using the same
silicon area) for FFT [18] and 100X on a gate-level simulation
benchmark suite [25].

C. Ease of programming

For brevity, we refer interested readers to Section 5 of [8]
for an extensive discussion of results demonstrating ease of
programming on the XMT platform.

IV. FFT ALGORITHM

A fast Fourier transform (FFT) is an efficient way to
compute the discrete Fourier transform (DFT) of a vector of
complex numbers. Given an N -point vector ~x as input, a naive
implementation of the DFT amounts to multiplication of ~x by
an N ×N matrix containing N th roots of unity. Formally, the
DFT ~X of ~x is defined for 0 ≤ k < N as

Xk =

N−1∑
n=0

xn · e−i2πkn/N (1)

One way to derive an FFT from the basic DFT is to split the
above summation into separate summations over even and odd
indices:

Xk =

N/2−1∑
n=0

x2n · e−i2πk(2n)/N+

N/2−1∑
n=0

x2n+1 · e−i2πk(2n+1)/N

(2)
If we define ~xeven and ~xodd to be the even- and odd-indexed
elements of ~x, respectively, the above can be rewritten as

Xk =

N/2−1∑
n=0

xeven
n · e−i2πkn/(N/2)+

e−i2πk/N
N/2−1∑
n=0

xodd
n · e−i2πkn/(N/2) (3)

Each summation in Eq. (3) corresponds to Eq. (1) for a DFT
of size N/2. Therefore, the DFT of ~x can be rewritten in terms
of the DFTs of ~xeven and ~xodd. If we define ωN = ei2π/N to
be the primitive N th root of unity, the above can be rewritten
as

Xk = Xeven
k + ω−k

N Xodd
k (4)

where terms of the form ω−k
N are known as twiddle factors.

See Fig. 2, noting that ω−(k+N/2)
N = −ω−k

N . Thus, an N -point
DFT can be computed by separately computing two N/2-
point DFTs and performing an additional O(N) operations
in O(1) depth, as all the Xk can be computed in parallel.
This decomposition can be applied recursively, leading to an
O(N logN) work, O(logN) depth algorithm to compute the
DFT; this divide-and-conquer algorithm is known as a radix-2
decimation-in-time Cooley-Tukey FFT.

Higher radixes Equation (1) can be split into any number
r ≥ 2 of interleaved summations provided r is a factor of N .
The number r is known as the radix of the FFT.

Multidimensional FFT The FFT of a two-dimensional
(2D) array is computed by separately computing the FFT of
each row of the array and subsequently computing the FFT

ω0
N

ω1
N

ω2
N

ω3
N

-1

-1

-1

-1

X0

X1

X2

X3

X4

X5

X6

X7

x0

x2

x4

x6

x1

x3

x5

x7

N/2-point
FFT

N/2-point
FFT

Fig. 2. Even/odd decomposition used by the Cooley-Tukey FFT

of each column of the array. Similarly, the FFT of a three-
dimensional (3D) array is computed by taking the FFT along
the first dimension, then the second, and finally the third.

A. Implementation

We use a radix-8 Cooley-Tukey FFT. Here, we explain the
design decisions we made in our FFT implementation.

Granularity of parallelism A multidimensional FFT can
be parallelized using a coarse-grained approach or a fine-
grained one. In a coarse-grained approach, one or more rows
of the input are assigned to a thread, and the thread applies a
serial FFT algorithm to its assigned row(s). In a fine-grained
approach, multiple threads work on the FFT of a single row.
Because the overhead for spawning threads on XMT is low,
we choose a fine-grained approach to maximize the amount
of available parallelism.

Depth-first versus breadth-first The recursion in the def-
inition of the FFT may be resolved in one of two ways. If
the recursive calls are made sequentially (the first completes
before the second begins), then this results in a depth-first
traversal of the recursion tree. On the other hand, making
both calls in parallel results in a breadth-first traversal of the
recursion tree. The choice of recursion order implies a tradeoff
between locality and parallelism.

Using depth-first recursion, the size of the subproblem at
the ith level of recursion is N/2i. This means that the amount
of cache used by the algorithm is less at deeper levels of the
recursion. In fact, a cache-oblivious FFT algorithm uses this
approach [29]. The drawback is that the degree of parallelism
available decreases as well.

