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Parallel Simulation of Many-core Processors:
Integration of Research and Education

Abstract

Providing undergraduate students with an opportunity to experience meaningful academic
research has a potential impact on their future career choice. Our approach combines two
seemingly contradicting attributes: (i) to make it exciting, the effort targets a grand research
objective; and (ii) to make the experience self-assuring and overall positive, the concrete task
handed to a student is feasible, given their background and time constraints, while still
contributing towards the grand objective. We believe that this can motivate a wider range of
undergraduate students, including underrepresented groups of undergraduate engineering students
to pursue an engineering career path, academic or otherwise.

In this paper, we describe a pilot of an on-going, multiple-year research project, carried out by
undergraduate female students incorporating research andeducation in computer science and
engineering (CS&E). Many-core processors are becoming increasingly popular in
general-purpose computing. While most researchers agree that this requires introduction of
parallelism to mainstream CS&E practice, and hence education, parallel programming difficulties
remain obstacles that are yet to be overcome. For concreteness, the research project involves a
certain many-core framework, called eXplicit Multi-Threading (XMT). The XMT framework
provides a general-purpose many-core architecture for fine-grained parallel programs that scales
to a thousand lightweight cores, aiming to improve single task execution time through
parallelism. What makes XMT attractive is that it has been supported by significant evidence on
ease-of-programming and competitive performance. The XMTplatform consists of a
proof-of-concept 64-core FPGA and ASIC prototypes and a highly configurable cycle-accurate
simulator (XMTSim), capable of modeling a target 1024-coreXMT.

Our work aims to parallelize XMTSim. (i) The grand objectiveis to establish that XMT is an
effective self-simulating machine; namely, to efficientlysimulate the XMTSim code by XMTSim
itself. What makes this objective grand, and therefore inspiring, is that one of the elegant features
of Turing machines was their ability to provide self-simulations. This feature has been used in
support of the thesis that Turing machines are general-purpose. (ii) The combined milestone for
the student projects is parallelizing the most computationally time-consuming component of
XMTSim, the Interconnection Network (ICN) of XMT. (iii) Each student is being given a part of
the job.

Introduction

Research opportunities for undergraduate students are becoming more common, and
undergraduate students often expect to experience academic research before they graduate.
Moreover, a positive and meaningful experience with engineering research contributes to the
motivation of these students to pursue a future career in engineering and computer science,
whether in graduate school or industry. Yet, finding ways of involving undergraduate students in
active research introduces many challenges (e.g. [4]). Furthermore, ensuring that the research
experience benefits the students as well as advances the research is an even greater challenge.



Our research involves parallel computing in the form of many-core processors. In order for an
existing program’s performance to improve with new generations of multiprocessors, the program
needs to be parallelized. However, extracting parallelismfrom a serial task, and parallel
programming in general, is a major challenge to the softwareindustry and anyone using
computers [5].

The undergraduate students that are involved in our research have limited time to dedicate to
research, and usually come with little preparation. These factors add to the inherent complexities
of parallel programing. The eXplicit Multi-Threading (XMT) general-purpose many-core
platform for fine grained parallel programs makes an attractive framework given the above
challenges. XMT is easy to teach, facilitating a smoother learning curve for students that are new
to parallel programming and have limited background in parallel architectures [9].

In this work, we aim to parallelize the cycle-accurate simulator of XMT, XMTSim, with the
following goals:

1. Establish that XMT is an effective self simulating machine; namely simulating efficiently
the XMTSim code by XMTSim itself.

2. Parallelize the most computationally time-consuming component of the simulation, the
Interconnection Network (ICN).

3. Carving out the parallelization task into small projectssuitable for a single undergraduate
student to pursue in one summer.

This paper presents a pilot study intended to reinforce the claim that XMT is easy to teach, by
demonstrating that the students were able to learn to parallel program well enough to advance our
research goal within the limited time scope. Our preliminary results already show that
parallelizing the ICN obtains simulation speedups of x54 compared to the best serial
implementation on a 64-core XMT. A large factor that enabledus to achieve this goal was
breaking down the project into smaller, more manageable components.

Computer engineering and science is underrepresented by certain groups, mainly women and
minorities. There is an increasing effort to attract these groups, with one example being DREU:
distributed research experience for undergraduates from underrepresented groups [3]. We believe
that XMT makes for a good medium to attract these groups, or toretain them in the field.

The XMT Many-core Platform

The primary goal of the eXplicit Multi-Threading (XMT) general-purpose computer
architecture [10] has been improving single-task performance through parallelism. XMT was
designed from the ground up to capitalize on the huge on-chipresources becoming available in
order to support the formidable body of knowledge, known as Parallel Random Access Model
(PRAM) algorithmics [7], and the latent, though not widespread, familiarity with it. Driven by the
repeated programming difficulties of parallel machines, ease-of-programming was a leading
design objective of XMT.

