
Better Speedups Using Simpler Parallel Programming for
Graph Connectivity and Biconnectivity

James A. Edwards
University of Maryland
College Park, Maryland
jedward5@umd.edu

Uzi Vishkin
University of Maryland
College Park, Maryland
vishkin@umd.edu

ABSTRACT
Speedups demonstrated for finding the biconnected compo-
nents of a graph: 9x to 33x on the Explicit Multi-Threading
(XMT) many-core computing platform relative to the best
serial algorithm using a relatively modest silicon budget.
Further evidence suggests that speedups of 21x to 48x are
possible. For graph connectivity, we demonstrate that XMT
outperforms two recent NVIDIA GPUs of similar or greater
silicon area. Previous studies of parallel biconnectivity al-
gorithms achieved at most a 4x speedup, but we could not
find biconnectivity code for GPUs to compare biconnectivity
against them.

Ease-of-programming: The paper suggests that parallel
programming for the XMT platform is considerably sim-
pler than for the SMP and GPU ones. Unlike the quantita-
tive speedup results, the ease-of-programming comparison is
more qualitative. Productivity of parallel programming is a
central interest of PMAM/PPoPP strongly favoring ease-of-
programming. We believe that the discussion is on par with
the state of the art on this relatively underexplored interest.

The results provide new insights into the synergy between
algorithms, the practice of parallel programming and archi-
tecture: (1) no single biconnectivity algorithm is dominant
for all inputs; (2) XMT provides good performance for each
algorithm and better speedups relative to other platforms;
(3) the textbook (TV) PRAM algorithm was the only one
that provided strong speedups on XMT across all inputs
considered; and (4) the TV implementation was a direct im-
plementation of a PRAM algorithm, though a nontrivial ef-
fort was needed to get a PRAM version with lower constant
factors. Overall, it appears that previous low speedups on
other platforms were not caused by inefficient algorithms or
their programming. Instead, it is because of the better match
between the algorithms and the XMT platform. Given the
growing interest in adding architectural support for parallel
programming to existing multi-cores, our results suggest the
following open question: can such added architectural sup-
port catch up on speedups and ease-of-programming with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM 2012, February 26, 2012 New Orleans LA, USA
Copyright 2012 ACM 978-1-4503-1211-0/12/02 ...$10.00.

a design originally inspired by parallel algorithms, such as
XMT? Finally, this work addresses another related inter-
est of PMAM/PPoPP: new parallel workloads that improve
synergy with emerging architectures. One variant of bicon-
nectivity algorithms demonstrated the potential advantage
of enhancing XMT by supporting in hardware more thread
contexts, perhaps through context switching between them–
apparently, a first demonstration of this old Cray MTA con-
cept benefiting XMT.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; C.1.4 [Processor Architec-
tures]: Parallel Architectures

General Terms
Algorithms, Experimentation, Performance, Theory, Verifi-
cation

Keywords
biconnectivity, connectivity, GPU, graph algorithms, many-
core

1. INTRODUCTION
Given an undirected graph G, two vertices u and v in

G are in the same connected component of G if there is a
path connecting them, and the graph connectivity problem is
finding all connected components of an input graph G. The
diameter of a connected graph is the length of the longest
path in the set of all shortest paths between every pair of
vertices in the graph.

Biconnectivity is a property of undirected graphs; an undi-
rected graph G is called biconnected if and only if it is con-
nected and remains so after removing any vertex and all
edges incident on that vertex. A graph S is an induced sub-
graph of G if it comprises a subset of the vertices of G and all
the edges of G connecting two vertices in S. A biconnected
component of G is an induced subgraph of G that is bicon-
nected whose vertex set cannot be expanded while main-
taining the biconnectivity of its induced subgraph. A vertex
whose removal increases the number of connected compo-
nents in the graph is called an articulation point, and an
edge whose removal increases the number of connected com-
ponents is called a bridge. In this paper, the biconnectivity
problem is understood as the problem of determining the
biconnected components, articulation points, and bridges of

an undirected graph, and a biconnectivity algorithm is an
algorithm that solves the biconnectivity problem.

Connectivity is one of the most elementary graph prob-
lems. However, for brevity we pay more attention to bi-
connectivity, the more advanced problem considered in this
work. Biconnectivity is an interesting problem to study for
two reasons. First, the biconnected components of a graph
can reveal useful information about the graph. For instance,
if the graph represents a computer network, then a bicon-
nected component of the graph is a subset of the network
that will remain connected even if one computer fails, and
articulation points (or bridges) are computers (or connec-
tions between computers) whose failure will disconnect the
network. Second, biconnectivity algorithms are relatively
complex: they are among the most advanced algorithms
given in parallel algorithms textbooks and nearly the most
advanced in serial algorithms textbooks, and biconnectivity
or simpler problems were the basis for papers on other par-
allel computing platforms. Complex algorithms for natural
problems may be better predictors of system behavior than
the often used small kernels.

In serial computing, depth-first search is regarded as the
best biconnectivity algorithm. However, power constraints
impose a limit on the maximum performance of serial pro-
cessors, and parallel processors are becoming the only way
to improve performance. Therefore, it is desirable to find an
efficient parallel biconnectivity algorithm. When it comes to
programming parallel algorithms it is often the case, more
so than with serial algorithms, that there is no single al-
gorithm that performs best in all cases (for example, see
[14]). Instead, the best algorithm to use could be sensi-
tive to the computing platform and the properties of the
input data. In the PRAM theory of parallel algorithms,
the two main performance parameters of an algorithm (as-
suming synchronous execution and availability of as many
processors as needed at each step of the algorithms) are: (i)
work – the total number of operations performed by an al-
gorithm, and (ii) depth – its number of steps. In the case of
graph algorithms, the performance of a given algorithm may
depend not only on the size of the input graph, but other
properties of the input as well, such as the ratio of edges to
vertices or the diameter of the graph.

Given a platform, this suggests viewing all non-dominated
biconnectivity algorithms as a“collage”composed of“patches”,
where each patch represents a particular biconnectivity al-
gorithm and the whole collage is a complete solution to the
biconnectivity problem.

To demonstrate this approach, we evaluate three bicon-
nectivity algorithms on the Explicit Multi-Threaded (XMT)1

architecture developed at the University of Maryland. Be-
cause XMT is an experimental platform, we validate it by
comparing it to a better established platform that uses sim-
ilar silicon area, the NVIDIA GPU. We compare XMT to
the GTX 280 (based on the older Tesla architecture) and the
GTX 480 (based on the newer Fermi architecture) on sig-
nificant portions of the biconnectivity algorithms for which
optimized CUDA code has already been written by other
programmers.

A 1024-core version of XMT, which would use a silicon
area between that of one and two quad-core Intel Core i7
920 processors, demonstrated cycle count speedups of 9x

1Not to be confused with the Cray XMT

to 33x on biconnectivity relative to a serial biconnectivity
algorithm running on the Core i7 920, and further evidence
suggests that speedups of 21x to 48x are possible when the
investment in the design of the parallel processors matches
that of the serial processor. The quantitative contributions
of this paper include

• stronger speedups than in prior parallel biconnectivity
studies (9x to 33x vs. ≤4x) across a varied family of
graphs and

• stronger speedups on parallel connectivity than GPUs
of similar or greater area (between 2x and 4.9x faster
than the GTX 480).