In contrast, the parallelism in the breadth-first approach
can be flattened, resulting in an iterative implementation. This
allows all subproblems at each level of the recursion to be
solved simultaneously. The advantage is that the maximum
amount of parallelism is always available; the disadvantage is
that the working set is always as large as the entire problem.
For inputs that are not too large, including those of a size
examined herein, breadth-first is advantageous as it provides as



TABLE I
XMT SPEEDUPS

Algorithm XMT GPU/CPU Factor
Graph Biconnectivity [8] 33X 4X, but only on random graphs �8

Graph Triconnectivity [26] 129X Only serial result 129
Max Flow [27] 108X 2.5X 43

Burrows Wheeler Transform - bzip2
{

Compression [28] 25X X/2.5 on GPU 70
Decompression [28] 13X 1.1X 11

much parallelism as possible for XMT to exploit, and XMT is
designed to provide high bandwidth. For larger problem sizes,
it may be advantageous to start with depth-first and switch to
breadth-first when the subproblem becomes small enough.

Choice of Radix We implement a radix-r FFT by assigning
r elements apiece to N/r threads. Each thread reads its r
inputs from memory, solves the small FFT problem of size r
for those inputs, and writes the result back to memory. The
advantage of choosing a larger r is that fewer accesses to
shared memory are required: N logrN reads and the same
number of writes. On the other hand, larger r also results
in reduced parallelism. Another consideration is that larger
values of r require more local storage for threads to store
intermediate values. On XMT, each thread has access to 32
floating-point registers, which is enough to store 16 single-
precision complex numbers. The largest practical r on XMT
is 8, as some registers are required to store twiddle factors and
intermediate values of computations. Choosing r = 8 provides
sufficient parallelism for all but very small inputs: for an input
size of 2563, 2 million threads are available.

Twiddle Factors In principle, the twiddle factors can be
computed on demand by computing the sine and cosine of
the corresponding angle. However, these computations are
relatively expensive. Since the twiddle factors depend only on
the size of the input and not the input itself, the twiddle factors
can be precomputed and stored in a lookup table. For 2D and
higher-dimensional FFTs, the savings in computation can be
significant, as all of the rows use the same set of twiddle
factors. The downside to having all threads share the same
lookup table is that it requires as many concurrent reads to
each memory location as there are rows. Since accesses to the
same memory location on XMT are queued, this results in a
bottleneck. To alleviate this, we store multiple copies of the
lookup table and spread accesses by threads uniformly across
the copies. We choose the number of copies to be just enough
so that one cache line in each cache module contains a portion
of the lookup table. Using more copies would not provide any
benefit as requests to the same cache module are queued; using
fewer copies would mean that not all of the cache modules
are utilized.

Decimation-in-time versus -frequency The formulation of
the FFT presented here performs the recursive calls before
doing the work of the current level of recursion, analogous to
the way merging proceeds in merge sort; this formulation is
referred to as decimation-in-time. It is possible to rearrange the
computation so that the recursion occurs after the computation,

analogous to quicksort; this version of the FFT is referred to
as decimation-in-frequency.

A notable side effect of this choice is the way in which
the roots of unity are used. Using decimation-in-time, roots
of unity become increasingly fine-grained, starting with 2nd
roots of unity for the smallest subproblems, followed by the
4th roots, 8th roots, and so on. This is reversed for decimation-
in-frequency, which starts by using the N th roots, followed
by the N/2th roots for the next smaller subproblem, then the
N/4th, and so on.

We chose to use decimation-in-frequency for our implemen-
tation because it more naturally fits the replication scheme we
use for twiddle factors. In the first iteration, there are N N th
roots of unity, each of which will be accessed once. In the
second iteration, there will be N/r N/rth roots of unity, which
are a subset of the N th roots of unity, each of which will be
accessed r times. The remaining N th roots of unity will be
unused for the remaining iterations, so we replace them with
replicas of the next lowest N/rth root of unity. We perform a
similar procedure after each iteration, replacing unused roots
of unity with replicas of roots that are still being used.

