
HIGHLY PARALLEL MULTI-DIMENSIONAL FAST FOURIER TRANSFORM
ON FINE- AND COARSE-GRAINED MANY-CORE APPROACHES

A. Beliz Saybasili
Laboratory of Computational Biology, NIH/NHLBI,

Bethesda, Maryland 20892, USA
and Istanbul Technical University, Maslak, Istanbul, Turkey

email: saybasiliab@mail.nih.gov

Alexandros Tzannes
University of Maryland

Computer Science Department
College Park, Maryland, 20742, USA

email: tzannes@umd.edu

Bernard R. Brooks
Laboratory of Computational Biology, NIH/NHLBI,

Bethesda, Maryland 20892, USA
email: brb@mail.nih.gov

Uzi Vishkin
University of Maryland,

Institute for Advanced Computer Studies,
College Park, Maryland, 20742, USA

email: vishkin@umd.edu

ABSTRACT
Multi-dimensional fixed-point fast Fourier transform (FFT)
methods were developed and tested on two general-
purpose many-core architecture platforms. One is
the highly-parallel fine-grained eXplicit Multi-Threaded
(XMT) single-chip parallel architecture that targets reduc-
ing single task completion time. The second is 8xDual
Core AMD Opteron 8220. The results show that the for-
mer outperforms the latter not only in speedup and ease
of programming, but also with small data sets (small-scale
parallelism). One of our results on XMT was a super-linear
speedup (by a factor larger than the number of processors)
observed under some rather unique circumstances.

KEY WORDS
Many-cores, parallel algorithmic computer architec-
ture, eXplicit Multi-Threading (XMT), parallel multi-
dimensional fixed-point FFT.

1 Introduction

The fast Fourier transform (FFT) is an essential primitive
for many scientific and engineering applications including
signal processing, image processing, particle simulation,
telecommunication, sound engineering and other related
fields. Parallelization of FFT has been widely investigated.
In distributed systems, the most difficult part of the parallel
multi-dimensional FFT implementation is data transpose,
whereas in shared memory systems the bottleneck is the
high number of access to the memory [1].

In the days when general-purpose computing meant
serial computing, high-performance requirements on par-
allel kernels such as FFT mandated going to either applica-
tion specific architectures, or to large and expensive paral-
lel machines. However, with the advent of the many-core
era it is worthwhile studying the opportunity for tapping
these new parallel processing resources that are becoming

available on general-purpose platforms. The study reported
in this paper reveals significant performance gaps between
two many-core approaches.

Franchetti et al. studied FFT performance on Intel
Core Duo, Intel Pentium D, AMD Opteron Dual Core,
and Intel Xeon MP emphasizing understanding the algo-
rithm before optimizing the implementation [2]. There
have been numerous single- or multi-dimensional parallel
FFT implementations on Cell [3–7], Cyclops-64 [8] and
Graphics Processing Unit (GPU) [9–11]. These implemen-
tations achieve good performance via considerable amount
of work on synchronization, locality and careful program-
ming. FFT on GPU gained widespread usage, however,
GPU is not a general purpose architecture and its com-
puting model is not flexible and requires careful program-
ming [11].

The eXplicit Multi Threading (XMT) is a general
purpose single-chip parallel architecture aimed at reduc-
ing single task completion time. XMT provides good per-
formance for parallel programs based on Parallel Random
Access Model (PRAM) thinking. PRAM is a well-studied
parallel computation model, essentially there is a PRAM
algorithm for every problem with a serial algorithm. The
XMT programming model enables easy programming un-
like most other contemporary many-core computers. A
serial algorithm prescribes which single operation to per-
form next, assuming a fast memory of unlimited size and
other hardware that can execute it immediately (henceforth,
referred as serial abstraction). A PRAM algorithm, on
the other hand, prescribes all operations that could be per-
formed next, assuming unlimited hardware that can exe-
cute these operations immediately (the PRAM abstraction).
By 1990, PRAM algorithms were on their way to becom-
ing standard computer science know-how that every com-
puter science professional must command, and the basis
for standard parallel programming. However, 1990s fabri-
cation technology was not yet capable of supporting paral-
lel computers on which PRAM algorithms would perform

well. Recently, advances in silicon integration technology
led to an FPGA prototype that fully implements the PRAM
approach. In 2007, Wen and Vishkin introduced the first
FPGA prototype of XMT [12]. At present, an XMT FPGA
implementation is available for testing [13]. The XMT pro-
gramming environment including a cycle-accurate simula-
tor and a compiler can be freely downloaded from XMT’s
software release website [14]. The environment allows ex-
perimenting with XMT, and also teaching and studying par-
allelism.