Since Cong and Bader [12] appears to provide the most rel-
evant prior work, we discuss the significance of the contribu-
tions by relating it to their discussion of the challenges they
faced with adopting the Tarjan-Vishkin parallel biconnectiv-
ity algorithm to a 12-processor SMP. Cong and Bader noted
that: (i) the TV algorithm is representative of many parallel
algorithms that take drastically different approaches than
the sequential algorithm to solve certain problems, and it
employs basic parallel primitives such as prefix sum, pointer
jumping, list ranking, sorting, connected components, span-
ning tree, Euler-tour construction and tree computations, as
building blocks; (ii) while prior studies demonstrated rea-
sonable parallel speedups for these parallel primitives on
SMPs, they left unclear whether an implementation using
these techniques achieves good speedup compared with the
best sequential implementation because of the cost of par-
allel overheads encountered (i.e., of resorting to using all
these primitives in the first place instead of doing DFS with
a stack, per Hopcroft and Tarjan’s original serial algorithm);
(iii) looking at the whole algorithm rather than at individual
primitives allows focusing on algorithmic overhead instead
of communication and synchronization overhead; consider-
ing one primitive at a time tends to focus on input repre-
sentations that do not necessarily fit together when used by
a single algorithm; converting representations is not trivial,
and incurs a real cost in implementations; and (iv) direct
implementation of TV on SMPs fell behind the sequential
implementation even at 12 processors. Their conclusion was
to follow the major steps of TV, but use different approaches
for several of the steps, guided by the challenge of reducing
the overheads of TV in order to get ahead of the sequential
implementation on the 12-processor SMP.

Our goal is different. While reducing overheads remains
important, we try to stay much closer to the original PRAM
description of TV taking advantage of the scalable XMT
platform that was engineered to accommodate that. It is
remarkable that XMT manages to get the strong speedups
reported with such a relatively modest silicon budget. Also,
our implementation demonstrates for the first time the po-
tential advantage of enhancing XMT by supporting in hard-
ware more thread contexts, perhaps through context switch-
ing between them. Namely, the significance of the contribu-
tions is

• new evidence supporting the practicality of algorithms
derived from parallel random-access machine (PRAM)
algorithmic theory for speedups and ease-of-program-
ming,

• new evidence demonstrating the advantages of the XMT
architecture for the same, and

• the demonstration of a synergistic approach to the de-
sign of algorithms and architectures.

The results presented herein are specific to graph connec-
tivity and biconnectivity. Other papers [10, 9] show similar
or better speedups for other graph and non-graph problems
on XMT. Admittedly, these results do not (and cannot) es-
tablish the advantage of XMT for all possible tasks for which
one might want to use a general-purpose computer. How-
ever, the importance of this work goes a bit beyond just
providing one more point of reference. In a similar way that
performance, efficiency and effectiveness of a car should not
be tested only in first gear, productivity horizons of pro-
gramming parallel algorithms on a given platform cannot
only be studied using elementary algorithms. Graph con-
nectivity problems provide a test case for a proverbial low
gear with the more basic graph connectivity algorithms, and
higher gear with more advanced graph algorithms for bicon-
nectivity. This and other papers will enable more informed
judgment on the overall relative productivity of various ap-
proaches. Such documented comparisons will reduce the risk
to vendors, allowing them to make better decisions regarding
platforms they may want to build.

1.1 Related Work
Although no studies of biconnectivity algorithms have pre-

viously been published for many-core processors, [12] exam-
ines such algorithms on a symmetric multiprocessor (SMP).
Also, list ranking and connected components algorithms,
two major components of the Tarjan-Vishkin biconnectiv-
ity algorithm, are examined in [5] on an SMP and on the
Cray MTA.

Another parallel framework that bears limited resemblance
to the many-core platforms evaluated here is MapReduce,
which uses large clusters of computers to take advantage of
massive parallelism in very large problems. This approach
was used for estimating the diameter of large graphs in [18],
and the potential to adapt PRAM algorithms into compu-
tationally feasible MapReduce algorithms was discussed in
[19]. However, the applicability of MapReduce to high-end
many-core platforms is not clear and the algorithms exam-
ined in this paper are not necessarily optimal for use in dis-
tributed systems such as MapReduce.

2. EVALUATED ALGORITHMS
Given a graph with n vertices and m edges, the biconnec-

tivity problem can be efficiently solved on a serial computer
in O(n + m) time with an algorithm by Hopcroft and Tar-
jan [17] that performs a depth-first search (DFS) on the
graph. This algorithm does not appear to have an efficient,
poly-logarithmic-time implementation [26]. It is possible to
extract some parallelism from this algorithm using the ap-
proach outlined in Exercise 36 in [32], and the resulting algo-
rithm, which we will refer to as parallel DFS (pDFS), runs in
O(n) time using �m/n�+ 1 processors. The main weakness
of this algorithm is that the amount of parallelism available
depends on the m/n, the“density”of the graph: vertices are
processed in serial, and the parallelism available at a vertex
is limited by its degree. This algorithm provides little to no
parallelism for sparse graphs, where m/n is small.

A more scalable alternative is a biconnectivity algorithm
given by Tarjan and Vishkin in [31] that runs in O(log n)
time using O(n + m) processors. The theoretical running

time of this algorithm depends only on the size of the graph,
not on its structure. This scalability comes at a cost, how-
ever: the Tarjan-Vishkin (TV) algorithm performs more
operations per vertex and per edge than are required by
the serial algorithm or pDFS. Thus, TV may be outper-
formed by other algorithms in certain situations despite be-
ing asymptotically more efficient, especially when running
on computer hardware supporting a modest amount of par-
allelism (e.g. a 4- or 8-core processor).

In these situations, it may be worth modifying TV to be
more work efficient. TV is a modular algorithm that calls
upon parallel algorithms for simpler problems to do its work.
The most significant of these in terms of running time is
an algorithm to compute the connected components of an
undirected graph (connectivity algorithm). To obtain the
complexity bounds in [31], Tarjan and Vishkin used a vari-
ation of the Shiloach-Vishkin (SV) connectivity algorithm
[27], which runs in O(log n) time using O(n + m) proces-
sors. This algorithm is efficient in asymptotic terms, but its
running time has a large constant factor due to the need to
revisit vertices and edges multiple times throughout the al-
gorithm. In some cases, it may be beneficial to use another
connectivity algorithm, such as breadth-first search (BFS),
in place of SV.

In this paper, we evaluate three biconnectivity algorithms,
which we describe below: parallel depth-first search and two
versions of the Tarjan-Vishkin algorithm, one using the SV
connectivity algorithm and another using BFS in addition
to SV.

2.1 Input and Output
The input to a biconnectivity algorithm is an undirected

graph G = (V,E) with n = |V | vertices and m = |E| edges.
Without loss of generality, we assume that G is connected;
if not, the biconnectivity problem can be solved for G by
applying a biconnectivity algorithm to each connected com-
ponent of G. To allow using directly the three biconnectivity
algorithms, the input graph is given in the following format:

• Each undirected edge (u, v) in E is represented as a
pair of antiparallel directed edges, u → v and v →
u. These 2m directed edges are stored in an array
edges[2m] sorted by the first endpoint.

• For each directed edge edgesi = u → v in edges, an
array antiparallel[2m] stores the index j of its antipar-
allel copy edgesj = v → u such that antiparalleli = j
and antiparallelj = i.

• An array vertices[n] stores indices into the edges array
such that, if vertices[u] = i , then edgesi is the first
edge in edges whose first endpoint is u.

• An array degrees[n], where degreesv is the degree of
vertex v.

Given the data listed above, the algorithm is expected to
produce the following output:

• An array bcc[2m] that identifies the biconnected com-
ponent to which each edge belongs such that for any
pair of edges edgesi and edgesj, bcci = bccj if and
only if edgesi and edgesj are in the same biconnected
component.

• An array artic points[a], 0 ≤ a ≤ n of all the articula-
tion points in G.