B. Ease of programming

Finally, we note that the tuning described above required
only a modest effort beyond that required for a serial imple-
mentation of FFT. In particular, only the handling of twiddle
factors required special handling in parallel, and the solution
was a simple application of the logarithmic-time PRAM broad-
cast algorithm. In contrast, the MPI implementation of Song
and Hollingsworth [16] requires domain decomposition of the
data and further requires breaking the communication steps
into multiple phases to allow pipelining.

V. EXPERIMENTAL CONFIGURATIONS

A goal of this paper is to examine the level of enabling
technology needed to build various sizes of parallel systems
and determine the opportunities that such systems provide to
applications. To that end, we choose some configurations of
XMT that represent what can be achieved with a given level
of technology and explain what the barrier is to reaching the
following level. For most configurations below, we consider a
2 cm by 2 cm chip (4 cm2) using 22 nm technology, though the
largest ones assume 14 nm technology. These configurations
are summarized in Table II, and the required silicon area is
given in in Table III.



TABLE II
XMT ARCHITECTURE CONFIGURATIONS

4k 8k 64k 128k x2 128k x4
TCUs 4096 8192 65536 131072 131072

Clusters 128 256 2048 4096 4096
Memory Modules 128 256 2048 4096 4096
NoC MoT Levels 14 16 8 6 6

NoC Butterfly Levels 0 0 7 9 9
MMs per DRAM Ctrl. 8 8 8 4 1

FPUs per Cluster 1 1 1 2 4
TCUs per Cluster 32
ALUs per Cluster 32

MDUs per Cluster 1
LSUs per Cluster 1

TABLE III
XMT PHYSICAL CONFIGURATIONS

4k 8k 64k 128k x2 128k x4
Technology Node (nm) 22 22 22 14 14

Silicon (Si) Layers 1 2 8 9 9
Si Area per Layer (mm2) 227 276 380 365 393

Total Si Area (mm2) 227 551 3046 3284 3540

A. Baseline: 4096 TCUs (“4k”)

The smallest configuration we consider consists of 4096
TCUs. This is the largest system we can fit in a single silicon
layer using 22 nm technology. This configuration is strictly
smaller than the one in the next section and therefore does
not require any enabling technologies.

B. 3D VLSI: 8192 TCUs (“8k”)

To overcome the area limitation of the baseline configura-
tion, we can split the XMT chip across multiple layers using
3D VLSI. Companion work [10] shows that an 8192-TCU
configuration of XMT is feasible using air cooling alone, but
not a larger one.

Another issue that arises at this point is off-chip bandwidth.
The 32 DRAM channels of this configuration require a total
of 6.76 Tb/s of off-chip bandwidth. Using a standard parallel
memory interface such as DDR3, this would require about
4000 pins on the XMT processor package. This may already
be infeasible, as even the NVIDIA Tesla K40 GPU (with
561 mm2 of silicon area) only has 2397 pins, and this
problem becomes more acute for larger XMT configurations
that require more off-chip bandwidth. A high-speed serial
interface would allow consolidating a DRAM channel into a
few pins. For example, using the 32.75 Gb/s GTY transceivers
on the Xilinx UltraScale+ line of FPGAs, a DRAM channel
can be reduced to 7 pins. A configuration with 32 DRAM
channels would then require just 224 pins.

C. Microfluidic cooling: 65536 TCUs (“64k”)

A significant issue with 3D VLSI is that the middle layers of
the stack are thermally insulated from the outside of the chip,
and therefore cooling those layers is difficult. One possible
solution for cooling the middle layers is microfluidic cooling

(MFC), which uses a liquid (such as water) pumped through
tiny channels between layers to remove heat. Companion work
[10] shows that MFC is sufficient to cool even a 65536-TCU
configuration of XMT. At this point, the number of layers in
the 3D stack becomes a limiting factor. Off-chip bandwidth
also becomes a limiting factor, as even with high-speed serial
transceivers, the 256 DRAM channels of this configuration
would require a total of 1792 pins.

D. Photonics and 14 nm node: 131072 TCUs (“128k x2”)

For larger configurations of XMT, we need to look ahead to
smaller technology nodes. For scaling from 22 nm to 14 nm,
Intel claims a scaling factor of 0.54 for logic area and similar
scaling for power consumption [30]. If we keep the area of
the network-on-chip fixed, this allows us to double the number
of clusters and memory modules with some area to spare.
With the remaining area, we can add more FPUs. Because
we double the off-chip bandwidth per memory module (see
below), we choose to also double the number of FPUs per
cluster to balance computation capability with communication.