Contribution. In this paper, we present an efficient
fixed-point multi-dimensional parallel radix-2 FFT imple-
mentation on eXplicit Multi-Threading. We evaluated the
same implementation on a state-of-the-art existing proces-
sor, 8xDual Core AMD Opteron 8220 for comparison pur-
poses.

XMT supports short threads (not operating system
threads), thus a fine-grained approach. The AMD platform
can accommodate coarse and fine-grained threads. For
tasks where a coarse-grained approach does not provide the
best performance, an OpenMP-based implicit fine-grained
approach can be used. Although this approach makes pro-
gramming easier, it requires the existence of a suitable al-
gorithm that allows clear functional decomposition [15].

The results show that XMT outperforms the AMD
platform in speedup, and also achieves speedups with small
data sets (small-scale parallelism). On XMT, super-linear
speedups (by a factor larger than the number of processors)
were observed with some large data. We attribute this phe-
nomenon to prefetching allowing high utilization of the in-
terconnection network and the parallel memory architec-
ture of XMT.

This paper is organized as follows. Section 2 briefly
reviews the XMT environment and the FFT algorithm.
Fixed-point implementation details and parallelization of
the multi-dimensional FFT is presented in section 3. The
results of the experiments and discussion are given in sec-
tion 4 and section 5, respectively. Section 6 provides the
summary of the whole study giving emphasis to future
work.

2 Background

2.1 eXplicit Multi-Threading

XMT offers a complete parallel computing framework aim-
ing high performance by easy programming. It provides
good performance for PRAM-like algorithms. A PRAM
algorithm is advanced to an XMT program with the work-
depth methodology [16]. This methodology introduces the
concept of work, the total number of operations that the
PRAM algorithm perform, and depth, the parallel compu-
tation time assuming unlimited hardware resources. Such
an algorithm is coded in XMTC, a Single Program Multiple
Data (SPMD) extension to C programming language, and
compiled with the XMTC compiler that takes advantage of
the full capabilities of the XMT hardware.

2.2 XMT Architecture

The XMT architecture consists of a Global Register File
(GRF), a serial processor, called Master Thread Control
Unit (MTCU), clusters (C0, . . . ,Cn−1) of Thread Control
Units (TCUs), a prefix-sum unit, multiple memory modules
(MM0, . . . ,MMm−1) and a high bandwidth interconnection
network between all modules. Scheduling of individual vir-
tual threads onto TCUs is done efficiently in hardware by
XMT’s unique prefix-sum unit, in a completely transparent
manner. A high level representation of the architecture is
given in Figure 1.

Figure 1. XMT architecture

Cache coherence is a challenging and yet unsolved
problem on a large number of cores. To mitigate this prob-
lem, XMT has local cache only at the MTCU and has read-
only caches and prefetch buffers at TCUs. More informa-
tion on the current XMT architecture and FPGA prototype
specifications can be found in Wen and Vishkin [13, 17].

2.3 XMTC Programming Language

XMTC is a super-set of the C programming lan-
guage with additional statements: spawn, join and
ps/psm. XMT has both serial and parallel modes.
The execution starts in serial mode during which code
is executed on the MTCU. Parallel mode, executed
on the TCUs, is initiated by the statement spawn:
spawn(thread min, thread max){. . .} creates threads with
virtual ids between (thread min, thread max). There is no
need for an explicit join statement because it is called im-
plicitly at the end of a spawn block. Subsequent to the
execution of a spawn block, MTCU resumes the remain-
ing part in serial mode until a new spawn statement is en-
countered. This behavior is represented in Figure 2. The
instruction ps(local, psRegister) performs an atomic fetch-
and-add on a prefix-sum register. The psm(local,variable)
instruction performs the same operation but on a memory
location. Further details of the XMTC language usage can
be found in XMTC tutorial and manual [18, 19].

