
Using Simple Abstraction to Guide the Reinvention of
Computing for Parallelism

Uzi Vishkin
The University of Maryland Institute for Advanced Computer Studies (UMIACS) and Electrical and

Computer Engineering Department
vishkin@umd.edu

ABSTRACT
The sudden shift from single-processor computer systems to
many-processor parallel ones requires reinventing much of
Computer Science (CS): how to actually build and program
the new parallel systems. CS urgently requires convergence
to a robust parallel general-purpose platform that provides
good performance and is easy enough to program by at least
all CS majors. Unfortunately, lesser ease-of-programming
objectives have eluded decades of parallel computing re-
search. The idea of starting with an established easy paral-
lel programming model and build an architecture for it has
been treated as radical by vendors. This article advocates a
more radical idea. Start with a minimalist stepping-stone:
a simple abstraction that encapsulates the desired interface
between programmers and system builders.

An Immediate Concurrent Execution (ICE) abstraction
proposal is followed by two specific contributions: (i) A
general-purpose many-core Explicit Multi-Threaded (XMT)
computer architecture. XMT was designed from the ground
up to capitalize on the huge on-chip resources becoming
available in order to support the formidable body of knowl-
edge, known as PRAM (for parallel random-access machine,
or model) algorithmics, and the latent, though not widespread,
familiarity with it. (ii) A programmer’s workflow that links:
ICE, PRAM algorithmics and XMT programming. The
synchronous PRAM provides ease of algorithm design, and
ease of reasoning about correctness and complexity. Multi-
threaded programming relaxes this synchrony for implemen-
tation. Directly reasoning about soundness and performance
of multi-threaded code is generally known to be error prone.
To circumvent that, the workflow incorporates multiple lev-
els of abstraction: the programmer must only establish that
the multi-threaded program behavior matches the PRAM-
like algorithm it implements − a much simpler task. Current
XMT hardware and software prototypes, and demonstrated
ease-of-programming and strong speedups suggest that we
may be much better prepared for the challenges ahead than
many realize.

.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel architectures;
D.1.3 [Programming Techniques]: Parallel programming;
I.1.2 [Computing Methodologies]: Algorithms

General Terms
Algorithms, Design, Performance

Keywords
Parallel computing, Parallel algorithms, Abstraction

1. ABSTRACTING PARALLELISM
The following rudimentary abstraction made serial com-

puting simple: that any single instruction available for exe-
cution in a serial program executes immediately. Abstract-
ing away a hierarchy of memories, each with greater capac-
ity, but slower access time than the preceding one, and dif-
ferent execution time for different operations, this abstrac-
tion has been used by programmers to conceptualize serial
computing and supported by hardware and compilers. A
program provides the instruction to be executed next at
each step (inductively). The left side of Figure 1 depicts
serial execution as implied by this serial abstraction, where
unit-time instructions execute one at a time.

The rudimentary parallel abstraction we propose is: that
indefinitely many instructions, which are available for con-
current execution, execute immediately, and dub the abstrac-
tion immediate concurrent execution (ICE). A consequence
of ICE is a step-by-step (inductive) explication of the in-
structions that are available next for concurrent execution.
The number of instructions in each step is independent of
the number of processors. In fact, processors are not even
mentioned. The explication falls back on the serial abstrac-
tion in case of one instruction per step. The right side of
Figure 1 depicts parallel execution as implied by the ICE
abstraction. At each time unit any number of unit-time in-
structions that can execute concurrently do, followed by yet
another time unit in which the same happens and so on.

How can parallelism be advantageous.
The PRAM answer is that in a serial program the number

of time units (also called “depth”) is the same as the total
number of operations (or “work”) of the algorithm, while in
the parallel program it can be much lower. The objective
for a parallel program is that its work will not much exceed
that of its serial counterpart for the same problem, and its
depth will be much lower than its work. Section 3.2 notes
the straightforward connection between ICE and the rich
PRAM algorithmic theory; and ICE is nothing more than
a subset of the work-depth model. But, how to go about

.

Serial doctrine (Immediate serial execution) Natural (parallel) algorithm (Immediate concurent execution)

..

..

Number of
Operations

Number of
Operations

Time = Number of Operations Time << Number of Operations
Time Time

. ..

Figure 1: Serial execution based on the serial abstraction
versus parallel execution based on the ICE abstraction.

building a computer system that realizes the promise of ease-
of-programming and strong performance?

This article offers a comprehensive solution to this pro-
found question. Section 3.1 discusses basic tensions between
the PRAM abstraction and hardware implementation. Sec-
tion 3.3 then describes a workflow that goes through ICE
and PRAM-related abstractions for programming effectively
the explicit multi-threaded (XMT) computer architecture.

Some many-core architecture is expected to become main-
stream. To become mainstream, architecture will have to
be easy enough to program by every CS major. We are not
aware of other many-core architectures whose abstraction is
PRAM-like. Allowing the programmer to view a computer
as a PRAM makes it easy to program [11]. Hence, this ar-
ticle could interest all such majors.

2. INTRODUCTION
Until 2004, standard (desktop) computers comprised a

single processor core. Since 2005 we appear to be on track
with a prediction [6] of 100+ core computers by the mid
2010s. Transition from serial (single core) computing to par-
allel (many-core) computing mandates the reinvention of the
very heart of computer science (CS) as these highly parallel
computers need to be built and programmed differently from
the single-core machines that dominated standard computer
systems since the inception of the field. By 2003, the clock
rate of a high end desktop processor reached 4GHz, but clock
rates of processors have hardly improved ever since. The in-
dustry did not find a way to continue improving clock rates
within acceptable power budgets [6]. Fortunately, silicon
technology improvements such as miniaturization allow the
amount of logic that a computer chip can contain to con-
tinue growing, doubling every 18 to 24 months. Computers
with an increasing number of cores are expected without sig-
nificant improvements in clock rates. Exploiting these cores
in parallel for faster completion of a computing task is now
the only way to improve performance of single tasks from
one generation of computers to the next.