In order to provide sufficient off-chip bandwidth for this
configuration, we need to replace the copper interconnect
with a more advanced one, such as an optical interconnect
driven by silicon photonics. A significant issue with this
solution is heat. Faster photonic transceivers tend to be less
energy efficient than slower ones. For example, by combining
eight 10-Gb/s channels in a single transceiver using wave
division multiplexing, it is possible to achieve an efficiency
of 600 fJ/bit and an I/O density of 700 Gbps/mm2 [31].
For a 4 cm2 chip, this solution provides 280 Tb/s of off-
chip bandwidth using 168 W, which is enough to double the
ratio of DRAM controllers to memory modules. More recent
work achieves higher rates per channel but at the cost of an
order of magnitude more power; two approaches using 30
Gb/s transceivers without multiplexing require approximately
3 pJ/bit [32] and 8 pJ/bit [33].

If the photonic transceivers are air cooled, then this limits
their power dissipation and thus the bandwidth that can be
achieved. In 2004, forced air cooling was predicted to achieve
little more than 100 W/cm2 [34, p. 4] to 150 W/cm2 [35], and
this projection has since remained steady [36]. This means that
for a 4 cm2 chip, air cooling can remove no more than 600
W of heat. In this case, the 10-Gb/s channels provide more
bandwidth within the power budget than the 30-Gb/s ones.

Another limit at this point is the number of through silicon
vias (TSVs) that connect to the network-on-chip (NoC). A
practical limit to the number of TSVs on a single layer may be
one hundred thousand [37], as beyond this point manufacturing
cost quickly increases and total TSV footprint becomes a
significant percentage of silicon area. The width of a NoC port
is 50 bits; at 3.3 GHz, the required bandwidth is 165 Gb/s per
port. Each TSV can operate at 40 Gb/s [38], [39], so five TSVs
are required per port. A 131072-TCU configuration with 4096
clusters and 4096 cache modules will require 20480 TSVs
for each of the following: from the NoC to processors, from
processors to the NoC, from NoC to memory modules, and



memory modules to NoC. This is a total of 81920 TSVs, which
allows eighteen thousand TSVs for other purposes, namely
power delivery. Assuming a TSV pitch of 12 µm [40], one
hundred thousand TSVs will require 14.4 mm2 of silicon area.

E. MFC-cooled photonics: more off-chip bandwidth (“128k
x4”)

Although silicon area limits the size of the XMT chip,
there is still room for growth. Namely, the amount of off-chip
bandwidth could be increased by applying microfluidic cooling
to the photonic transceivers as well as the rest of the chip. This
would allow using smaller, faster photonic transceivers, which
would provide sufficient bandwidth to allow each memory
module to have its own DRAM controller rather than sharing
bandwidth with other memory modules. We also increase the
number of FPUs to four per cluster; beyond this number, we
observe diminishing returns.

Another possible application of MFC-cooled photonics is to
split the XMT floorplan across multiple chips at the interface
between clusters (and/or memory modules) and the network-
on-chip. This would allow for reducing the height of the 3D
VLSI stack on each chip without reducing the system size.
With sufficient off-chip bandwidth, it would even be possible
to split the network-on-chip across multiple chips. It is up
to future technology development to indicate which approach
works better.

VI. RESULTS

We use XMTSim to obtain cycle counts for computing a
single-precision, complex 3D FFT with an input of size 512×
512 × 512. We assume that the clock speed of XMT is the
same as that of the Intel processor used as the reference for our
speedup figures, namely 3.3 GHz. To allow comparison with
other work on the FFT (e.g., [16]), we report FLOPS based on
the standard rule of 5N log2 N floating-point operations for an
FFT of N elements. An exception to this is Section VI-B, as
the Roofline model defines FLOPS to be the actual number of
floating-point operations (as reported by XMTSim) per second.