Figure 2. XMT serial and parallel execution flow

2.4 Fast Fourier Transform

FFT is a fast and efficient way to compute computationally
expensive discrete Fourier transform (DFT) which requires
O(N2) complex multiplications for N complex points. Al-
though there are numerous FFT algorithms in the litera-
ture, we focus on divide-and-conquer type radix-2 Cooley-
Tukey FFT, which requires O(NlogN) complex multiplica-
tions. In this method, N-point data are divided into two N/2
sub-sequences; even-indexed elements and odd-indexed el-
ements, as follows:

Xn =
N/2−1

∑
k=0

x2k× e2πin(2k)/N +

N/2−1

∑
k=0

x2k+1× e2πin(2k+1)/N. (1)

Every sub-sequence in Equation 1 is then divided
into half-sized sub-sequences until the smallest sequence
is reached. By defining the root of the unity ω = e2πi/N ,
also called the twiddle factor, we obtain the following ex-
pansion for the FFT equation.

Xn = X even
n +ωnXodd

n . (2)

The algorithm runs in stages and the twiddle factor is
used to combine the output of a previous stage with the in-
put of the following stage. To access the data, the sequence
needs to be reversed at the beginning of the stages, which
is a bit reversal in radix-2 FFT. Because of the radix-2 FFT
stage execution flow structure, this algorithm is also called
butterfly algorithm (see Figure 3). Butterfly FFT is well
suited for parallelism because every butterfly stage is per-
formed in parallel.

Figure 3. 16-point FFT butterfly

The FFT computes the transform of a single-
dimensional sequence. Multi-dimensional FFT is defined
for multi-dimensional array and consists of many single-
dimensional transforms along dimensions. 2D FFT is de-
fined on two-dimensional grid. In the parallelization of 2D
FFT, two solutions can be considered. Every row-FFT can
be performed in parallel or every row-FFT can be assigned
to different thread and every thread can perform an inde-
pendent FFT on it. The later one is a more coarse-grained
approach.

3 Implementation

Our FFT implementation on XMT was based on the radix-2
Cooley-Tukey algorithm. This algorithm can be problem-
atic for many architectures because of a false sharing caus-
ing unnecessary cache coherence traffic [1,2]. XMT is free
from cache coherence and we show that we obtained good
performance with our radix-2 Cooley-Tukey FFT imple-
mentation on XMT. The same algorithm is implemented in
several studies on many-cores including IBM Cell Broad-
band Engine [5, 7] and IBM Cyclops-64 [8]. Because of
current physical limitations of XMT, such as small memory
size, we used in-place FFT: we directly changed the input
data and converted it to its transform, therefore removed
the need to allocate space for the output array.

The current XMT FPGA prototype supports only in-
teger arithmetic, and incorporating floating-point to XMT
is a subject of research. We implemented FFT using fixed-
point arithmetic. In fixed-point arithmetic, numbers are
represented with fixed number of digits after the decimal
point. Assignment of a limited number of bits before and
after the decimal point can cause precision loss and over-
flow. Precision loss is caused by the need of rounding the
result after the multiplication of two numbers, and overflow
is caused by the adding of two numbers. There is a tradeoff
between rounding and overflow handling. By using accu-
rate twiddle factors that are pre-computed by Octave, we
focus on overflow handling [20]. There are several meth-
ods to prevent overflow including input scaling and scaling
intermediate data where the latter one gives gives a better
error bound [21]. Numbers are scaled by a factor of 1/2 in
each stage to prevent overflows. The overall scaling is then
1/N, N being input data size. XMT is a 32-bit processor,
we adjusted our scaling factor (SF) to be between 10 and
15, according the data size.

Given input size N, we implemented complex data
type in two arrays xr[N] and xi[N] representing complex
and imaginary parts respectively. Twiddle factors were kept
in a single array w[N]. 1D parallel fixed-point FFT butterfly
algorithm with input size N is given as follows.