Unfortunately, chipmakers are busy designing multicore
processors that most programmers can’t handle [20]. Andy
Grove (Intel) noted that the software spiral (the cyclic pro-
cess of hardware improvements leading to software improve-
ments, which lead back to hardware improvements and so
on) had been an engine of sustained growth for Information
Technology for many decades. A stable application-software
base that could be reused and enhanced from one hardware
generation to the next was available. Better performance
was assured with each generation if only the hardware could
run serial code faster. Alas, the software spiral is now broken
(cf. [22]): (a) There is no broad parallel computing appli-
cation software base for which hardware vendors are com-

mitted to improve performance. (b) No agreed-upon paral-
lel architecture currently allows application programmers to
build such software base for the future. Instating a new soft-
ware spiral could be a“killer application”for general-purpose
many-core computing; application software developers will
put it to good use for specific application, and more people
will want to buy new machines. This leads to the following.

Foremost among current challenges is the many-core

convergence challenge: Seek timely convergence to a ro-
bust many-core platform coupled with a new many-core soft-
ware spiral that will serve the world of computing for many
years to come. A software spiral is basically an infrastructure
for the economy. Since advancing infrastructures generally
merits government funding, designating software spiral rein-
statement as a killer application allows also funding agencies
to support the work.

3. PROGRAMMER’S WORKFLOW AND THE
XMT ARCHITECTURE

3.1 Motivation and Preview
[TEXT BOX BEGINS] One of the English dictionary defi-
nitions of abstract is difficult to understand, or abstruse. In
CS, however, abstraction has become synonymous with the
quest for simplicity. Interestingly, the word abstraction in
Hebrew shares the same root with simple (as well as undress
and expand). [TEXT BOX ENDS]

ICE requires the lowest level of cognition from the pro-
grammer relative to all current parallel programming mod-
els. Other approaches require additional steps such as de-
composition [11]. In CS theory, the speedup provided by
parallelism is measured as work divided by depth, but re-
ducing the advantage of ICE/PRAM to practice is a whole
different matter. Our reduction to practice relies on the pro-
grammer’s workflow, depicted in the right columns of Fig-
ure 2 and reviewed later in this section, and the XMT ar-
chitecture. Section 3.2 briefly recalls the parallel algorithms
stage, as developed through the mid-1990s. The step-by-
step explication of PRAM (or “data-parallel”) instructions
represents a traditional tightly synchronous outlook on par-
allelism. Unfortunately, tight step-by-step synchrony is not
a good match with technology (including power constraints).
Consider two examples: (i) Memories based on long tightly-
synchronous pipelines of the type seen in the Cray vector
machines have been long out of favor. (ii) Processing mem-
ory requests takes anywhere from one to 400 clocks; to be
effective hardware must be made as flexible as possible to
advance without unnecessary waiting for concurrent mem-
ory requests.

Section 3.3 is on the programming stage of the workflow.
It is followed up by discussion on performance tuning, and a
limited review of the computer system comprising computer
architecture, actual hardware, and compiler. This latter ma-
terial also connects to the overall effort to relax to the extent
possible the tightly synchronous base of PRAM algorithms.
To underscore the importance of the bridge that our ap-
proach builds from the tightly synchronous PRAM to a re-
laxed synchrony implementation we note some known issues
with the power consumption of current multi-core architec-
tures:: (i) the high power consumption of the wide commu-
nication buses needed to implement cache coherence; (ii) the
basic nm complexity of cache coherence traffic (given n cores
and m invalidations) and its implied huge toll on inter-core
bandwidth; and (iii) the high power consumption needed for
a tightly synchronous implementation in silicon used in these

Rethink algorithm: Take better

ICE

Parallel algorithm

Parallel program

ICE

Parallel algorithm

XMT Program

 Insufficient inter−thread bandwidth?

XMT hardware

 Tune

 Hardware

advantage of cache

yes

no

Figure 2: The right column depicts a workflow from an ICE
abstraction of an algorithm to implementation, while the left
column may never terminate.

designs. Our approach addresses these three issues by avoid-
ing hardware-supported cache-coherence altogether and by
significantly relaxing synchrony.

Preview of the Workflow and XMT.
Workflows are important as they guide the human-to-

machine process of programming. Figure 2 depicts two at-
tempts at workflows. The non-XMT hardware implemen-
tation in the left column may require that the algorithm is
revisited and changed to fit bandwidth constraints among
threads of the computation, a programming process that
sometimes may never lead to an acceptable outcome. How-
ever, the XMT hardware allows a workflow that requires
only tuning for performance (right column of Figure 2); re-
visiting and possibly changing the algorithm is generally not
needed. In fact, an optimizing compiler should be able to
do the tuning without intervention from the programmer,
similar to serial computing.

Most of the programming effort involved in traditional
parallel programming (domain partitioning, load balancing),
can be of lesser importance for exploiting on-chip paral-
lelism, where parallelism overhead can be made low and
processor-to-memory bandwidth high. This observation drove
the development of the XMT programming model and its
implementation. XMT is intended to provide: 1) a simpler
parallel programming model that 2) efficiently exploits on-
chip parallelism. These two goals are achieved by a number
of design elements.

The XMT architecture uses a high-bandwidth low-latency
on-chip interconnection network to provide more uniform
memory access latencies. Other specialized XMT hardware
primitives allow concurrent instantiation of as many threads
as the number of available processors (whose count can reach
the thousands). Specifically, XMT can: (i) forward (at once)
program instructions to all processors within the same time
required to forward the instructions (for one thread) just to
one processor; and (ii) reallocate any number of processors
that complete their jobs at the same time to new jobs (along
with their instructions) within the same time required to
reallocate one processor. The high-bandwidth low-latency
interconnection network and the low-overhead creation of
many threads allow efficient support of fine-grained paral-
lelism. This fine granularity is used to hide memory latencies
and allows a programming model for which locality is less of
an issue. The above mechanisms support dynamic load bal-
ancing, relieving the programmers of the task of assigning
work to processors. The programming model is simplified
further by seeking to let threads run to completion without
synchronization (no busy-waits), and synchronizing accesses

to shared data with prefix-sum (fetch-and-add type) instruc-
tions. These features result in a flexible programming style
that accommodates the ICE abstraction and encourages pro-
gram development for a wider range of applications.
[TEXT BOX BEGINS] Postscript: Not a monolithic outlook
The reinvention of computing for parallelism requires pulling
together quite a few communities. The recent paper [27]
seeks to build a bridge to other architectures by casting the
abstraction-centric vision of this article as a possible module
in them. [27] identifies a limited number of capabilities that
the module provides, and suggests a preferred embodiment
of these capabilities using concrete “hardware hooks”. If it is
possible to augment a computer architecture with these ca-
pabilities (using these hardware hooks, or by other means),
the ICE abstraction and the programmer’s workflow, in line
with this article, can be supported. [TEXT BOX ENDS]