A. Comparison to FFTW

Serial FFTW We evaluate the performance of our im-
plementation of FFT on XMT for the configurations given
in Table II by comparing it to an existing highly-optimized
implementation of FFT, namely FFTW version 3.3.4. The
baseline for our speedups is serial FFTW running on one
core of an 8-core Intel Xeon E5-2690 with 20 MB of cache.
Performance in GFLOPS is in Table IV, and speedup results
are in Table V.

TABLE IV
FFT PERFORMANCE ON XMT

Configuration 4k 8k 64k 128k x2 128k x4
GFLOPS 239 500 3667 12570 18972

Parallel FFTW The E5-2690 uses 416 mm2 of silicon area
in 32 nm technology. If we assume an ideal scaling to 22

TABLE V
SPEEDUPS RELATIVE TO FFTW

Configuration 4k 8k 64k 128k x2 128k x4
Speedup vs. serial 31X 66X 482X 1652X 2494X

Speedup vs. 32 threads 2.8X 5.8X 43X 147X 222X

nm, then the E5-2690 would use about 197 mm2 in 22 nm
technology. This implies that the 4k configuration of XMT
would use about 1.15 times as much silicon as an E5-2690.
We ran parallel FFTW on a system consisting of two E5-
2690 processors, which supports up to 32 threads (16 cores
with hyper-threading). Notably, the 4k configuration achieves
a 2.8X speedup relative to this system while using only 58%
of its silicon area.

B. Evaluation using Roofline model

Speedup results provide useful information, but limited
insight. In particular, they do not establish that the problem
cannot be solved more quickly, even on the same platform.
Because the FFT is regular, its performance can be analyzed
by comparison with the peak performance that the platform is
capable of.

The Roofline model [13] describes a platform in terms
of two parameters: peak computation rate and peak off-chip
bandwidth. Peak computation rate is often (but not necessarily)
measured in terms of floating-point operations per second
(FLOPS), while bandwidth is measured in bytes per second.
These two parameters are plotted on a graph whose y-axis is
FLOPS and whose x-axis is computational intensity, the ratio
of computation to data movement (measured in FLOPs/byte).
Algorithms with low computational intensity are data bound;
such algorithms fall under the sloped portion of the graph. Al-
gorithms with high computation intensity are compute bound;
these fall under the horizontal portion of the graph. Based on a
constant-factor analysis of the number of operations performed
by the FFT and its I/O complexity, an upper bound for the
computational intensity of the FFT is logS FLOPS/word
[41], where S is the size of the last-level cache in words;
for single-precision floating-point numbers, this is 0.25 logS
FLOPS/byte.

Our multidimensional FFT implementation consists of two
phases that are executed once per dimension. First, the FFT
of each row is computed. Second, the axes of the array are
rotated2 so that the next time the FFT is applied to the rows
of the array, it will actually compute the FFT of what was
originally the columns of the array. In our implementation, the
rotation is combined with the last iteration of the computation
to reduce the number of synchronization points and round trips
to memory.

In Fig. 3, we show how the observed performance of the
overall FFT computation and its two phases compares to
the theoretical Roofline model of the tested configurations
of XMT. The rotation phases are communication intensive

2In the special case of a 2D array, rotation is equivalent to a matrix
transpose.



and thus fall to the left of the non-rotation phases, which
are more computation intensive. The overall performance of
the algorithm is equal to the weighted average of the two
phases with respect to the time each cycle takes, so the overall
performance falls on the line connecting the two phases. The
overall performance is closer to the non-rotation phase since
the non-rotation phase takes the majority of the time.

1/8 1/4 1/2 1 2
32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

Operational Intensity (FLOPs/byte)

G
FL

O
PS

128k x4
128k x2

64k
8k
4k

Fig. 3. Roofline model of each XMT configuration (solid line with markers)
with empirical results for 3D FFT (markers on dashed line). On each dashed
line, the marker on the left (inside rectangle) corresponds to iterations where
rotation is performed, the marker on the right (inside ellipse) corresponds to
iterations where no rotation is performed, and the marker in the middle (inside
rounded rectangle) is for the overall FFT algorithm.

We make the following observations about the results:
(a) In the 4k and 8k configurations, both phases are essen-

tially on the sloped line, indicating that they operate very close
to the peak off-chip bandwidth.