1: step = N
2: for level = 1 to level < N do
3: level2 = level << 1
4: step >>= 1
5: for tid = 0 to tid = N/2−1 pardo

6: k = (step)∗ (tid%level) {twiddle index}
7: i = (tid/level)∗ level2+(tid%level) {src. index}
8: j = i+ level {dest. index}
9: wr = w[k +N/4] >> 1 {twiddle factor real part}

10: wi =−w[k] >> 1 {twiddle factor imaginary part}
{complex multiplications:}

11: xr[j] = (xr[i] >> 1)− [(wr ∗ xr[j]) >> SF
−(wi∗ xi[j]) >> SF]

12: xi[j] = (xi[i] >> 1)− [(wr ∗ xi[j]) >> SF
+(wi∗ xr[j]) >> SF]

13: xr[i] = (xr[i] >> 1)+ [(wr ∗ xr[j]) >> SF
−(wi∗ xi[j]) >> SF]

14: xi[i] = (xi[i] >> 1)+ [(wr ∗ xi[j]) >> SF
+(wi∗ xr[j]) >> SF]

15: end pardo
16: level <<= 1
17: end do

We extended 1D FFT to 2D by applying separate 1D
parallel FFTs to every dimension. Because XMT supports
fine-grained approach, this implementation gave better per-
formance than applying serial FFTs in parallel, which is
a coarse-grained approach. We kept the matrix input in
single-dimensional arrays (xr[N] and xi[N]), which fits per-
fectly shuffle transpose scheme [22]. Perfect shuffle intro-
duces the notion of a shuffle interconnection pattern. In
this scheme, the matrix data of size 2n × 2n is stored in a
row such that row index is major. Row elements are inter-
changed during the process. The data passes n times from
that interconnection and yields the result, as illustrated in
the Figure 4.

Figure 4. Shuffle transpose with n = 2

Perfect shuffle algorithm is as follows.

1: for i = 1 to n do
2: for k = 1 to 22n−2 pardo
3: xr[(2k)mod(22n−1)] = xr[k]
4: xi[(2k)mod(22n−1)] = xi[k]
5: end pardo
6: end do

We implemented fixed-point parallel 1D and 2D FFT
first on XMT, and then on a Custom Linux workstation with
8xDual Core AMD Opteron 8220 and with 16 GB of RAM.
Following a suggestion of an Intel engineer, we collected
clock cycle counts for our measurements [23]. XMT FPGA
is configured to give cycle counts at the end of execution.

We used Time Stamp Counter on AMD platform.
The 1D FFT input data was a combination of sinu-

soidal functions. We chose the data size to be 2N with N
varying between 3 and 25. Maximum level of optimization
(-O3) in our homegrown GCC-based XMTC compiler was
activated. We executed both serial and parallel fixed-point
FFT for each data set. We computed 64-TCU speedups
with respect to the MTCU. For the 2D FFT implementa-
tion input, we used grayscale images with resolution be-
tween 8×8 and 4096×4096. Due to current limitations of
XMT hardware, such as small storage, it was not possible
to make comparisons with larger data sets.

4 Results

4.1 FFT on XMT

Our serial and parallel programs were executed for each
data set, and cycle counts were collected for performance
analysis. Some of the results for 1D FFT are given in Ta-
ble 1.

Table 1. 1D FFT cycle counts on XMT

N 23 210 215 216

serial 3974 858872 86304774 226328070

parallel 3173 28384 1268302 4707640

speedup 1.2 30.2 68.0 48.0

An example of 128 × 128 grayscale input image
(Lena) and the resulting image of inverse-FFT applied to
XMT-FFT output is shown in Figure 5. The figure also
shows a fixed-point 2D Gaussian low-pass and high-pass
filter applications to the resulting image on XMT. Paral-
lel filtering of the 128×128 image on XMT was 30 times
faster than the serial one. Cycle counts of 2D FFT for dif-
ferent resolution images were collected. The results for
some data sets are given in Table 2.