• An array bridges[b], 0 ≤ b ≤ 2m of the indices in edges
of all the bridges in G.

2.2 Parallel Depth-First Search (pDFS)
The intuition behind pDFS is that, although vertices can-

not be visited in parallel without potentially violating the
order required by a depth-first traversal, edges can be. Ini-
tially, all edges are considered active. Whenever a vertex
is visited in the DFS traversal, all edges leading to that
vertex are canceled, or removed from the set of active edges.
Only active edges are considered when checking for adjacent
vertices. Given an input graph in the format described in
section 2.1, a parallel version of the standard DFS algorithm
proceeds as follows:

1. For each vertex v, create a doubly-linked list of its
incident edges.

• Using one thread per vertex, create an array head[n]
such that headv is the index of the first active
edge in edges originating from v, or −1 if no
such edge exists. Initially, all edges are active, so
headv ⇐ verticesv if degreesv > 0 and headv ⇐
−1 otherwise.

• Using one thread per edge, create the arrays next[2m]
and prev[2m] such that nexti and previ are the
indices in edges of the next and previous active
edges, respectively, that originate from the same
vertex as edgesi, or −1 if no such edge exists.
Initially, nexti ⇐ i + 1 and previ ⇐ i − 1 with
the following exceptions: previ ⇐ −1 if edgesi is
the first edge in edges that shares its origin and
nexti ⇐ −1 if it is the last such edge.

This list contains all of the active edges originating
from v.

2. Define the procedure dfs(v) as follows:

(a) In parallel, for every edge edgesi originating from
v, remove edgesj = w → v, where j = antiparalleli,
from the doubly-linked list in which it is con-
tained:

• if prevj �= −1 then next[prevj] ⇐ nextj else
headw ⇐ nextj

• if nextj �= −1 then prev[nextj] ⇐ prevj

(b) While headv �= −1, invoke dfs(w), where v →
w = edges[headv].

3. Invoke dfs(r) for some arbitrary vertex r

In order to use DFS to solve the biconnectivity problem,
we need two pieces of information about each visited ver-
tex v: its preorder number, prev; and the smallest preorder
number seen while performing DFS on v and its descendants,
lowv . In serial DFS, prev can be computed by keeping track
of the number of vertices visited so far in a global variable
count. Every time a new vertex v is visited, prev is set
to count, and then count is incremented by 1. The value of
lowv is determined by initializing lowv to prev upon entering
v and updating lowv after (re)visiting a child w as follows:
lowv ⇐ min(lowv , loww).

In pDFS, prev can be computed the same way because
the vertices are still visited serially. However, lowv cannot
be because, unlike in serial DFS, visited vertices are never
revisited since all edges leading to a visited vertex are always
canceled. The key observation that allows us to compute
lowv in parallel is the following: the final value of lowv is not
needed until returning from the visit to v. Therefore, lowv

can be computed just before returning from v as follows:
lowv ⇐ min(prev,minw∈children(v)(loww)). The remainder
of the pDFS algorithm is identical to its serial counterpart.

2.3 Tarjan-Vishkin (TV)
The Tarjan-Vishkin biconnectivity algorithm [31] is a PRAM

algorithm that was designed as a scalable alternative to DFS.
It uses the same principle as the DFS biconnectivity algo-
rithm: two edges in a graph are in the same biconnected
component if and only if they are on a common simple cy-
cle. However, TV can use any spanning tree, and it performs
an Euler tour of the spanning tree to compute information
equivalent to that computed in the DFS biconnectivity al-
gorithm. (An Euler tour of a graph is a cycle that visits ev-
ery vertex in the graph and visits every edge exactly once.)
Given an input graph G, TV proceeds as follows:

1. Use a parallel connectivity algorithm to find a span-
ning tree T of G.

2. Compute an Euler tour of T ′, where T ′ is formed by
replacing every undirected edge in T with a pair of
antiparallel directed edges. This results in a linked list
L of edges in T ′.

3. Perform list ranking [14] on L to determine the dis-
tance of each edge from the end of the Euler tour. Use
these distances to determine for each vertex v in T (1)
the preorder prev of v in T and (2) the size sizev of
the subtree of T rooted at v.

4. For each vertex v, compute lowv and highv. These are
the lowest and highest preorder numbers, respectively,
of the vertices in the set consisting of v, the descen-
dants of v, and all vertices that are adjacent to v or
one of its descendants by an edge in G− T .

5. Construct an auxiliary graph G′, where the vertex set
of G′ equals the edge set of T and the edge set of G′ is
constructed as follows, where p(v) denotes the parent
of v in T and v → w denotes an edge in T such that
v = p(w):

• for each edge {v, w} in G − T , add {{p(v), v},
{p(w), w}} to G′ if and only if v and w are unre-
lated in T and

• for each edge v → w in T , add {{p(v), v}, {v, w}}
if and only if loww < v or highw ≥ v + sizev.

6. Compute the connected components of G′. This de-
fines an equivalence relation on the edges of T such
that a pair of edges in T are in the same connected
component of G′ if and only if they are in the same
biconnected component of G.

7. Extend the equivalence relation on the edges of T to
the edges of G − T by defining {v, w} equivalent to
{p(w), w} for each edge {v, w} of G − T such that
prev < prew.

8. Identify the bridges in G, which are the edges v → w
of T such that loww and highw are both descendants
of w.

9. Identify the articulation points in G, which are the
vertices of G that exist in more than one biconnected
component of G.

In steps (1) and (6), any connectivity algorithm may be
used without affecting the correctness of the overall bicon-
nectivity algorithm. The version of this algorithm originally
described by Tarjan and Vishkin uses the SV connectivity
algorithm; we refer to this version simply as the Tarjan-
Vishkin (TV) biconnectivity algorithm.

Our implementation of TV on XMT merits some discus-
sion since it is path-breaking effort towards dual validation
of the XMT platform and PRAM algorithmics. Originally
inspired by PRAM algorithmics and its complexity analysis,
the long-term objective of the XMT platform was to revisit
the more advanced PRAM algorithms and show that their
merit transcends theory. Each PRAM algorithm whose im-
plementation beats the competition for the respective prob-
lem it addresses would constitute partial accomplishment of
this objective. We are not aware of any prior implementa-
tion of a biconnectivity algorithm on XMT or any similar
platform. Only the concomitant work [9] represents imple-
mentation of an algorithm of similar complexity on XMT.

Implementation.
The high-level description given in the original paper [31]

focuses on achieving complexity results, requiring us to find
an implementation that provides good performance. In con-
trast to [12], we leave the core algorithm as is without re-
ducing its available parallelism, but we choose an imple-
mentation that minimizes the amount of work done by the
algorithm. In steps (1) and (6), we compact the adjacency
list every few iterations as more vertices are discovered to be
in the same connected component. In step (3), we accelerate
the iterations by choosing faster but more work demanding
list ranking algorithms for different iterations (“accelerating
cascades”, [11]). Also, to save work we transition as many
computations as possible from the original input graph to
the spanning tree.

The following insights were observed in programming the
TV PRAM algorithm. They attest that the practical chal-
lenge of effectively programming this theoretical parallel al-
gorithm has a similar flavor to the practice of programming
serial algorithms and are much simpler than parallel pro-
gramming approaches such as [13] with their requirements
for decomposition, assignment, orchestration and mapping.

1. Although the same connectivity algorithm is used in
steps (1) and (6), it is worthwhile to code two variants
of it: one that saves the spanning tree computed by the
connectivity algorithm and one that does not. These
two versions take different approaches to handling the
arbitrary concurrent writes that result when multiple
vertices try to hook on the same vertex. The version
that saves the spanning tree needs to know which of the
writes succeeded in order to know which edge should
be added to the spanning tree. On XMT, this is ac-
complished by performing a prefix sum to memory on
a gatekeeper array. On the other hand, if the span-
ning tree is not needed, then it is not necessary to

know which processor succeeded, and this extra work
can be avoided, as the connectivity algorithm is in the
common CRCW model.