3.2 The PRAM parallel algorithmic approach
The parallel random-access machine/model (PRAM) vir-

tual model of computation is a generalization of the random-
access machine (RAM) model [10]. RAM, the basic se-
rial model underlying standard programming languages, as-
sumes that any memory access or any (logic, or arithmetic)
operation takes unit-time (the serial abstraction). The for-
mal PRAM model assumes a certain number, say p, of pro-
cessors, each can concurrently access any location of a shared
memory within the same time as a single access. The PRAM
has several sub-models differing by the assumed outcome
of concurrent access to the same memory location for ei-
ther read or write purposes. For brevity, we note here only
one of these sub-models, the Arbitrary Concurrent-Read
Concurrent-Write (CRCW) PRAM: concurrent accesses to
the same memory location for reads or writes are allowed;
reads complete before writes and an arbitrary write (to the
same location) unknown in advance succeeds. PRAM algo-
rithms are essentially prescribed as (a) a sequence of rounds,
and (b) for each round, up to p processors can execute
concurrently. The performance objective is minimizing the
number of rounds. The PRAM parallel algorithmic ap-
proach is well-known and has never been seriously challenged
by any other parallel algorithmic approach on ease of think-
ing, or wealth of knowledge-base. However, PRAM is a
strict formal model. A PRAM algorithm must prescribe
for each and every one of its p processors the instruction
that the processor executes at each time unit in a detailed
computer-program-like fashion, which can be quite demand-
ing. The PRAM algorithms theory mitigates this using the
work-depth (WD) methodology.
The WD methodology (due to [21]) suggests a simpler way:

a parallel algorithm can be prescribed as (a) a sequence
of rounds, and (b) for each round, any number of opera-
tions can be executed concurrently assuming unlimited hard-
ware. The total number of operations is called work and the
number of rounds is called depth (as with the ICE abstrac-
tion). The first performance objective is reducing work. The
immediate-second priority is reducing depth.

The methodology of restricting attention only to work and
depth has been used as the main framework for the presen-
tation of PRAM algorithms in texts such as [17, 18]; see
also the class notes available through [1]. It is easy to derive
a full PRAM description from a WD description. For con-
creteness, we demonstrate WD descriptions on two examples
(see text boxes). Example 1 gives a flavor of parallelism in
a very simple way. Example 2 demonstrates advantages of

the WD methodology.
[TEXT BOX BEGINS] Example 1: Given are two variables
A and B, each containing some value. The Exchange problem
is to exchange their values; e.g., if the input to the exchange
problem is A=2 and B=5, then the output is A=5 and B=2.
The standard algorithm for this problem uses an auxiliary
variable X, and works in 3 steps: 1. X:=A. 2. A:=B. 3.
B:=X. Namely, in order not to overwrite A and lose its con-
tent, the content of A is first stored in X, then B is copied
to A, and finally the original content of A is copied from
X to B. The work in this algorithm is 3, the depth is 3,
and the space requirement (beyond the input and output)
is 1. Next, consider a generalization of the Exchange prob-
lem, called Array Exchange. Given two arrays A[0..n-1] and
B[0..n-1], each of size n, exchange their content, so that A(i)
exchanges its content with B(i), for every i=0..n-1. The ar-
ray exchange serial algorithm serially iterates the standard
exchange algorithm n times. Its pseudo-code follows.
For i =0 to n−1 do

X:=A(i) ; A(i):=B(i) ; B(i):=X

The work is 3n, depth is 3n, and space is 2 (for X and
i). A parallel array exchange algorithm uses an auxiliary
array X[0..n-1] of size n, the parallel algorithm applies con-
currently the iterations of the above serial algorithm, each
exchanging A(i) with B(i) for a different value of i. Note the
new pardo command in the following pseudo-code.
For i =0 to n−1 pardo

X(i):=A(i) ; A(i):=B(i) ; B(i):=X(i)

This parallel algorithm requires 3n work, as the serial algo-
rithm. Its depth has improved from 3n to 3. If n is 1,000
this would constitute speedup by a factor of 1,000 relative
to the serial algorithm. The increase in space to 2n (for ar-
ray X and n concurrent values of i) demonstrates a cost of
parallelism. [TEXT BOX ENDS]
[TEXT BOX BEGINS] Example 2: Consider the directed
graph whose nodes are all the commercial airports in the
world. There is an edge from node u to node v if there is
a non-stop flight from airport u to airport v. s is one of
these airports. The problem is to find the smallest num-
ber of non-stop flights from s to any other airport. The
WD algorithm works as follows. Suppose that: (a) follow-
ing step i we found the smallest number of non-stop flights
from s to all airports that can be reached from s in at most
i flights, and (b) all other airports are marked “unvisited”.
Step i+1 will: (a) concurrently find the destination of ev-
ery outgoing flight from any airport to which the smallest
number of flights from s is exactly i, and (b) for every such
destination that is marked “unvisited”, mark it as requiring
i+1 flights from s. Note that some “unvisited” nodes may
have more than one incoming edge. In such cases the Arbi-
trary CRCW convention implies that one of the attempting
writes succeeds. While we don’t know which one succeeds
we do know that they would all enter the number i+1 (in
general, however, Arbitrary CRCW allows also different val-
ues). The standard serial algorithm for this problem [10] is
known as breadth-first search (BFS), and the parallel algo-
rithm above is basically BFS with one difference. Step i+1
above allows concurrent-writes. In the serial version, BFS
also operates by marking all nodes whose shortest path from
s requires i+1 edges after all nodes whose shortest path from
s requires i edges. The serial version then proceeds to im-
pose a serial order. Each newly visited node is placed in

a first-in first-out (FIFO) queue data structure. Two ob-
servations are in order: (i) this serial order obstructs the
parallelism that BFS offers naturally; the freedom to pro-
cess in any order nodes for whom the shortest path from
s has the same length is lost, and (ii) students trained to
incorporate such serial data structures into their program
acquire bad serial habits that are difficult to uproot; it may
be better to preempt the problem by teaching parallel pro-
gramming and parallel algorithms early. To demonstrate the
advantage of the parallel algorithm over the serial one, as-
sume that the number of edges in the graph is 600,000 (the
number of non-stop flight links) and the smallest number of
flights from airport s to any other airport is no more than 5.
While the serial algorithm requires 600,000 basic steps, the
parallel one requires only 6. While each of the 6 steps may
require longer wall clock time than each of the 600,000 steps,
the factor 600,000/6 provides much leeway for speedups by
a proper architecture. [TEXT BOX ENDS]
The programmer’s workflow starts with the easy to think
ICE abstraction and ends with the XMT system, providing
a practical implementation of the vast PRAM algorithmic
knowledge base.