The XMT architecture, depicted in Figure 1, includes an array of lightweight cores, Thread
Control Units (TCUs), and a serial core with its own cache (Master TCU). The architecture



includes several clusters of TCUs connected to mutually-exclusive shared cache modules by a
highly optimized interconnection network [1]. XMT does notfeature writable private caches
except for the Master TCU. Moreover, since the cache modulesare mutually exclusive, no cache
coherence is required. TCUs include lightweight ALUs, but the more heavy-weight units are
shared by all TCUs in a cluster. XMT is programmed in XMTC, a simple extension of the C
language which contains succession of serial and parallel code sections. The code of a parallel
section is expressed in the SPMD (single program, multiple data) style, specifying an arbitrary
number of virtual threads sharing the same code. Further details on the XMT architecture can be
found in [10].
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Figure 1:The XMT architecture.

XMT allows concurrent instantiation of as many threads as the number of available processors.
Tasks are efficiently started and distributed thanks to the use of prefix-sum for fast dynamic
allocation of work and a dedicated instruction and data broadcast bus.

To handle a high level of parallelism, the memory architecture of XMT partitions data from the
first level of on-chip caches. The interconnection network (ICN) connects the TCUs (processors)
and the shared caches. It is implemented in a Mesh-of-Trees configuration with the goal of
minimizing the number of queuing bottlenecks for fast and reliable communication [2].

Architectural Simulation of XMT

Computer architects rely on software simulation tools to model and evaluate future architectures.
The main advantage of simulation is that it is less costly andmore flexible than hardware
implementation. A main disadvantage is that software is significantly slower than hardware,
which inhibits the extent of evaluation that is feasible in simulation. For instance, it may take
hours of simulation time to model one second of hardware processing time.

XMTSim is the highly configurable cycle-accurate simulatorof the XMT architecture. It
accurately models the interaction between micro-architectural components, including the TCUs,
functional units, caches, and the interconnection network. XMTSim is verified against the



64-TCU FPGA prototype of the XMT architecture. More detailson the XMT toolchain can be
found in [6].

In contrast with the majority of today’s many-core processors, which may be utilized for a range
of tasks, but are designed specifically for graphics processing [8], XMT is a general-purpose
many-core processor by design. Establishing that XMT is a self-simulating machine would
provide supporting evidence for its general-purposeness.

Demonstrating that XMT is a self-simulating machine can be done by simulating XMTSim on
XMTSim. For completeness, XMTSim needs to be parallelized and efficiently run on the target
XMT model. Parallelizing XMTSim also has the secondary benefit of improving simulation time:
XMT simulations can be run on the 64-core FPGA computer and furthermore, the parallelized
code can be used as a template to port XMTSim to current commercially available parallel
machines.

Parallel ICN: Student-led Projects

The interconnect simulation constitutes a significant partof the full chip simulation time in the
cycle-accurate XMT simulator, XMTSim. We found through profiling the serial-Java XMTSim
on an Intel XEON server processor that it takes from 38% to 58%of the simulation time
(depending on the program being simulated). Parallelizingthe ICN is therefore a logical first step
towards our overall objective of parallelizing XMTSim.

Undergraduate students at Swarthmore College, like in manyother institutions, have limited time
that they can dedicate for active research. Typically, theycan choose to dedicate 10 weeks during
a summer to full time research. Moreover, most students prefer to explore different research and
internship opportunities during their undergraduate years, and as a result do not return to work on
the same project for more than one summer.

The students that join our research are typically rising juniors or seniors, with some background
in programming and digital systems, but with limited to no background in computer architecture
and parallel and distributed systems. We therefore must utilize those 10 weeks efficiently to
familiarize the students with our research project, train them to use the XMT toolchain, make
progress, and document their work for future students. The effort dedicated by students to
documentation and its quality has a significant influence on the experience and productivity of
future students.

Any student joining our team should ideally be able to start with a well-defined task that can then
be expanded if time permits. The ICN code of XMTSim is self-contained and more basic than
other components of the simulator, making it more suitable for smaller projects, and for a limited
time scope. Next, we describe the ICN simulation and the scope of past student projects.

When we search for students to join our group, we give preference to those students that have
better preparation and demonstrate more profound interestin our work. On top of these criteria,
we also give preference to female and minority students. While our research does not offer aspects
that may target these students in particular, we aim to encourage these students to work with us.



ICN Simulation

The Mesh-of-Trees Interconnection Network (MoT-ICN) is composed of fan-in and fan-out trees.
There is a fan-out tree for each XMT processor cluster sending memory requests, with the
processor cluster representing the root of the tree, and a fan-in tree for every memory module
receiving requests, with the memory module representing the root of the tree. A similar network
returns data from memory to the processor clusters. A 64-core XMT MoT-ICN consists of two
sets of 64 fan-in and 64 fan-out trees to connect 64 cores with64 memory modules in both
directions. Sample trees are shown in Figure 2.

Figure 2:Sample ICN fan-out and fan-in trees.