2. The best data structure for storing the spanning tree
is the same one as used for the input graph. This can
be derived from the output of step (1) in the following
way. Step (1) produces an array T with one entry per
edge in the input graph where entry i is 1 if edge i is in
the spanning tree and 0 if it is not. The edge list for
the spanning tree should be produced by the standard
order-preserving PRAM compaction algorithm. The
remaining arrays (vertices, degrees, and antiparallel)
can then be trivially derived from the corresponding
arrays in the input graph. If we use instead a platform-
specific optimization (such as prefix sum to registers
on XMT) to create the edge list, then we will not be
able to derive the necessary tree data structure from
the input graph, and it will be difficult to implement
the rest of the biconnectivity algorithm (especially the
Euler tour) efficiently.

3. Depending on the platform, it may be worthwhile to
explicitly relabel the vertices in the graph after rooting
the spanning tree by creating a new edge array where
the entry corresponding to the edge (u, v) contains the
entry (preorder(u), preorder(v)). This is an expen-
sive operation up front, but it can save more time in
later steps of the algorithm when compared to the al-
ternative of accessing the preorder array each time a
relabeled vertex number is needed.

4. When computing global low and high numbers for each
vertex, it is necessary to find the minima/maxima of
some subarrays of preorder numbers. The PRAM algo-
rithms for doing this first find prefix minima/maxima
and suffix minima/maxima relative to subarrays that
occur naturally as a result of using a balanced binary
tree over an array representing an Euler tour. It has
been observed in [33] that a balanced k-ary tree will
be more efficient in practice than a balanced binary
tree with the exact k depending on the specific ma-
chine at hand. Replacing a binary tree by such a k-ary
tree generates different subarrays. This implies find-
ing prefix minima/maxima and suffix minima/maxima
relative to these subarrays, and to retrieving low and
high numbers from them.

2.4 Tarjan-Vishkin with a BFS Spanning Tree
(TV-BFS)

For some inputs, better performance can be obtained us-
ing a connectivity algorithm with worse asymptotic time
bounds but a lower constant factor on work, such as breadth-
first search (BFS). BFS naturally lends itself to a paral-
lel implementation, and such an implementation runs in
O(h log n) time and O(n+m) work, where h is the number
of layers in the BFS traversal of the graph [15]. The value
of h depends on the size and shape of the graph as well as
the starting vertex for the traversal, and it can be as large
as the diameter of the graph. Notably, for graphs with a di-
ameter that is O(log n), BFS runs in poly-logarithmic time
and thus is an asymptotically efficient parallel algorithm.
Even on graphs with somewhat larger diameters, BFS can
run more quickly than SV due to its lower constant factor,

but for graphs with a large diameter relative to the number
of vertices (long, thin graphs), there is too little parallelism
available for BFS to be efficient.

In theory, BFS can be used in place of SV for comput-
ing both the spanning tree of the original graph and the
connected components of the auxiliary graph. However, the
most natural representation for the auxiliary graph gener-
ated by TV is a list of edges in arbitrary order. This rep-
resentation is not suitable as input to BFS, which requires
the graph to be represented as an adjacency list. Therefore,
BFS cannot be used to find the connected components of the
auxiliary graph as is. It is possible to convert the edge list
produced by TV to an adjacency list, but doing so requires
sorting the edge list, which reduces or eliminates the benefit
of using BFS in place of SV, so we do not consider it further.
If the input to the biconnectivity algorithm is in the proper
format, BFS can be used in place of SV to find the spanning
tree of the input graph, and we call this variation TV-BFS.

3. EVALUATED PLATFORMS
We briefly review relevant specifics of the computing plat-

forms on which our experiments are performed. A more de-
tailed overview can be found in [10]. Specifications of the
specific configurations evaluated can be found in Table 1.

GTX 280 GTX 480 XMT-1024 XMT-2048
Principal Computational Resources
Cores 240 SP 480 SP 1024 TCU 2048 TCU

Integer Units 240 ALU 480 ALU 1024 ALU, 1024 ALU,
+MDU +MDU 64 MDU 64 MDU

(Floating Point 240 FPU, 480 FPU, 64 FPU 64 FPU
Units)a 60 SFU 60 SFU
On-chip Memory
Registers 1920KB 1920KB 128KB 256KB
Prefetch Buffers - - 32KB 64KB

Regular caches 480KB 1728KBb 4104KB 4104KB
Constant cache 240KB 120KB 128KB 128KB
Texture cache 496KB 120KB - -

aNone of the algorithms in this paper use the floating-point
units.
b64KB configurable shared memory/L1 cache per SM and
768KB unified L2 cache

Table 1: Specifications of the platforms evaluated in
the experiments (1 KB = 1024 bytes, SP = Stream-
ing Processor, TCU = Thread Control Unit, ALU
= Arithmetic/Logic Unit, MDU = Multiply/Divide
Unit, SFU = Special Function Unit)

3.1 GPUs
Though not originally designed for general-purpose com-

puting, modern graphics processing units (GPUs) are ca-
pable of being used as highly parallel computing platforms;
this usage of GPUs is referred to as general-purpose GPU
(GPGPU). Examples of prevalent GPGPU architectures in-
clude Tesla and Fermi, both by NVIDIA. GPUs based on
the Tesla architecture are widely used, and there are many
parallel applications available to run on them. GPUs based
on the Fermi architecture are newer, and there are fewer ap-
plications optimized specifically for them, though they are
backward compatible with applications written for the Tesla
architecture.

The Tesla architecture consists of a number of Streaming
Multiprocessors (SMs) connected to a number of DRAM
controllers and off-chip memory through an interconnection
network. An SM consists of a shared register file, shared

memory, constant and instruction caches, special function
units (SFUs), and a number of streaming processors (SPs)
with integer and floating point ALU pipelines. SFUs are
4-wide vector units that can handle complex floating-point
operations.

With respect to biconnectivity algorithms, which do not
use floating-point operations, the main advantage of the
Fermi architecture over Tesla is the addition of L1 and L2
caches. In Fermi, each SM has 64 KB of memory, which
can be split into shared memory and L1 cache in one of two
ways: 48 KB shared memory and 16 KB L1 cache or 16 KB
shared memory and 48 KB L1 cache [2]. There is also a 768
KB L2 cache shared by all the SMs.

For more information about Tesla, see [22], and for Fermi,
see [24].

3.2 XMT
The Explicit Multi-Threading (XMT) general-purpose com-

puter architecture is designed to improve single-task comple-
tion time. It does so by supporting programs based on Paral-
lel Random-Access Machine (PRAM) algorithms but relax-
ing the synchrony required by the PRAM model. The XMT
programming model differs from the strict PRAM model in
two ways:

1. The PRAM model requires specifying the instruction
that will be executed by each processor at each point
in time, but XMT uses the work-depth methodology
[28], which allows the programmer to specify all of the
operations that can be performed at each point in time
while leaving to the runtime environment the assign-
ment of those operations to processors.

2. The PRAM model requires instructions to be executed
in lockstep by all processors at once, but XMT pro-
grams follow independence-of-order semantics: paral-
lel sections of code are delimited by spawn-join instruc-
tion pairs, and threads only synchronize when they
reach the join instruction at the end of the parallel
section.