3.3 The XMT programming model
The programming model underlying the XMT framework

is an arbitrary CRCW SPMD (single program multiple data)
programming model that has two executing modes: serial
and parallel. The two instructions, spawn and join, specify
the beginning and end of a parallel section (executed in par-
allel), respectively. See Fig. 3. An arbitrary number of vir-
tual threads, initiated by a spawn and terminated by a join,
share the same code. The workflow relies on the spawn com-
mand to extend the ICE abstraction from the WD method-
ology to XMT programming. As with the respective PRAM
model, the arbitrary CRCW aspect dictates that concurrent
writes to the same memory location result in an arbitrary
one committing. No assumption needs to be made before-
hand about which one succeeds. An algorithm designed with
this property in mind permits each thread to progress at its
own speed from its initiating spawn to its terminating join,
without ever having to wait for other threads; that is, no
thread busy-waits for another thread. The implied “inde-
pendence of order semantics” (IOS) allows XMT to have a
shared memory with a relatively weak coherence model. An
advantage of using this easier-to-implement SPMD model is
that it is PRAM-like. The programming model also incor-
porates the prefix-sum statement. The prefix-sum operates
on a base variable, B, and an increment variable, R. The
result of a prefix-sum is that B gets the value B + R, while
the return value is the initial value of B (such a result is
called atomic, and is similar to fetch-and-increment in [13]).
The primitive is especially useful when several threads si-
multaneously perform a prefix-sum against a common base,
because multiple prefix-sum operations can be combined by
the hardware to form a very fast multi-operand prefix-sum
operation. Because each prefix-sum is atomic, each thread
will receive a different return value. This way, the parallel
prefix-sum command can be used for implementing efficient
and scalable inter-thread synchronization, by arbitrating an
ordering among the threads.

The XMTC high-level language implements the program-
ming model. XMTC is an extension of standard C. XMTC
augments C with a small number of commands, such as
spawn, join and prefix-sum. A parallel region is delineated

Figure 3: Serial and parallel execution modes.

by spawn and join statements. Synchronization is achieved
through the prefix-sum and join commands. Every thread
executing the parallel code is assigned a unique thread ID,
designated $. The spawn statement takes as arguments the
lowest ID and highest ID of the threads to be spawned. For
the hardware implementation noted later, XMTC threads
can be as short as providing 8-10 machine instructions, which
is not difficult to get from PRAM algorithms. Program-
mers are pleasantly surprised by the flexibility of translat-
ing PRAM algorithms to XMTC multi-threaded programs.
Being able to code the whole merging algorithm (see below)
using a single spawn-join pair is one such surprise.
[TEXT BOX BEGINS] Two simple code examples: Consider
the following example of a small XMTC program for the par-
allel exchange algorithm of the previous section:
spawn (0 ,n−1){

var x
x:=A($) ; A($):=B($) ; B($):=x

}

The program simply spawns a concurrent thread for each of
the depth-3 serial exchange iterations, using a local variable
x. Note that the join command is implicit, and implied by
the right parenthesis at the end of the above program.

Our second code example assumes an array of n integers
A. We wish to ‘compact’ the array by copying all non-zero
values to another array, B, in an arbitrary order. The XMTC
code is:
psBaseReg x=0;
spawn (0 ,n−1){

i n t e ;
e=1;
i f (A[$]) !=0){

ps (e , x) ;
B[e]=A[$] }

}

The code above declares a variable x as the base value to be
used in a prefix-sum command (ps in XMTC), and initializes
it to 0. It then spawns a thread for each of the n elements in
A. A local thread variable e is initialized to 1. If the element
of the thread is non-zero, the thread performs a prefix-sum
to get a unique index into B where it can place its value.
[TEXT BOX ENDS]

[TEXT BOX BEGINS] Merging with a single Spawn-Join
The merging problem takes as input two sorted arrays A =
A[1 . . . n] and B = B[1 . . . n]. Each of these 2n elements
needs to be mapped into an array C = C[1 . . . 2n] which
is also sorted. We first review Shiloach-Vishkin’s 2-step
PRAM algorithm for merging and then discuss its XMTC
programming. The two steps are: (i) Partitioning. This
step first selects some number x of elements from A at equal
distances. In the example of Figure 4, suppose that the four
elements 4,16,20 and 27 are selected. Each of these elements
is then ranked relative to array B using x concurrent binary
searches. Similarly, x elements from B at equal distances
(say elements 1,7,13 and 24) are also selected, and then