Table 2. 2D FFT cycle counts on XMT

resolution 16×16 128×128 512×512

serial 182297 35168274 758806964

parallel 75145 1720174 63439303

speedup 2.4 20.4 11.9

The performance gain was nearly linear in both 1D
and 2D FFT. The speedup decreased with data size larger
than 215 in 1D and 2D FFT. XMT has a shared-cache size
256KB, which can hold 32K(215) complex type data. If the
data is larger than shared cache size, access to main mem-
ory is required. At that point, memory access latency is
augmented by access to main memory. Consequently, the

Figure 5. (a) 128× 128 input “Lena” image. (b) XMT
output of FFT restored back using inverse-FFT function of
Octave (c) XMT output of the image filtered by 2D Gaus-
sian low-pass filter restored back using inverse-FFT func-
tion of Octave (d) XMT output of the image filtered by 2D
Gaussian high-pass filter restored back using inverse-FFT
function of Octave

performance decreases. Curiously, with data set (N = 215)
in 1D FFT, XMT gave a speedup of 68, higher than theo-
retical expectation of linear speedup of 64. This speedup
was related to TCU prefetching together with low-latency
high-bandwidth interconnection network, and the efficient
parallel memory architecture [24]. TCUs have prefetching,
whereas MTCU has a cache but no prefetching capability.
In parallel mode, TCU prefetching allows XMT to provide
more uniform memory access latencies, and exploitation of
the underlying hardware. The speedup became sub-linear
(45 for N = 215) when the input complex data were stored
in a one 2D array instead of two 1D arrays. The use of
a single array did not show the advantage of prefetching.
The comparison of these two cases can be seen in Figure 6.
Similarly, when we disabled TCU prefetching property, the
speedup became sub-linear.

4.2 Comparison with Many-Core AMD

XMTC programs were converted to OpenMP and tested
with the same data sets on a 8xDual Core AMD Opteron
8220.

On the AMD platform, our 1D FFT implementation
did not get any speedup until a data size of N = 215 was
reached (which gave speedup of 2). Similarly, in our 2D
FFT implementation on AMD platform, no speedup was
observed until a data size of N ×N = 2048× 2048 was
reached (which gave speedup of 3). A graphical repre-
sentation of 1D FFT and 2D FFT speedup comparisons of

Figure 6. Speedup comparison of 1D FFT in two cases: two
1D input data vs one 2D input data. The speedup becomes
sub-linear with 2D input data structure. Data size is 2N

both XMT and AMD is shown in Figure 7 and Figure 8,
respectively. We implemented both 1D and 2D FFT on a
16-TCU XMT configuration as well. As mentioned previ-
ously, when the data became larger than the shared cache
module size, which was 215, the performance on XMT de-
creased because of the off-chip memory access latency.

Figure 7. Speedup of 1D FFT on XMT with 64 TCU con-
figuration, on XMT with 16 TCU configuration, and on
AMD where there are 16 processors. Our 1D FFT imple-
mentation with data sizes less than 215 does not get any
speedup on AMD.

5 Discussion

A 64-TCU XMT ASIC chip needs about the same silicon
area as a single state-of-the-art commodity core. However,
we did not restrict our comparison, based on silicon area,
to only comparing a 64-TCU XMT with a single Opteron.
But, even comparison of a 16-core Opteron and a 16-TCU

Figure 8. Speedup of 2D FFT on XMT with 64 TCU con-
figuration, on XMT with 16 TCU configuration, and on
AMD where there are 16 processors. Our 2D FFT imple-
mentation on AMD gets speedup with 2048× 2048 input
data.

XMT, suggests that XMT has some advantage.
Our paper evaluates FFT only by fixed-point imple-

mentations. This work does not claim a role for predicting
floating-point performance. Several decision parameters
such as the number of floating-point unit (FPU) per XMT
chip or per TCU, and design complexity of the FPU would
affect floating-point performance. The lack of floating-
point support would be insignificant for applications that
are already based on fixed-point FFTs, including real-time
fixed-point image reconstruction for spiral MRI [25], some
mobile TV and some video codec applications, as long as
they do not reflect a much larger investment in total silicon
area. On the other hand, our FFT implementation on XMT
provides speedup also for small data sizes, which was not
possible for AMD, and most modern multi-core architec-
tures. XMT would be advantageous for applications using
large amounts of small size FFTs, done one after the other,
such as sound engineering and edge detection applications.