The XMT architecture consists of the following: a number
of lightweight cores (TCUs) grouped into clusters, a single
core (master TCU or MTCU) with its own local cache, a
number of mutually-exclusive cache modules shared by the
TCUs and MTCU, an interconnection network connecting
the TCUs to the cache modules, and a number of DRAM
controllers connecting the cache modules to off-chip mem-
ory. Each TCU has a register file, a program counter, an
execution pipeline, and a lightweight ALU. Each TCU also
contains prefetch buffers, which can be used by the com-
piler to prefetch data from memory before it is needed, re-
ducing the length of the sequence of round trips to memory
(LSRTM) and improving performance [33]. Each cluster has
one or more multiply/divide units (MDUs), floating-point
units (FPUs), and a compiler-managed read-only cache, all
of which are shared by the TCUs within the cluster. When
a parallel section of code is reached, the MTCU broadcasts
the instructions in that section to all of the TCUs, and each
TCU stores the instructions in a buffer. Virtual threads are
assigned to TCUs using a dedicated prefix-sum network.

As noted, a more detailed overview of XMT and the GTX
280 can be found in [10].

3.3 Evaluated configurations
The Tesla and Fermi architectures are used in commer-

cially-available products. Therefore, we do not need to es-
tablish the practicality of their implementation. We choose
the GTX 280 GPU, based on the Tesla architecture, and
the GTX 480, based on the Fermi architecture, to represent
their respective architectures.

Because XMT is an experimental platform, we establish
that XMT is competitive with single-chip multi-cores and
many-cores currently available on the market by choosing a
configuration of XMT that would use resources comparable
to the GTX 280, the less resource-intensive of the two GPUs
evaluated. The GTX 280 uses 576 mm2 of silicon in 65 nm
technology, and according to [10], a 1024-TCU configuration
of XMT would use a comparable silicon area. The GTX 480
uses 529 mm2 of silicon in 40 nm technology and contains
more SPs and memory than the GTX 280. Therefore, it can
be argued that a 1024-TCU configuration of XMT (XMT-
1024) would use at most 529 mm2 of silicon, and likely less,
in 40 nm technology. The 45-nm Intel Core i7 920 quad-core
processor, which uses 263 mm2 of silicon, is half the area of
the GTX 480. This places an upper bound on the area of

XMT-1024; a lower bound of 576mm2× (
45nm
65nm

)2
= 276mm2

can be found by assuming ideal scaling from 65 nm to 45
nm. In summary, XMT-1024 would use

• about the same area as the GTX 280, while remaining
in the same power envelope [20],

• less area than, or at worst the same area as, the GTX
480, and

• an area somewhere between that of one and two Core
i7 920 quad-core processors.

To determine the sensitivity of the biconnectivity algo-
rithms to the number of concurrent hardware threads, we
also consider a configuration of XMT identical to XMT-
1024 with the exception of having twice as many TCUs per
cluster; we call this configuration XMT-2048. We do not
attempt to argue here that the silicon area of XMT-2048
matches the aforementioned GPUs but merely use it as a
reference point.

To collect cycle counts for programs executed on the XMT-
1024 and XMT-2048 configurations, we used XMTSim, the
cycle-accurate simulator of the XMT architecture. XMTSim
and the XMTC compiler are described in [21] and have al-
ready been the basis for several publications including [10].

4. EXPERIMENTAL EVALUATION

4.1 Tested Graphs

Data set Vertices Edges Average Diameter
Degree Min. Max.

1kv-500ke-complete 1,000 499,500 999.00 1 1
20kv-5me-random 20,000 5,000,000 500.00 2 4
1mv-3me-planar 1,000,002 3,000,000 6.00 333,333 333,333
USA-road-d.LKS 2,758,119 3,397,404 2.46 3,240 6,480
web-Google-con 855,802 4,291,352 10.00 15 30

Table 2: Properties of the graphs used in the exper-
iments. For graphs whose diameter is not known,
lower and upper bounds are given based on the num-
ber of layers in a BFS traversal of the graph.

In our experiments, we use three synthetic graphs and two
graphs derived from real-world data. Properties of these
graphs are given in Table 2. The synthetic graphs are as
follows:

• 1kv-500ke-complete: The complete graph of 1,000 ver-
tices (and ∼500,000 edges)

• 20kv-5me-random: A graph with 20,000 vertices gen-
erated by adding 5 million unique edges between ran-
domly selected pairs of vertices

• 1mv-3me-planar: A maximal planar graph with 1 mil-
lion vertices generated layer by layer using the follow-
ing rules:

– The first layer is the complete graph of three ver-
tices (and three edges). Call this graph G1 and
its three vertices the external vertices of G1.

– Given a graph Gi generated according to these
rules with external vertices a, b, and c, generate
a new graph Gi+1 by adding vertices a′, b′, and
c′ and the following edges: (a′, a), (a′, b), (a′, b′),
(b′, b), (b′, c), (b′, c′), (c′, c), (c′, a), (c′, a′). Ver-
tices a′, b′, and c′ are the external vertices of
Gi+1.

The real-world graphs are as follows:

• USA-road-d.LKS: A graph of the road network in the
Great Lakes region, taken from [1].

• web-Google-con: The largest connected component of
the Google web graph of web pages and hyperlinks be-
tween them, taken from [3]. This is actually a directed
graph, but we convert it to an undirected graph by
treating each edge in the original graph as an undi-
rected edge.

Of the five graphs, the first two (the complete graph and
the random graph) are of less interest in practical appli-
cations of biconnectivity because random graphs are very
unlikely to have “interesting” articulation points or bridges
(those that divide the graph into large blocks), and complete
graphs have none at all. They are included only to show the
behavior of the algorithms on dense graphs.

It is possible that larger graphs than the ones listed here
may provide more parallelism. However, for the purposes
of this paper, the evaluated graphs are sufficiently large;
they provide enough parallelism for the SV connectivity al-
gorithm and the TV biconnectivity algorithm, and the paral-
lelism available to TV-BFS and pDFS depends on the shape
of the input graph.

4.2 Results for comparing GPUs and XMT
To support a fair comparison of XMT with the GPUs,

we compare against code optimized by others for GPUs.
However, at the time of this writing, no such code exists to
solve the biconnectivity problem on GPUs. Therefore, we
could only test the most time-consuming algorithms used
in the Tarjan-Vishkin biconnectivity algorithm, which are
logarithmic-time connectivity and BFS.

The 1024-TCU configuration of XMT was already shown
to perform better than the GTX 280 on BFS by a factor of

0

20

40

60

80

100

120

140

160

1kv-500ke-
complete

20kv-5me-
random

1mv-3me-
planar

USA-road-d.LKS Web-Google-
con

Sp
ee

du
p

re
la

tiv
e

to
 s

er
ia

l

Dataset

GTX 280 (Tesla)

GTX 480 (Fermi)

XMT 1024

XMT 2048

Figure 1: Speedups of the parallel SV connectivity
algorithm on the evaluated platforms with respect
to serial DFS running on the Core i7 920.

Dataset GTX GTX XMT XMT
280 480 1024 2048

1kv-500ke-complete 6.60 13.13 64.54 67.56
20kv-5me-random 10.98 15.41 49.09 65.06
1mv-3me-planar 20.45 27.11 99.85 135.79
USA-road-d.LKS 13.45 19.04 38.99 57.35
Web-Google-con 16.58 23.82 89.75 109.53

Table 3: Speedups of the parallel SV connectivity
algorithm on the evaluated platforms with respect
to serial DFS running on the Core i7 920.

5 in [10], so we will not consider it any further in this pa-
per. Instead, we focus on logarithmic-time connectivity and
compare our implementation of the Shiloach-Vishkin con-
nectivity algorithm on XMT against code written by Soman
et al. in [29], the only implementation of graph connectiv-
ity on GPUs we are aware of at the time of this writing.
As shown in Figure 1 and Table 3, XMT with 1,024 TCUs
outperforms the stronger among the GTX 280 and the GTX
480 by factors ranging between 2.2x and 4x on all input data
sets considered.