ranked relative to array A using x = 4 concurrent binary
searches. The step takes O(log n) time. These ranked ele-
ments partition the merging job that needs to be completed
into 2x “strips” (Step 2 in Figure 4 shows 8 strips). (ii) Ac-
tual work. For each of these strips the remaining merging job
is to merge a subarrary of A with a subarray of B, mapping
their elements into a subarray of C. Since these 2x merging
jobs are mutually independent, each can concurrently apply
the standard linear-time serial merging algorithm. The com-
plexity analysis of this algorithm follows. Since each strip
can have at most n/x elements from A and n/x elements
from B, the depth (or parallel time) of step (ii) is O(n/x).
If x ≤ n/ log n, Step 1 and the algorithm as a whole does
O(n) work. In the PRAM model, this algorithm requires
O(n/x + log n) time. A simplistic XMTC program will re-
quire as many spawn (and respective join) commands as the
number of PRAM steps. The reason for presenting this ex-
ample in this article is that there is a way to use only a single
spawn (and a single join) command to represent the whole
merging algorithm. Merging in XMTC: An XMTC program
would spawn 2x concurrent threads, one for each of the se-
lected elements in array A or B. Using binary search, each
thread will first rank its array element relative to the other
array. It will then proceed directly (without a join operation)
to merging the elements in its strip, terminating just before
setting the merging result of another selected element. The
reason is that this merging result is computed by another
thread. Example: Consider the thread of element 20. Start-
ing with binary search on array B it finds that 20 ranks as
11 in B (11 is the index of 15 in B). Since the index of 20 in
A is 9, element 20 ranks 20 in C. The thread then compares
21 to 22 and ranks element 21 (as 21); it then compares
23 to 22 to rank 22, and compares 23 to 24 to rank 23; it
then compares 24 to 25, but terminates since the thread of
24 will rank 24, concluding the example. Our general ex-
perience has been that often, with little effort, XMT-type
threading requires fewer synchronizations than literally im-
plied by the original PRAM algorithm. The XMTC merging
example demonstrates that sometimes the reduction in syn-
chronizations can be big. [TEXT BOX ENDS]

4

6

8

9

16

17

18

19

20

21

23

25

27

29

31

32

1

2

3

5

7

10

11

12

13

14

15

22

24

26

28

30

6

8

9

17

18

19

21

23

25

29

31

32

2

3

5

10

11

12

14

15

26

28

30

22

A B A B

Step 2
actual work

Step 1
partitioning

Figure 4: Main steps of the ranking/merging algorithm

Other XMTC commands. Prefix-sum-to-memory (psm) is
another prefix-sum command whose base can be any loca-
tion in memory. While the increment of ps must be 0 or 1,
the increment of psm is not limited, though its implementa-
tion is less efficient. Single Spawn (sspawn) is a command
that can spawn an extra thread, and can be nested. A nested
spawn command in XMTC code needs to be replaced (by
the programmer, or compiler) by sspawn commands. The

Figure 5: Left side: FPGA board (the size of a car license
plate) comprising three FPGA chips (generously donated
by Xilinx). A, B: Virtex-4LX200. C: Virtex-4FX100. Right
side: 10mm X 10mm chip using IBM Flip-Chip technology.

XMTC commands are described in the programmer’s man-
ual included in the software release [1].

3.4 Tuning XMT programs for performance
Our discussion of performance tuning requires an overview

of salient features of the XMT architecture and hardware.
The XMT on-chip general-purpose computer architecture is
aimed at the classic goal of reducing single task completion
time. The WD methodology equips the algorithm designer
with the ability to express all the parallelism that he/she
observes. XMTC programming further permits expressing
this virtual parallelism by “dreaming up” as many concur-
rent threads as the programmer wishes. The XMT processor
must now provide an effective way for mapping this virtual
parallelism onto the hardware. The XMT architecture pro-
vides dynamic allocation of the XMTC threads onto the
hardware for better load balancing. Since XMTC threads
can be very short, the XMT hardware must directly man-
age XMT threads. In particular, an XMT program looks
like a single thread to the operating system (OS). The text
box “the XMT processor” reviews the XMT hardware and
provides further links for more information. The main thing
that a performance programmer needs to know in order to
tune the performance of their XMT program is reviewed
next. A ready-to-run version of an XMT program seeks to
optimize: (i) the length of the (longest) sequence of round-
trips to memory (LSRTM), (ii) queuing delay to the same
shared memory location (known as queue-read queue-write,
QRQW [12]), and (iii) work and depth (as above). Opti-
mizing these ingredients is a responsibility shared in a subtle
way between the architecture, the compiler, and the program-
mer/algorithm designer. See “Tuning example” for how ac-
counting for LSRTM can improve performance.
[TEXT BOX BEGINS] Tuning example. Given n numbers
in an array A[1..n], consider the problem of computing their
sum A(1) + A(2) + .. + A(n). The standard parallel algo-
rithm for this summation problem is guided by a balanced
binary tree. Assuming for simplicity that n is a power
of 2, the algorithms works in log

2
n parallel steps. The

first step comprises n/2 pairwise additions: A(1) + A(2),
A(3) + A(4), .., A(n − 1) + A(n). The second step has
n/4 additions, producing: A(1) + A(2) + A(3) + A(4), ..,
A(n − 3) + A(n − 2) + A(n − 1) + A(n), and so on till step
log

2
n that produces the sum A(1) + A(2) + .. + A(n) in

a single addition. It can be readily seen that this algo-
rithm requires O(n) work and O(log n) time, and that it
can be cast using log

2
n spawn-join pairs. However, a closer

looks suggests some performance improvements: (i) With
p processors, have first each processor sum serially a sepa-
rate group of n/p elements, reducing the original problem
to summation of p elements. (ii) The summation of p el-

ements may be done faster if guided by a balanced k-ary
tree, where each node of the tree has k children (a balanced
binary tree is a k-ary tree for k = 2). Namely, do the summa-
tion in log

k
p rounds. In the first round compute p/k sums:

A(1)+..+A(k), A(k+1)..A(2k),.. In the second round, com-
pute p/k2 sums, and so on. But, how to chose the optimal k
value? For XMT, the dominant parameter that guides the
selection of the optimal k value, and navigate among the dif-
ferent implementation options is LSRTM [28]. The number
of time units needed for a round-trip from the TCU clus-
ters in Figure 6 across the cluster-memory interconnection
network depends on the XMT hardware. We then need to
analyze the code in order to figure out the extent to which
the round-trip required by different commands can overlap
in time (e.g., using prefetching into prefetch buffers at the
TCUs) and therefore be pipelined. LSRTM captures the
number of round-trips that cannot overlap. We refer the
reader to [28] for more information. [TEXT BOX ENDS]

Execution can differ from the literal XMTC code in order
to keep the size of working space under control or otherwise
improve performance. For example, this could be done by
clustering virtual threads off-line or on-line, and prioritiza-
tion of execution of nested spawns using known heuristics
based on a mix of depth-first and breadth-first searches.