(b) In the 64k configuration, the rotation step is beginning
to fall below the sloped line. Since virtual parallelism is not
lacking, this must be due to the decreased number of mesh-
of-trees levels in the interconnection network (ICN), a result
of the constraint on interconnection network area. This effect
is more pronounced in the 128k x2 configuration, which has
even fewer mesh-of-trees levels.

(c) The 128k x4 configuration provides only a 51% improve-
ment over the 128k x2 configuration. As in (b), this is because
the ICN is the bottleneck, and increasing the bandwidth to
DRAM beyond that of the 128k x2 configuration does little
to reduce congestion in the ICN.

Future technology scaling should allow for a more dense
network-on-chip, which would alleviate the bottleneck and
allow for an even larger configuration of XMT.

C. Comparison to Edison

Edison is a Cray XC30 machine consisting of numerous 12-
core Intel Xeon E5-2695v2 processors interconnected using
a Cray Aries network with a Dragonfly topology. Edison is
an enormous machine while even the largest configuration

of XMT we consider here is of a much more modest size,
as shown in Table VI. For example, in order to facilitate
comparison of the silicon area required by the two systems,
following the row that compares total actual silicon areas and
the VLSI process used, we present areas normalized to 22 nm
technology.

TABLE VI
COMPARISON OF EDISON MACHINE (CRAY XC30) TO XMT

Edison XMT (128k x4)

# processing elements 124,608 cores 131,072 TCUs
# processor groups 5,192 nodes 4,096 clusters

Total cache memory 311,520 MB 128 MB

# chips 10,384 CPU + 1,298
router 1

Total silicon area (process) 56,177 cm2 (22 nm)
+ 4,072 cm2 (40 nm)

35.4 cm2 (14
nm)

Normalized silicon area
(22 nm) 57,409 cm2 66 cm2

Peak power consumption 2,500 KW 7.0 KW

Peak teraFLOPS 2,390 54
TeraFLOPS for FFT (size) 13.6 (10243) 19.0 (5123)

% of peak FLOPS 0.57% 35%

The 128k x4 XMT system achieves a 1.4X higher speedup
than Edison even though the latter requires 870 times the
silicon area and 375 times the power of the XMT system. To
put the power consumption of the XMT chip into perspective,
microfluidic cooling can remove nearly 1 KW/cm2 of heat
per layer; see [42] and [43] for examples of single layer
microfluidic cooling prototypes that have removed 790 W/cm2

and 681 W/cm2 respectively.

VII. CONCLUSION

We have shown the potential for significant speedups rela-
tive to off-the-shelf platforms on the FFT, an important mathe-
matical algorithm. In contrast, without co-design of algorithms
and architectures, strong speedups have been elusive. This
suggests that it is indeed worth investing further effort into
development of a cohort of enabling technologies including
silicon photonics for affording higher bandwidth.

REFERENCES

[1] L. I. Millett, S. H. Fuller et al., The Future of Computing Performance:
Game Over or Next Level? National Academies Press, 2011.

[2] J. Demmel, “Communication-avoiding algorithms for linear algebra and
beyond,” in IEEE 27th International Symposium on Parallel Distributed
Processing (IPDPS), May 2013, pp. 585–585.

[3] M. Sjlander, M. Martonosi, and S. Kaxiras, “Power-efficient computer
architectures: Recent advances,” Synthesis Lectures on Computer Archi-
tecture, vol. 9, no. 3, pp. 1–96, 2014.

[4] U. Vishkin, “Is multicore hardware for general-purpose parallel process-
ing broken?” Commun. ACM, vol. 57, no. 4, pp. 35–39, Apr. 2014.

[5] X. Wen and U. Vishkin, “FPGA-based prototype of a PRAM-on-chip
processor,” in Proceedings of the 5th conference on Computing frontiers,
2008, pp. 55–66.

[6] J. JáJá, An introduction to parallel algorithms. Addison-Wesley
Reading, 1992, vol. 17.

[7] J. Keller, C. Kessler, and J. Träff, Practical PRAM programming. Wiley-
Interscience, J. Wiley & Sons, Inc., 2001.



[8] J. A. Edwards and U. Vishkin, “Better speedups using simpler parallel
programming for graph connectivity and biconnectivity,” in Proceedings
of the 2012 International Workshop on Programming Models and
Applications for Multicores and Manycores - PMAM ’12. New York,
New York, USA: ACM Press, 2012, pp. 103–114.