Soman et al. [29, 30] report that irregular memory access
algorithms such as the ones for finding connected compo-
nents are not a good fit for the GPU computation model,
which relies heavily on regularity of memory access; they re-
view both the practical improvements they introduced to the
SV algorithm in order to reduce its number of operations,
as well as the non-trivial problems they had to overcome in
order to fit the GPU model. While our work shares similar
features with the former, the flexibility of the XMT archi-
tecture freed us from the latter concerns.

This is one of the main results of this paper. We also
expect XMT to perform competitively in solving the bicon-
nectivity problem. This result should not be generalized
much further beyond this; in particular, we do not claim
that XMT provides a similar performance advantage over
GPUs on applications with regular memory access patterns,
for which GPUs were designed.

4.3 Biconnectivity Algorithms: Overall Speed-
ups and Comparison of Algorithms

Figure 2a and the left half of Table 4 show the speed-
ups of the three parallel biconnectivity algorithms on XMT
with respect to serial DFS on the Core i7 920. We used
our implementation of Tarjan’s serial DFS algorithm, simi-

lar to Cong and Bader, who used theirs. The 64-TCU results
were obtained from the Paraleap FPGA [35], and the 1024-
TCU and 2048-TCU results were obtained from the XMT
simulator. The simulator produces inaccurate cycle counts
for serial code because it does not simulate the local cache
of the MTCU. The FPGA does have a local cache for the
MTCU, so it provides more accurate cycle counts for serial
code. The following steps were taken to compensate for this
discrepancy:

• Cycle counts for the serial versions of the algorithms,
which are used as baseline values for the speedups of
the parallel algorithms versus the XMT MTCU, were
measured on the FPGA.

• For pDFS, which is the only parallel algorithm with
a significant serial component evaluated in this paper,
cycle counts for serial sections and parallel sections
of execution were measured separately. For the 1024-
TCU and 2048-TCU results, we added the serial cycle
count from the FPGA to the parallel cycle count from
the simulator to obtain a compensated cycle count.
This compensated cycle count is lower than the true
cycle count because it does not account for the addi-
tional delay of the larger interconnection network in
the simulated configurations. Thus, it forms a lower
bound on the true cycle count. The non-compensated
cycle count is larger than the true cycle count and
therefore forms an upper bound. We report speedups
based on both sets of cycle counts.

We make the following observations about the results and
their significance:

• The lack of significant speedups for the 64-TCU con-
figuration is due in part to the parallel algorithms per-
forming more work than the serial algorithm. What
make achieving speedups relative to the serial Hopcroft-
Tarjan biconnectivity algorithm particularly challeng-
ing is that it is very compact, requiring a single visit to
each vertex and each edge, as opposed to several visits
in the TV-based algorithms.

• The TV algorithm provides speedups of at least 9x
relative to the Core i7 and 21x relative to the XMT
MTCU on all inputs with 1,024 TCUs. This implies
that TV is a good general-purpose parallel biconnec-
tivity algorithm.

• For the 1mv-3me-planar graph, TV provides signifi-
cantly higher speedups than the other algorithms con-
sidered. This is because this graph has a very large
diameter and low degree per vertex, which means that
there is too little parallelism for pDFS and TV-BFS
to exploit. TV is the only algorithm that can provide
adequate performance in this case. It is worth not-
ing that this graph is a good representative of many
real-world graphs for which one might want solve the
biconnectivity problem, so the results for this graph
are likely to show the performance of the algorithms
in typical usage.

• On the 20kv-5me-random graph, TV-BFS provides the
best performance because this graph has a very small
diameter. This means that in situations where the

Speedup vs. Core i7 920 Speedup vs. XMT MTCU
Data set TCUs pDFS TV TV-BFS pDFS TV TV-BFS
1kv-500ke-complete 64 1.25 1.01 1.10 3.73 3.02 3.30

1024 3.45 (4.49) 9.77 6.02 10.31 (13.44) 29.23 18.02
2048 3.38 (4.39) 9.25 7.40 10.13 (13.13) 27.67 22.15

20kv-5me-random 64 0.81 1.08 1.41 2.31 3.09 4.06
1024 2.48 (3.53) 9.53 11.21 7.13 (10.13) 27.37 32.19
2048 2.42 (3.40) 11.30 15.31 6.94 (9.76) 32.44 43.96

1mv-3me-planar 64 0.29 0.97 0.72 0.40 1.35 1.00
1024 0.19 (0.32) 33.63 1.16 0.26 (0.45) 46.72 1.61
2048 0.18 (0.30) 34.50 0.79 0.25 (0.42) 47.92 1.10

USA-road-d.LKS 64 0.09 0.63 0.79 0.14 1.00 1.26
1024 0.05 (0.10) 13.66 12.14 0.09 (0.16) 21.74 19.32
2048 0.05 (0.10) 14.98 11.95 0.08 (0.15) 23.85 19.01

web-Google-con 64 0.32 0.92 1.19 0.52 1.49 1.93
1024 0.21 (0.38) 29.89 28.62 0.34 (0.61) 48.32 46.26
2048 0.20 (0.35) 34.19 30.97 0.32 (0.57) 55.26 50.06

Table 4: Speedups of the evaluated biconnectivity algorithms on XMT relative to the serial DFS-based
Hopcroft-Tarjan biconnectivity algorithm (values in parentheses for pDFS are based on compensated cycle
counts). Key: pDFS = parallel DFS, TV = Tarjan-Vishkin, TV-BFS = Tarjan-Vishkin using BFS to find
the spanning tree.

0

5

10

15

20

25

30

35

40

64 1024 2048 64 1024 2048 64 1024 2048 64 1024 2048 64 1024 2048

1kv-500ke-complete 20kv-5me-random 1mv-3me-planar USA-road-d.LKS web-Google-con

Sp
ee

du
p

re
la

tiv
e

to
 s

er
ia

l D
FS

top: # TCUs
bottom: Dataset

pDFS TV TV-BFS

(a) Speedups vs. the Core i7 920

0

10

20

30

40

50

60

64 1024 2048 64 1024 2048 64 1024 2048 64 1024 2048 64 1024 2048

1kv-500ke-complete 20kv-5me-random 1mv-3me-planar USA-road-d.LKS web-Google-con

Sp
ee

du
p

re
la

tiv
e

to
 s

er
ia

l D
FS

top: # TCUs
bottom: Dataset

pDFS TV TV-BFS

(b) Speedups vs. the XMT MTCU

Figure 2: Speedups of the evaluated biconnectivity algorithms on XMT relative to the serial DFS-based
Hopcroft-Tarjan biconnectivity algorithm. For pDFS, the filled black bar marks a lower bound and the top
of the ”T” above the bar marks an upper bound. Key: pDFS = parallel DFS, TV = Tarjan-Vishkin, TV-BFS
= Tarjan-Vishkin using BFS to find the spanning tree.

graphs being considered are known to be of low diame-
ter, TV-BFS is preferable to TV. Also, for large, dense
graphs, with many more edges than vertices, TV-BFS
is likely to provide superior performance to TV.

• The presented results assume that given an input it is
known which algorithm of the collage to apply. If this
is not the case, then a default option would be to use
TV, or pDFS if the ratio |E|/|V | is sufficiently large.