Commitments to silicon of XMT include a 64-processor,
75MHz computer based on field-programmable gate array
(FPGA) technology [29], and 64-processor ASIC 10mm X
10mm chip using IBM’ s 90nm technology, pictured in Figure
5. A basic yet stable compiler has also been developed.
[TEXT BOX BEGINS] The XMT processor (see Fig 6)
includes a master thread control unit (MTCU), processing
clusters each comprising several thread-control units (TCUs),
a high-bandwidth low-latency interconnection network (see [4]
and its extension to Globally-Asynchronous Locally-Synchronous,
known as GALS-style, design incorporating asynchronous
logic in [19, 16]), memory modules (MM) each comprising
on-chip cache and off-chip memory, prefix-sum (PS) unit(s)
and global registers. Fig. 6 suppresses the sharing of a
memory controller by several MMs. The processor alter-
nates between serial mode, where only the MTCU is active,
and parallel mode. The MTCU has a standard private data
cache (used in serial mode) and a standard instruction cache.
The TCUs do not have a write data cache. They and the
MTCU all share the MMs.

The overall design of XMT is guided by a general de-
sign ideal, called no-busy-wait finite-state-machines (NBW
FSM). The NBW FSM ideal is that the FSMs (processors,
memories, functional units, interconnection networks, etc)
comprising the parallel machine will never cause one an-
other to busy-wait. We use the term ideal because it would
be untenable for a parallel machine to operate that way.
Non-trivial parallel processing demands exchange of results
among FSMs. The NBW FSM ideal represents an aspira-
tion to reduce to the possible minimum busy-waits among
the various FSMs that comprise the machine. Below, we
use the example of how the MTCU orchestrates the TCUs
in order to demonstrate the NBW FSM ideal.

The MTCU is an advanced serial microprocessor that can
also execute XMT instructions such as spawn and join. Typ-
ical program execution flow was shown in Fig. 3, but it can
also be extended through nesting of sspawn commands. The
MTCU uses the following XMT extension to the standard
von-Neumann apparatus of the program counters and stored

program. Upon encountering a spawn command the MTCU
broadcasts the instructions in the parallel section that starts
with that spawn command and ends with a join command
on a bus connecting to all TCU clusters. The largest ID
number of a thread that the current spawn command needs
to execute Y is also broadcast to all TCUs. The ID (index)
of the largest executing threads is stored in a global regis-
ter X. In parallel mode a TCU can execute one thread at
a time. Executing a thread to completion (upon reaching
a join command) the TCU does a prefix-sum using the PS
unit to increment global register X. In response, the TCU
gets the ID of the thread it needs to execute next; if the ID
is less than or equal Y, the TCU executes a thread with this
ID. Otherwise, the TCU reports to the MTCU that it fin-
ished. Once all TCUs report that they finished, the MTCU
continues in serial mode. The broadcast operation is essen-
tial to the XMT ability to start all TCUs at once within
the same time it takes to start one TCU. The use of the
PS unit allows allocation of new threads to the TCUs that
just became available within the same time of allocating one
thread to one TCU. This dynamic allocation provides run
time load-balancing of threads coming from an XMTC pro-
gram. We are ready to make a connection with the NBW
FSM ideal. Consider an XMT program derived from the
workflow. From the moment the MTCU starts executing
a spawn command till the time each TCUs terminates the
threads allocated to it, no TCU can cause any other TCU
to busy-wait for it. The busy-wait of course happens once
a TCU terminates (and begins waiting for the next spawn
command).

TCUs have their own local registers and they are simple
in-order pipelines including fetch, decode, execute/memory-
access and write back stages. The FPGA computer has 64
TCUs in 4 clusters of 16 TCUs each. (We aspire to have
1024 TCUs in 64 clusters in the future). A cluster has func-
tional units shared by several TCUs and one load/store (LS)
port to the interconnection network, shared by all its TCUs.
The global memory address space is evenly partitioned into
the MMs using a form of hashing. In particular, the cache-
coherence problem, a challenge for bandwidth and scalabil-
ity, is eliminated: in principle, there are no local caches at
the TCUs. Within each MM, order of operations to the
same memory location is preserved.

For performance enhancements incorporated in the XMT
hardware such as data prefetch and more information about
the architecture, see [29]. Compiler and run-time schedul-
ing methods for nested parallelism are discussed in [24] and
prefetching methods in [9]. Patents supporting the XMT
hardware appeared in [26, 19]. [TEXT BOX ENDS]

3.5 Other Information and Comments
XMT is easy to build. A single graduate student, with

no prior design experience, completed the XMT hardware
description (in Verilog) in just over 2 years. XMT is also
silicon-efficient. Our ASIC design indicates that a 64-processor
XMT needs the same silicon area as a (single) current com-
modity core. The approach goes after any type of appli-
cation parallelism regardless of its amount, regularity, or
grain size and is amenable to standard multiprogramming
(i.e., where the hardware supports several concurrent OS
threads). We also demonstrated good performance, pro-
grammability (e.g., [15]) and teachability (e.g., [23]). High-
lights include: evidence of 100X speedups on general-purpose
applications on a simulator of 1000 on-chip processors [14],

Figure 6: A block diagram of the XMT architecture.

and speedups ranging between 15X to 22X for irregular
problems such as Quicksort, breadth-first search (BFS) on
graphs, finding the longest path in a directed acyclic graph
(DAG), and speedups in the range of 35X -45X for regular
programs such as matrix multiplication and convolution on
the 64-processor XMT prototype versus the best serial code
on XMT [29]. The paper [8] demonstrates nearly 10X av-
erage performance improvement potential relative to Intel
Core 2 Duo for a 64-processor XMT chip that uses the same
silicon area as a single core. The recent paper [7] demon-
strates that, using the same silicon area as a modern graph-
ics processing unit (GPU), our design achieves an average
speedup of 6X relative to the GPU for irregular applications
and falls only slightly behind on regular ones. All the GPU
code was written and optimized by others.