Contemporary application-specific many-cores have
strong performance but offer a limited programming model
that is not flexible enough for general purpose comput-
ing. As an example, GPU does not allow thread interac-
tion which prevents many parallel graph algorithms, such
as breadth first search, from having an efficient implemen-
tation, whereas XMT offers an easy and elegant solution
[16]. When it comes to high-throughput oriented many-
cores, the programmer has to figure out lots of specialized
work, like locality, load balancing and synchronization, to
get good speedup. Franchetti et al suggest that in the future,
concurrency will pose a major burden on compiler develop-
ers and programmers [2], which seems to be the case for the
aforementioned platforms. On the other hand, XMT gives
good performance with any amount and type (grain or reg-
ularity) of parallelism provided by the algorithm; up- and

down-scalability including backwards compatibility on se-
rial code, which make it much easier to program. Our FFT
implementation on XMT did not require any explicit syn-
chronization, data partitioning or load balancing opposed to
FFT on state-of-the-art many-cores [3–11]. It has been pre-
viously demonstrated that XMT outperforms Intel Core 2
Duo for some algorithm implementations including matrix-
vector multiplication and quicksort [23].

XMTC extends the C programming language, but
other programming languages, including Fortran and Java,
could be extended in a similar way as well. In general, only
knowledge of a basic programming language and interest
in algorithms would be enough to develop efficient paral-
lel XMT programs. A parallel programming course was
given to high school students in late 2007 at the University
of Maryland. They only had a 5-hour introductory tutorial
and weekly practice sessions with the guidance of an under-
graduate teaching assistant. All of the students were able to
comprehend PRAM thinking and some have even success-
fully performed graduate-level programming assignments.
This experience reinforces our claim that XMT is easy to
program.

6 Conclusion

In this study, we demonstrated that XMT can be compet-
itive with 8xDual Core AMD Opteron 8220 in FFT-based
applications. Unlike many other contemporary many-core
computers, XMT is well suited for small-scale parallelism
as well. In some FFT implementations with a large data
size, XMT provided speedup higher than theoretical ex-
pectations as can be seen in Figure 6. This speedup was
provided by TCU prefetching and XMT’s highly optimized
interconnection network and memory architecture that al-
lows multiple memory requests from the same or different
TCUs to be routed simultaneously.

A highly parallel multi-dimensional fixed-point FFT
implementation for the XMT architecture was developed
and demonstrated. A future extension of this work would
involve comparing our FFT implementation performance
on XMT to other popular many-cores including GPU and
Cell. This is an ongoing effort as new chips and architects
emerge. Good performance results encourage us to develop
a basic linear algebra library for XMT. FFT is tolerant to
low precision and is well suited for fixed-point implemen-
tation. However, there are many implementations requiring
higher precision. Currently, XMT floating-point support is
in its final stage of development. Floating-point FFT will
be evaluated once the hardware support is available and fur-
ther performance studies will be realized. With the addition
of that support, XMT will be available for high-precision
applications as well. Two other challenges include using
our FFT implementation in a complete scientific applica-
tion and optimization of the algorithm for large data sizes
exceeding on-chip memory size.

References

[1] M. Frigo and S.G. Johnson. The design and imple-
mentation of FFTW3. Proc. of the IEEE, 93(2):216–
231, 2005.

[2] Franz Franchetti, Yevgen Voronenko, and Markus
Püschel. FFT program generation for shared mem-
ory: SMP and multicore. In SC ’06: Proceedings of
the 2006 ACM/IEEE conference on Supercomputing,
page 115, New York, NY, USA, 2006. ACM.

[3] A.C. Chow, G.C. Fossum, and D.A. Brokenshire. A
programming example: Large FFT on the Cell Broad-
band Engine. In Global Signal Processing Expo
(GSPx), 2005.

[4] J. Greene and R. Cooper. A parallel 64k complex FFT
algorithm for the IBM/Sony/Toshiba Cell Broadband
Engine Processor. In Global Signal Processing Expo
(GSPx), 2005.

[5] D.A. Bader and V. Agarwal. FFTC: Fastest Fourier
Transform on the IBM Cell Broadband Engine. In
14th IEEE Int. Conf. on High Performance Comput-
ing (HiPC’07), 2007.