• For the data sets considered, all of the algorithms ex-
cept for pDFS benefit from increasing the number of
hardware threads from 1,024 to 2,048 when enough
parallelism is available. This is especially noticeable
for TV-BFS on the 20kv-5me-random data set and
TV on the web-Google-con data set. Biconnectivity
algorithms are not very arithmetic-intensive, so addi-
tional hardware threads serve primarily to hide mem-
ory latency. This technique works as long as there
is enough parallelism to keep all of the threads busy
and enough bandwidth to DRAM to fulfill the addi-
tional requests. This case, where additional hardware
threads are needed for latency hiding but not computa-
tion, suggests that it would be worthwhile to augment
the XMT architecture with support for thread con-
text switching, where each TCU stores two or more
sets of thread state and switches contexts whenever a
memory request blocks. The silicon area required to
support context switching would be less than that re-
quired to increase the number of TCUs as functional
units would not need to be duplicated.

• The speedups relative to the XMT MTCU, as shown
in Figure 2b and the right half of Table 4, are between
1.3x and 3x larger than the corresponding speedups
relative to the Core i7 920. Although we base our pri-
mary speedup claims on the Core i7, the speedups rel-
ative to the XMT MTCU are in a sense more relevant,
as the MTCU reflects the same technology and engi-
neering effort as the rest of the XMT architecture and
we expect them to scale up at the same rate as they
are further developed. This suggests that speedups of
21x to 48x could be obtained if XMT were brought up
to industry grade on par with the Core i7.

The reported speedups are made possible by support in
the XMT architecture for the efficient execution of programs
with fine-grained, irregular parallelism. The XMT imple-
mentation of TV consists of many short parallel sections of
code due to the synchronous nature of the algorithm. The
instruction broadcast and prefix-sum network provide a low
overhead for entering parallel sections and starting threads
within a section, which allows even short threads to be prof-
itable. Also, there are many indirect accesses to memory
that, depending on the structure of the graph, may exhibit
poor locality of reference. The TV algorithm provides a
large amount of parallelism (one thread per vertex or per
edge), which allows many memory requests to be issued in
parallel, reducing the impact of the latency of any one re-
quest.

5. DISCUSSION
The discussion below suggests that contrary to common

practice (or belief) there appears to be no principled need

to compromise ease-of-programming in order to get strong
speedups.

• The new NSF/IEEE-TCPP curriculum [4] views the
PRAM model as overly simplistic. In contrast, using
the XMT architecture we were able to obtain stronger
speed-ups than in prior parallel biconnectivity studies,
9x to 33x through direct implementation of PRAM
algorithms versus the previously reported of up to 4x
in [12]. Interestingly, [12] was also driven by PRAM
algorithms, though they had to work around an SMP
architecture.

• Another example is the BFS algorithm. [4] also sug-
gests teaching BFS. The recent paper [25] reported
that none of the 42 students who took a joint UIUC/
UMD parallel algorithms/programming class in Fall
2010 was able to get any speedups using OpenMP on
an 8-processor SMP machine, while the speedups on a
64-processor XMT hardware, which uses at most 1/4 of
the silicon area of the 8-processor machine, ranged be-
tween 7x and 25x. BFS is an example where OpenMP
programming was not substantially different than XMT
programming, but the XMT architecture allowed the
speedup difference. See also the comment on band-
width later in this section.

• The TCPP curriculum does not include any of the
poly-logarithmic PRAM graph algorithms. However,
this paper shows that they provide robust speedups
on XMT that are unmatched by any of the graph al-
gorithms the curriculum lists.

• Speedup problems with OpenMP are not new (for ex-
ample, see [16]). The reason for comparing them with
XMT above is that ease of programming is a priority
for both. A short comparison on ease of programming
follows. Teaching of XMT programming was done in
parallel algorithms courses without any introduction
to architecture and only a 20-minute introduction to
XMT programming [25]. In contrast, the TCPP cur-
riculum ranks parallel algorithms as third in priority
of teaching after architecture and programming. In-
troduction of OpenMP is typically tied to architecture
concepts such as the memory hierarchy.

• Interestingly, [10] and the current paper show that
XMT is also competitive on performance with GPUs,
which are performance-driven but are much more chal-
lenging to program effectively, as demonstrated in the
comparison with [29, 30] in Section 4.2. The starting
point of this research was that the SV parallel connec-
tivity was given as a programming assignment in paral-
lel algorithm courses at our university (name omitted)
and was even solved by a couple of 10th graders in a
course offered at a nearby high school. While our work
reduced the total of operations (without the changing
the basic work complexity of SV), our biggest effort
was the extension beyond connectivity to biconnectiv-
ity. For this reason, the fact that no GPU biconnec-
tivity implementation has been reported in spite of
the mushrooming of GPU research is perhaps another
demonstration of the practicality of XMT program-
ming relative to GPU programming. Personal commu-
nication with the authors of [29] regarding the wording

of their reference to possible use of their GPU connec-
tivity program in a biconnectivity one confirmed that
it was not meant to pass judgment on the relative dif-
ficulty of the two programs.

• In contrast to the implementation of biconnectivity for
SMPs by Cong and Bader [12], which consists of over
5,800 lines of C code, our implementation for XMT
only requires about 1,600 lines of code. Also, the effort
required to tune and debug our implementation was
comparable to that required for a serial program of
similar size. In fact, serial debugging tools (GDB and
Valgrind) were sufficient to catch and fix nearly all
bugs in our parallel XMTC code.

• Much of the effort in writing the parallel biconnectiv-
ity code was in writing and tuning functions to per-
form basic tasks in parallel such as prefix sum, range-
minimum queries, finding a spanning tree of a graph,
and computing the preorder numbering of the nodes
in a tree. These basic tasks are more general than bi-
connectivity and can be separated into a standalone
library for reuse in other software projects.

• Using the above library, we plan to give biconnectivity
as an optional programming assignment to a gradu-
ate class in the Spring 2012 semester. Providing the
library to the students will reduce the complexity of
the task to that of understanding how the PRAM al-
gorithm works and seeing how the building blocks pro-
vided by the library can be assembled to construct a
working implementation.

• Since the PMAM/PPoPP community is represented
on both sides of the unfolding debates presented here,
we thought that this discussion would be of interest in
spite of its length.

For placing this debate in historical context, recall that
claims that the main reason that parallel machines are dif-
ficult to program is that the bandwidth between processors
and memories is so limited are not new, as formally demon-
strated in [23, 34]. [8] suggested that: 1. Machine man-
ufacturers see the cost benefit of lowering performance of
interconnects, but grossly underestimate the programming
difficulties and the high software development costs implied.
2. Their exclusive focus on runtime benchmarks misses crit-
ical costs, including: (i) the time to write the code, and (ii)
the time to port the code to different distributions of data
or to different machines that require different distribution of
data. The XMT platform [6, 7] was finally able to demon-
strate an affordable prototype providing the bandwidth that
the 1994 paper [8] sought, but using today’s technology.

Competition among hardware vendors in the desktop com-
puting space has greatly diminished in recent years. Yet, the
adoption of the few industry many-core solutions falls far be-
hind serial platforms, which is a cause of extra concern. As
believers in the eventual power of ideas, we are doing our
best with XMT to keep some intellectual competition alive
in spite of the huge funding gap with industry.

6. CONCLUSION
Of the biconnectivity algorithms evaluated, the logarithmic-

time Tarjan-Vishkin algorithm, derived using PRAM algo-
rithmic theory, provided the best performance overall. Of

the parallel computing platforms evaluated, the XMT plat-
form, designed with PRAM algorithms in mind, provided
the best performance. These two facts demonstrate that
with the proper many-core architecture, the relative sim-
plicity of the PRAM can, perhaps surprisingly, be combined
with the best performance.