With few exceptions, parallel programming approaches
that dominated parallel computing prior to many-cores are
still favored by vendors and high-performance computing
user communities. These approaches require steps such as:
decomposition, assignments, orchestration and mapping, from
the programmer [11]. Indeed, parallel programming difficul-
ties have failed all general-purpose parallel systems to date
by limiting their use. In contrast, XMT frees its programmer
from doing these, in line with the ICE/PRAM abstraction.
Software release: The XMT environment is available for im-
mediate adoption. A recent release of the XMTC compiler
and a cycle-accurate simulator of XMT can be downloaded
to any standard desktop computing platform. This software
release is available through the XMT home page, or source-
forge.net [1] along with extensive documentation. Teaching
materials comprising a class-tested programming methodol-
ogy, where college freshmen and even high-school students
are taught only parallel algorithms and then self-study XMT
programming, are also provided.
For teaching parallelism: Most CS programs graduate stu-
dents to a job market certain to be dominated by parallelism
without needed preparation. The level of cognition of par-
allelism required by the ICE/PRAM abstraction is so basic
that it is necessary for all other current approaches. We
propose to base the introduction of the new generation of
CS students to parallelism on the presented workflow, at
least until convergence to a many-core platform is achieved.

Note that since XMT is buildable the XMT approach is also
“sufficient”.

4. RELATED EFFORTS
Related efforts come in several flavors. Valiant’s Multi-

BSP bridging model for multi-core computing [25] appears
closest to our focus on abstraction. The main difference is
in the intentions: our modeling seeks to guide builders of
new machines to incorporate desired features, as opposed
to capturing existing features. These prescriptive versus de-
scriptive objectives are not the only difference. [25] models
relatively low-level parameters of certain multi-core archi-
tectures, which makes it closer to [28] than to this article.
In contrast to both these papers, simplicity drives the “one-
liner” ICE abstraction.

Parallel languages, such as CUDA, MPI, or OpenMP tend
to be different than computation models, as they often do
not involve performance modeling. Languages require a
level-of-detail that distances them further from simple ab-
stractions.

Several research centers consider the general problems dis-
cussed in this article [2, 3]. The UC-Berkeley Parallel Com-
puting Lab and Stanford’s Pervasive Parallelism Laboratory
advocate an application-driven approach to reinventing com-
puting for parallelism.

5. CONCLUSION
The vertical integration offered by the XMT framework

with the ICE/PRAM abstraction as its front-end is quite
unique. ICE is a newly separated feature that did not ap-
pear in prior papers, and is more rudimentary than prior
parallel computing concepts. Rudimentary concepts are the
basis for the fundamental development of any field. ICE
can be viewed as an axiom that builds only on mathemati-
cal induction, itself one of the more rudimentary concepts of
Mathematics. The suggestion to have a simple abstraction
become the lead guide of the discussion on the reinvention
of computing for parallelism appears to also be new. This
article provides evidence that this can be done.
[TEXT BOX BEGINS] Eye-of-a-needle aphorism. The XMT
processor text box recalls the von-Neumann apparatus of
stored program and program counter. Introduced at a time
of extreme hardware scarcity, this apparatus forced thread-
ing of instructions through a metaphoric eye-of-a-needle.
The coupling of mathematical induction and the ISE ab-
straction was engineered to provide this threading. This
eye-of-a-needle threading is evident in serial examples of this
article. See: (i) Example 1 of Section 3.2, in the use of vari-
able X in the pseudo-code of the serial iterative algorithm for
the exchange problem; (ii) Example 2 of Section 3.2, in the
FIFO queue data structure in the serial BFS; and (iii) the
serial merging algorithm, noted indirectly in Section 3.3 in
which two elements are compared at a time, one from each of
the two sorted input arrays. Having become a second nature
for many programmers, eye-of-a-needle threading is often as-
sociated with ease of programming. Interestingly, threading
through an eye-of-a-needle is considered an aphorism for ex-
treme difficulty, or even impossibility in the broader culture,
including texts of three major religions. The XMT extension
to the von-Neumann apparatus noted in the XMT processor
text box uses today’s greater hardware resources to free com-
puting from the constraint of threading through the original
apparatus. The coupling of mathematical induction and the
ICE abstraction of this article is engineered to capitalize on
this freedom for ease of parallel programming and improved

performance. [TEXT BOX ENDS]
The following comparison with a new multithreading algo-

rithms chapter in the 2009 third edition of [10] can help eluci-
date some contributions of this article. The 1990 first edition
included a chapter on PRAM algorithms with a prominent
role for work-depth design and analysis. The 2009 chap-
ter retains work-depth analysis. However, to match current
hardware, the new chapter resorts to a variant of dynamic
multithreading (in-lieu of work-depth design) whose main
primitive is similar to the XMT sspawn command (Sec-
tion 3.3) that starts one additional thread a time. One
thread can only generate one more thread; these two threads
can generate one more thread each and so on, instead of di-
rectly designing for the work-depth analysis that follows.
The [10] dynamic multithreading direction should encour-
age hardware enhancement that will allow starting at once
many threads within the same time required to start one
thread. A step ahead of available hardware, XMT has al-
ready demonstrated a spawn command that spawns any
number of threads upon transition to parallel mode. More-
over, the ICE abstraction incorporates work-depth early in
the design workflow, more similar to the first edition of [10].
The O(log n) depth parallel merging algorithm above versus
the O(log2 n) depth one in [10], demonstrates an XMT ad-
vantage over current hardware. In summary, the XMT hard-
ware scheduling brought the hardware performance model
much closer to work-depth and allowed our workflow to
streamline the design with the analysis from the start.

Features of the serial paradigm that made it such a suc-
cess include: a simple abstraction at the heart of the “con-
tract” between programmers and builders, the software spi-
ral, ease-of-programming and ease-of-teaching, and back-
wards compatibility on serial code and on application pro-
gramming. The only feature that we, like everybody else,
do not provide is speedups for serial code. One of our main
points is that the ICE/PRAM/XMT workflow and architec-
ture provide a viable option for the many-core era. Our so-
lution should also inspire others to come up with compet-
ing abstraction proposals, or alternative architectures for
ICE/PRAM. Consensus built around an abstraction will
move us closer to convergence to a many-core platform and
to putting the software spiral back on track.

The workflow provides a productivity advantage to pro-
grammers. For example, we have traced several errors in
XMTC programs of students to shortcuts they have taken
around the ICE/algorithms stages. Overall, improved un-
derstanding of programmer’s productivity, traditionally one
of the hardest nuts for parallel computing, must become a
top priority for architecture research. To the extent possi-
ble, evaluation of productivity should be on par with that of
performance and power. For start, productivity benchmarks
need to be developed. A suggestion for making teachability
a useful benchmark follows.