[9] J.-W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble
game,” in Proceedings of the thirteenth annual ACM symposium on
Theory of computing, 1981, pp. 326–333.

[10] S. O’Brien, U. Vishkin, J. Edwards, E. Waks, and B. Yang, “Can cooling
technology save many-core parallel programming from its programming
woes?” in Compiler, Architecture and Tools Conference (CATC), Intel
Development Center, Haifa, Israel, November 23, 2015, or http://drum.
lib.umd.edu/handle/1903/17153.

[11] C. Sun et al., “Single-chip microprocessor that communicates directly
using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.

[12] M. Frigo and S. Johnson, “The Design and Implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, Feb. 2005.

[13] S. W. Williams, A. Waterman, and D. A. Patterson, “Roofline: An
insightful visual performance model for floating-point programs and
multicore architectures,” University of California at Berkeley, Tech.
Rep., 2008. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-134.html

[14] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli,
“High performance discrete Fourier transforms on graphics processors,”
in Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
November 2008.

[15] S. Chen and X. Li, “A hybrid GPU/CPU FFT library for large FFT
problems,” in 32nd International Performance Computing and Commu-
nications Conference (IPCCC). IEEE, Dec 2013, pp. 1–10.

[16] S. Song and J. K. Hollingsworth, “Scaling Parallel 3-D FFT with Non-
Blocking MPI Collectives,” in 5th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, 2014, pp. 1–8.

[17] V. Nikl and J. Jaros, “Parallelisation of the 3D fast Fourier transform
using the hybrid OpenMP/MPI decomposition,” in 9th International
Doctoral Workshop, MEMICS 2014, Revised Selected Papers, 2014, pp.
100–112.

[18] A. B. Saybasili, A. Tzannes, B. R. Brooks, and U. Vishkin, “Highly
parallel multi-dimensional fast Fourier transform on fine- and coarse-
grained many-core approaches,” in Proc. Parallel and Distributed Com-
puting and Systems, 2009.

[19] A. O. Balkan, G. Qu, and U. Vishkin, “An area-efficient high-throughput
hybrid interconnection network for single-chip parallel processing,” in
Proceedings of the 45th annual Design Automation Conference, 2008,
pp. 435–440.

[20] F. Keceli, A. Tzannes, G. Caragea, R. Barua, and U. Vishkin, “Toolchain
for programming, simulating and studying the XMT many-core archi-
tecture,” in Proc. IPDPSW, 2011, pp. 1282–1291.

[21] G. C. Caragea, F. Keceli, A. Tzannes, and U. Vishkin, “General-purpose
vs. GPU: Comparison of many-cores on irregular workloads,” in HotPar
’10: Proceedings of the 2nd Workshop on Hot Topics in Parallelism.
USENIX, Jun. 2010.

[22] F. Keceli, “Power and performance studies of the explicit multi-threading
(XMT) architecture,” Ph.D. dissertation, University of Maryland, 2011,
chapter 4. http://hdl.handle.net/1903/11926.

[23] Y. Mansour, N. Nisan, and U. Vishkin, “Trade-offs between communi-
cation throughput and parallel time,” in Proc. 26th Annual ACM Symp.
on Theory of Computing, 1994, pp. 372–381.

[24] U. Vishkin and A. Wigderson, “Trade-offs between depth and width in
parallel computation,” SIAM J. Comput., vol. 14, no. 2, pp. 303–314,
1985.

[25] P. Gu and U. Vishkin, “Case study of gate-level logic simulation on
an extremely fine-grained chip multiprocessor,” Journal of Embedded
Computing, vol. 2, no. 2, pp. 181–190, 2006.

[26] J. A. Edwards and U. Vishkin, “Brief announcement: Speedups for
parallel graph triconnectivity,” in Proceedings of the ACM Symposium
on Parallelism in Algorithms and Architecture, 2012, pp. 190–192.

[27] G. C. Caragea and U. Vishkin, “Brief Announcement: Better Speedups
for Parallel Max-flow,” in Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
2011, pp. 131–134.