More generally, this work provides another example that
should help void PRAM criticism and address asymptotic
analysis criticism. Criticism of the PRAM model has some-
time been confused with criticism of the constants hidden
by asymptotic analysis. In our opinion the XMT platform,
which was originally inspired by PRAM algorithmics, and
the performance it facilitated have voided much of the crit-
icism on the PRAM model. However, one has to be a bit
more careful with understanding the issue of constant fac-
tors. In the same way that theoretical papers on serial al-
gorithms and their asymptotic analysis were often followed
by separate efforts minimizing constant factors, the current
work complements the original theory PRAM papers by
reducing them to practice with respect to XMT, account-
ing for constant factors and concrete speedups. This often
amounts to first modifying a published PRAM algorithm to
another PRAM algorithm or other supporting data struc-
tures whose constant factors are better, which is, in fact,
where the intellectual merit of this work lies; only then the
revised PRAM algorithm is programmed for the XMT plat-
form, which turns out to be a rather simple task. For bicon-
nectivity, even optimizing LSRTM for performance tuning
of XMT (per [33] as noted earlier), was adequately picked
up by the compiler.

7. ACKNOWLEDGMENTS
We would like to thank the authors of [29] for providing

us with the CUDA code for graph connectivity tested in this
paper.

8. REFERENCES
[1] The ninth DIMACS implementation challenge: The

shortest path problem.
http://www.dis.uniroma1.it/~challenge9/, 2005.

[2] NVIDIA’s next generation CUDA compute
architecture: Fermi. http://www.nvidia.com/
content/PDF/fermi_white_papers/NVIDIA_Fermi_

Compute_Architecture_Whitepaper.pdf, 2009.

[3] Stanford network analysis platform.
http://snap.stanford.edu/index.html, 2009.

[4] NSF/IEEE-TCPP curriculum initiative on parallel
and distributed computing - core topics for
undergraduates. http:
//www.cs.gsu.edu/~tcpp/curriculum/index.php,
December 2010.

[5] D. Bader, G. Cong, and J. Feo. On the architectural
requirements for efficient execution of graph
algorithms. In Proc. Int’l Conf. on Parallel Processing
(ICPP), pages 547–556, June 2005.

[6] A. Balkan, M. Horak, G. Qu, and U. Vishkin.
Layout-accurate design and implementation of a
high-throughput interconnection network for
single-chip parallel processing. In Hot Interconnects
15, pages 21–28, August 2007.

[7] A. Balkan, G. Qu, and U. Vishkin. An area-efficient
high-throughput hybrid interconnection network for

single-chip parallel processing. In Proc. IEEE/ACM
Design Automation Conf., pages 435–440, June 2008.

[8] G. E. Blelloch, B. M. Maggs, and G. L. Miller. The
hidden cost of low bandwidth communication. In
U. Vishkin, editor, Developing a computer science
agenda for high-performance computing, pages 22–25.
ACM Press, New York, NY, USA, 1994.

[9] G. Caragea and U. Vishkin. Better speedups for
parallel max-flow, brief announcement. In Proc.
ACM-SPAA, 2011.

[10] G. C. Caragea, F. Keceli, A. Tzannes, and U. Vishkin.
General-purpose vs. GPU: Comparison of many-cores
on irregular workloads. In HotPar ’10: Proceedings of
the 2nd Workshop on Hot Topics in Parallelism.
USENIX, June 2010.

[11] R. Cole and U. Vishkin. Deterministic coin tossing
and accelerating cascades: micro and macro
techniques for designing parallel algorithms. In
Proceedings of the eighteenth annual ACM symposium
on Theory of computing, STOC ’86, pages 206–219,
New York, NY, USA, 1986. ACM.

[12] G. Cong and D. Bader. An experimental study of
parallel biconnected components algorithms on
symmetric multiprocessors (SMPs). In Proc. 19th
IEEE International Parallel and Distributed
Processing Symposium., page 45b, April 2005.

[13] D. Culler and J. Singh. Parallel Computer
Architecture: A Hardware/Software Approach.
Morgan-Kaufmann, 1999.

[14] S. Dascal and U. Vishkin. Experiments with list
ranking for explicit multi-threaded (XMT) instruction
parallelism. J. Exp. Algorithmics, 5, December 2000.

[15] D. M. Eckstein. Parallel graph processing using
depth-first search and breadth-first search. PhD thesis,
University of Iowa, 1977. AAI7728449.

[16] K. Fürlinger and M. Gerndt. Analyzing overheads and
scalability characteristics of OpenMP applications. In
High Performance Computing for Computational
Science - VECPAR. 2006.

[17] J. Hopcroft and R. Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378, June 1973.

[18] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos,
and J. Leskovec. HADI: Fast diameter estimation and
mining in massive graphs with Hadoop, 2008.

[19] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 938–948, 2010.

[20] F. Keceli, T. Moreshet, and U. Vishkin.
Power-performance comparison of single-task driven
many-cores. Under review.

[21] F. Keceli, A. Tzannes, G. C. Caragea, R. Barua, and
U. Vishkin. Toolchain for programming, simulating
and studying the XMT many-core architecture, 2010.
Under review.

[22] E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro, 28:39–55, 2008.

[23] Y. Mansour, N. Nisan, and U. Vishkin. Trade-offs
between communication throughput and parallel time.

In Proc. 26th Annual ACM Symp. on Theory of
Computing, pages 372–381, 1994.

[24] J. Nickolls and W. Dally. The GPU computing era.
IEEE Micro, 30(2):56–69, March-April 2010.

[25] D. Padua, U. Vishkin, and J. Carver. Joint
UIUC/UMD parallel algorithms/programming course.
In First NSF/TCPP Workshop on Parallel and
Distributed Computing Education (EduPar-11) , in
conjunction with IPDPS, Anchorage, Alaska, May 16,
2011.

[26] J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5):229–234, 1985.

[27] Y. Shiloach and U. Vishkin. An O(log n) parallel
connectivity algorithm. J. Algorithms, 3(1):57–67,
1982.

[28] Y. Shiloach and U. Vishkin. An O(n2 log n) parallel
max-flow algorithm. J. Algorithms, 3(2):128–146,
February 1982.

[29] J. Soman, K. Kishore, and P. Narayanan. A fast GPU
algorithm for graph connectivity. In Parallel
Distributed Processing, Workshops and PhD Forum
(IPDPSW), 2010 IEEE International Symposium on,
pages 1–8, April 2010.

[30] J. Soman, K. Kishore, and P. Narayanan. Some GPU
algorithms for graph connected components and
spanning tree. Parallel Processing Letters,
20(4):325–339, December 2010.

[31] R. E. Tarjan and U. Vishkin. An efficient parallel
biconnectivity algorithm. SIAM J. Computing,
14(4):862–874, 1985.

[32] U. Vishkin. Thinking in parallel: Some basic
data-parallel algorithms and techniques.
http://www.umiacs.umd.edu/users/vishkin/

PUBLICATIONS/classnotes.pdf, February 2009.

[33] U. Vishkin, G. Caragea, and B. Lee. Models for
advancing PRAM and other algorithms into parallel
programs for a PRAM-on-chip platform. In
S. Rajasekaran and J. Reif, editors, Handbook on
Parallel Computing: Models, Algorithms, and
Applications, chapter 5. Chapman and Hall/CRC
Press, 2008.

[34] U. Vishkin and A. Wigderson. Trade-offs between
depth and width in parallel computation. SIAM J.
Computing, 14(2):303–314, 1985.

[35] X. Wen and U. Vishkin. FPGA-based prototype of a
PRAM-on-chip processor. In Proceedings of the 5th
conference on Computing frontiers, CF ’08, pages
55–66, New York, NY, USA, 2008. ACM.