Ease-of-programming (programmability) is a necessary con-
dition for the success of a many-core platform and teachabil-
ity is a necessary condition for programmability and in turn
for productivity. The teachability of our approach has been
extensively demonstrated. Over 100 students in grades K-
12 have already programmed XMT and it even entered the
regular syllabus of the year-long parallel computing course
at Thomas Jefferson High-School for Science and Technol-
ogy, Alexandria, VA [23]. Having gone through the effort of
demonstrating teachability from middle-school and up, we

suggest that teachability at various levels becomes a stan-
dard benchmark for any many-core approach.

The recent paper [5] observed an interesting problem with
current chipmakers’ microprocessors, after analyzing cur-
rent desktop/laptop applications for which better perfor-
mance was desired. These applications tend to comprise
many threads, but only very few of these threads are used
concurrently; consequently, the applications fail to translate
the increasing thread-level parallelism in hardware to per-
formance gains. This problem is not surprising given the
inability of most programmers to handle current (and near-
future) multicore microprocessors noted earlier. In contrast,
guided by the simple ICE abstraction and the rich PRAM
knowledge base to find parallelism, XMT programmers rep-
resent it using a type of threading that matches the XMT
hardware.
6. REFERENCES
[1] Explicit Multi-Threading (XMT): home page

http://www.umiacs.umd.edu/users/vishkin/XMT/ and
software release http://sourceforge.net/projects/xmtc/.

[2] S. Adve and et al. Parallel computing research at
Illinois - the UPCRC agenda, U. Illinois. 2008.

[3] K. Asanovic and et al. The landscape of parallel
computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, UC Berkeley, 2006.

[4] A. Balkan, M. Horak, G. Qu, and U. Vishkin.
Layout-accurate design and implementation of a
high-throughput interconnection network for
single-chip parallel processing. In Proc. Hot
Interconnects, Stanford, CA, 2007.

[5] G. Blake, R. Dreslinski, K. Flautner, and T. Mudge.
Evolution of thread-level parallelism in desktop
applications. In Proc. ISCA, 6 2010.

[6] S. Borkar and et al. Platform 2015: Intel processor and
platform evolution for the next decade. Intel. 2005.

[7] G. Caragea, F. Keceli, A. Tzannes, and U. Vishkin.
General-purpose vs. gpu: Comparison of many-cores
on irregular workloads. In Proc. Usenix HotPar,
University of California, Berkeley, June 2010.

[8] G. Caragea, B. Saybasili, X. Wen, and U. Vishkin.
Performance potential of an easy-to-program
PRAM-On-Chip prototype versus state-of-the-art
processor. In Proc. ACM SPAA, 2009.

[9] G. Caragea, A. Tzannes, F. Keceli, R. Barua, and
U. Vishkin. Resource-aware compiler prefetching for
many-cores. In Proc. 9th Int. Symp. on Parallel and
Distributed Computing (ISPDC), Istanbul, Turkey,
July 2010.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms, 3rd Ed. MIT Press, 2009.

[11] D. Culler and J. Singh. Parallel Computer
Architecture: A Hardware/Software Approach.
Morgan-Kaufmann, 1999.

[12] P. Gibbons, Y. Matias, and V. Ramachandran. The
queue-read queue-write asynchronous pram. Theor.
Comput. Sci., 196:3–29, 1998.

[13] A. Gottlieb and et al. The NYU ultracomputer -
designing an MIMD shared memory parallel computer.
IEEE Trans. Computers, 32,2:175–189, 1983.

[14] P. Gu and U. Vishkin. Case study of gate-level logic
simulation on an extremely fine-grained chip
multiprocessor. J. Embedded Comp., 2:181–190, 2006.

[15] L. Hochstein, V. Basili, U. Vishkin, and J. Gilbert. A
pilot study to compare programming effort for two
parallel programming models. J. Systems and
Software, 81, 2008.

[16] M. Horak, S. Nowick, M. Carlberg, and U. Vishkin. A
low-overhead asynchronous interconnection network
for gals chip multiprocessor. In Proc. 4th ACM/IEEE
International Symposium on Networks-on-Chip
(NOCS2010), Grenoble, France, May 2010.

[17] J. JaJa. An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, 1992.

[18] J. Keller, C. Kessler, and J. Traeff. Practical PRAM
Programming. Wiley-Interscience, 2001.

[19] J. Nuzman and U. Vishkin. Circuit architecture for
reduced-synchrony on-chip interconnect. U.S. Patent,
6,768,336, 2004.

[20] D. Patterson. The trouble with multicore: Chipmakers
are busy designing microprocessors that most
programmers can’t handle. IEEE Spectrum, July, 2010.

[21] Y. Shiloach and U. Vishkin. An O(n2 log n) parallel
max-flow algorithm. J. Algorithms, 3:128–146, 1982.

[22] H. Sutter. The free lunch is over - a fundamental shift
towards concurrency in software. Dr. Dobbs J., 2005.

[23] S. Torbert, U. Vishkin, R. Tzur, and D. Ellison. Is
teaching parallel algorithmic thinking to high-school
student possible? one teacher’s experience. In Proc.
41st ACM SIGCSE, 2010.

[24] A. Tzannes, G. Caragea, R. Barua, and U. Vishkin.
Lazy binary splitting: A run-time adaptive dynamic
works-stealing scheduler. In Proc. 15th ACM PPoPP,
2010.

[25] L. Valiant. A bridging model for multi-core
computing. In Proc. Eur. Symp. Alg., 2008.

[26] U. Vishkin. Supporting patents. U.S. Patents,
6,463,527;6,542,918;7,505,822;7,523,293;7,707,388,
2002-2010.

[27] U. Vishkin. Algorithmic approach to designing an
easy-to-program system: can it lead to a hw-enhanced
programmer’s workflow add-on? In Proc. Int. Conf.
Computer Design (ICCD), 2009.

[28] U. Vishkin, G. Caragea, and B. Lee. Models for
Advancing PRAM and Other Algorithms into Parallel
Programs for a PRAM-On-Chip Platform. In
Handbook on Parallel Computing (Eds S. Rajasekaran,
J. Reif). Chapman and Hall/CRC Press, 2008.

[29] X. Wen and U. Vishkin. FPGA-based prototype of a
PRAM-on-chip processor. In Proc. ACM Computing
Frontiers, Ischia, Italy, May 2008.