[28] J. A. Edwards and U. Vishkin, “Empirical speedup study of truly
parallel data compression,” University of Maryland, Tech. Rep., 2013.
[Online]. Available: http://hdl.handle.net/1903/13890

[29] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in 40th Annual Symposium on Foundations of
Computer Science, 1999.

[30] R. Borkar, M. Bohr, and S. Jourdan, “Advancing Moore’s
Law on 2014,” Intel, Aug. 2014. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
presentation/advancing-moores-law-in-2014-presentation.pdf

[31] X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. D. Thacker,
I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krish-
namoorthy, “Ultralow power 80 Gb/s arrayed CMOS silicon photonic
transceivers for WDM optical links,” Journal of Lightwave Technology,
vol. 30, no. 4, pp. 641–650, 2012.

[32] N. Dupuis, B. G. Lee, J. E. Proesel, A. Rylyakov, R. Rimolo-Donadio,
C. W. Baks, A. Ardey, C. L. Schow, A. Ramaswamy, J. E. Roth, R. S.
Guzzon, B. Koch, D. K. Sparacin, and G. A. Fish, “30-Gb/s optical
link combining heterogeneously integrated III-V/Si photonics with 32-
nm CMOS circuits,” Journal of Lightwave Technology, vol. 33, no. 3,
pp. 657–662, 2015.

[33] J. Joo, K.-S. Jang, S. H. Kim, I. G. Kim, J. H. Oh, S. A. Kim, G.-S.
Jeong, Y. Kim, J.-E. Park, S. Kim, H. Chi, D.-K. Jeong, and G. Kim,
“Silicon photonic receiver and transmitter operating up to 36 Gb/s for
λ˜1550 nm,” Optics Express, vol. 23, no. 9, p. 12232, 2015.

[34] L. Zhang, K. E. Goodson, and T. W. Kenny, Silicon Microchannel Heat
Sinks: Theories and Phenomena. Springer Berlin Heidelberg, 2004.

[35] G. Upadhya, J. Hom, K. Goodson, and M. Munch, “Electro-kinetic
microchannel cooling system for servers,” in The Ninth Intersociety Con-
ference on Thermal and Thermomechanical Phenomena In Electronic
Systems, 2004, pp. 367–371.

[36] M. R. Stan, S. Gurumurthi, R. J. Ribando, and K. Skadron, “Interaction
of scaling trends in processor architecture and cooling,” 2010 26th
Annual IEEE Semiconductor Thermal Measurement and Management
Symposium (SEMI-THERM), pp. 198–204, 2010.

[37] D. Velenis, M. Stucchi, E. J. Marinissen, B. Swinnen, and E. Beyne,
“Impact of 3D design choices on manufacturing cost,” in IEEE Interna-
tional Conference on 3D System Integration (3DIC), 2009.

[38] X. Sun, G. Van der Plas, M. Detalle, and E. Beyne, “Analysis of 3D
interconnect performance: Effect of the Si substrate resistivity,” in IEEE
International Conference on 3D Systems Integration (3DIC), 2014.

[39] R. Weerasekera, M. Grange, D. Pamunuwa, and H. Tenhunen, “On
signalling over through-silicon via (TSV) interconnects in 3-D integrated
circuits,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010.

[40] M. A. Rabie, P. C. S., R. Ranjan, M. I. Natarajan, S. F. Yap, D. Smith,
S. Thangaraju, R. Alapati, and F. Benistant, “Novel stress-free keep out
zone process development for via middle TSV in 20nm planar CMOS
technology,” in IEEE International Interconnect Technology Conference,
2014, pp. 203–206.

[41] V. Elango, N. Sedaghati, F. Rastello, L.-N. Pouchet, J. Ramanujam,
R. Teodorescu, and P. Sadayappan, “On using the Roofline model with
lower bounds on data movement,” ACM Transactions on Architecture
and Code Optimization, vol. 11, no. 4, pp. 1–23, 2015.

[42] D. B. Tuckerman and R. Pease, “High-performance heat sinking for
VLSI,” Electron Device Letters, IEEE, vol. 2, no. 5, pp. 126–129, 1981.

[43] T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle,
H. Oppermann, and H. Reichl, “Forced convective interlayer cooling
in vertically integrated packages,” in IEEE 11th Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electronic Systems
(ITHERM), 2008, pp. 1114–1125.