[6] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick. The potential of the cell pro-
cessor for scientific computing. In ACM Proc. of the
3rd Conf. on Comput. Frontiers (CF’06), pages 9–20,
2006.

[7] D. A. Bader, V. Agarwal, and S. Kang. Computing
discrete transforms on the cell broadband engine. Par-
allel Comput., 35(3):119–137, 2009.

[8] L. Chen, Z. Hu, and J. Lin G.R. Gao. Optimizing the
fast fourier transform on a multi-core architecture. In
IEEE Int. Parallel and Distributed Processing Sym-
posium (IPDPS), 2007.

[9] K. Moreland and E. Angel. The FFT on a GPU.
In Proc. of the ACM SIGGRAPH/EUROGRAPHICS
Conf. on Graphics Hardware (HWWS’03), pages
112–119, 2003.

[10] O. Fialka and M. Cadik. FFT and convolution per-
formance in image filtering on GPU. In 10th In-
ternational Conference on Information Visualization
(IV’06), pages 609–614, 2006.

[11] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka.
Bandwidth intensive 3-D FFT kernel for GPUs using
CUDA. In Proc. of the IEEE/ACM Conf. on Super-
computing (SC’08), 2008.

[12] X. Wen and U. Vishkin. PRAM-on-chip: first com-
mitment to silicon. In Proc. 19th ACM Symp. on Par-
allel Algorithms and Archit. (SPAA’07), 2007.

[13] X. Wen and U. Vishkin. FPGA-based prototype of
a PRAM-on-chip processor. In ACM Comput. Fron-
tiers, 2008.

[14] Software release of the explicit multi-
threading (XMT) programming environment.
http://www.umiacs.umd.edu/users/vishkin/
XMT/sw-release.html, Aug 2008.

[15] A. Zeichick. Coarse-grained vs. fine-grained thread-
ing for native applications, part I and part II. AMD
Developer central. http://developer.amd.com/
documentation/articles/Pages/default.aspx,
Feb 2006.

[16] U. Vishkin, G. Caragea, and B. Lee. Parallel Com-
puting: Models, Algorithms and Applications, chap-
ter Models for advancing PRAM and other algorithms
into parallel programs for a PRAM-On-Chip plat-
form. CRC press, 2008.

[17] X. Wen and U. Vishkin. The XMT FPGA
prototype/cycle-accurate-simulator hybrid. In The
3rd Workshop on Architectural Research Prototyping
(WARP’08), 2008.

[18] A. Tzannes, C. Caragea, A.O. Balkan,
and U. Vishkin. XMT-C tutorial. http:
//www.umiacs.umd.edu/users/vishkin/XMT/
tutorial4xmtc2out-of2.pdf, Nov 2008.

[19] A. Tzannes, C. Caragea, A.O. Balkan,
and U. Vishkin. XMT-C manual. http:
//www.umiacs.umd.edu/users/vishkin/XMT/
manual4xmtc1out-of2.pdf, Jan 2009.

[20] W. M. Gentleman and G. Sande. Fast fourier trans-
forms - for fun and profit. Proc. of the AFIPS, 29:563–
578, 1966.

[21] A.V. Oppenheim, R.W. Schafer, and J.R. Buck.
Discrete-Time Signal Processing. Prentice Hall, 2nd
edition, 1999.

[22] H. S. Stone. Parallel processing with the perfect shuf-
fle. In IEEE Trans. Comput., volume C20, pages 153–
161, 1971.

[23] G.C. Caragea, A.B. Saybasili, X. Wen, and
U. Vishkin. Performance potential of an easy-to-
program PRAM-On-Chip prototype versus state-of-
the-art processor. In Proc. 21st ACM Symp. on Paral-
lel Algorithms and Archit. (SPAA’09), 2009.

[24] A. Balkan, G. Qu, , and U. Vishkin. An area-efficient
high-throughput hybrid interconnection network for
single-chip parallel processing. In 45th Design Au-
tomation Conference, 2008.

[25] J. R. Liao. Real-time image reconstruction for spiral
MRI using fixed-point calculation. IEEE Trans. Med.
Imaging, 19(7):690 – 698, Jul 2000.