The basic building block of each MoT-ICN tree is a pipeline primitive, representing a node in the
tree. The pipeline primitive is simulated as 2-entry FIFO, as in Figure 3. The modeling of each
stage requires two data storage holders, which we call IN andOUT in reference to the input and
output buffers of a FIFO, and two signal variables,r andks. These signals communicate the
occupation and availability states between neighboring FIFOs. Simulation of one clock cycle
consists ofstepandresetphases. In the step phase, the data is moved between stages based on the
values ofr andks. In thereset phasethe values of ther andkssignals are set according to the
number of full buffers. In theshift phase, the data is moved from the IN to the OUT buffers for
FIFOs that contain a single job. Within each of these phases,the simulation can potentially be
performed in parallel for all pipeline stages. However, correctness becomes an issue when the
actions of phases are intermixed.

Figure 3:Sample pipeline. Only ks and r signals are shown, and data flows from left to right.



In order to evaluate the effectiveness of a parallel simulation, we need to generate an optimized
serial simulation of the MoT-ICN to serve as a baseline. The simulation of a full ICN consists of
the following steps:

1. Run the reset phase of all trees.

2. Determine the tree input ports for which packets will be generated (for setting ther signals
at the tree roots).

3. Run the step phase of all trees.

4. Pass the outputs of fan-out trees to fan-in trees.

5. Collect outputs.

6. Set input packets.

Project I

The first undergraduate student project involved optimizing the serial version of the ICN
simulation, as well as making an initial attempt to parallelize it with different levels of granularity.

The simulation of the MoT-ICN can be programmed with different degrees of parallelism:

• Serial - The entire network is assigned to a single thread.

• Course-grained parallelism - Each tree is assigned to a dedicated thread.

• Medium-grained parallelism - Groups of nodes in each tree are assigned to a dedicated
thread.

• Fine-grained parallelism - Each node is assigned to a dedicated thread.

In the serial version we can control the order in which the nodes are processed. This allows
certain optimizations that overlap the actions in different phases, hence minimizing the total
number of operations.

The fine-grained parallel version provides maximum parallelism, since every node in the network
can be updated simultaneously, using a separate thread. However, the order in which the nodes
are processed is not deterministic when this level of parallelism is introduced, thus preventing us
from utilizing some of the optimizations used in the serial version.

With a coarse-grained parallel version, one tree is allocated to each thread. As a result, there are
no conflicts between threads, and the same optimizations used in the serial version can be applied.
However, this version limits the number of threads, and under-utilizes the processors on a
1024-core XMT configuration.

A medium-grained parallel version allocates multiple threads per tree. An individual tree can
either be split up by node number (Figure 4) or by “sub-trees”(Figure 5). The former allocation
technique allows to parameterize the number of nodes assigned to each thread for optimizing
performance, but introduces conflicts that prevent using the serial version optimizations. The
latter allocation technique makes for a more complicated assignment of threads to nodes, but



guarantees no conflicts between internal nodes of sub-trees, thus allowing for more code
optimizations.
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Figure 4:Allocating threads based on node number.
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Figure 5:Allocating threads based on subtrees.

Project II

The baseline serial and subsequent parallel simulations described so far iterate through all the
nodes in the tree in each of the simulation phases. We call this approach theevery-node
simulation. In order to improve simulation speed, we propose a fundamental change in the
underlying simulation algorithm, calledactive nodesimulation, where we only iterate through
those nodes in the tree that contain data packets at any givensimulation phase. This approach is
potentially more efficient when the number of packets in the ICN is significantly lower than the
number of nodes.

The second undergraduate student project involved modifying both the serial and best performing
parallel version of the ICN simulation to implement theactive-nodealgorithm, and comparing the
two. Currently, only the step phase loops through the activenodes and the reset phase is used to
create an array containing references to the active nodes.



Experimental Results

We simulated a 64 processor, 64 memory module ICN configuration on a 64-core XMTSim
platform. Figure 6 presents the highlights of our results.

Figure 6:Speedup vs. best serial version.

The every-node approach was simulated with each of the four variants: serial execution, coarse,
medium, and fine-grained parallelism. The best serial execution was run on the embedded serial
processor of XMT (not the Intel processor mentioned earlier). The coarse-grained parallelism
version was the optimal one, with speedups of 45x over the best serial version. As discussed
above, this version allocates one tree to each thread and thus minimizes synchronization conflicts
between threads. The simulated ICN consists of 2x64 trees, which scale well with our simulated
64-core XMTSim platform. The other versions demonstrate lower performance due to the
overhead incurred by instantiating a larger number of threads.

The active-node approach achieves additional gains, providing a speedups of up to 54x compared
to the best serial implementation. These speedups are achieved with the coarse-grained
parallelism variant, with a network load where one packet issent through each fan-out tree root
every cycle. These packets are then routed homogeneously along the available destination ports.
Recall that the active-node approach only iterates throughtree nodes containing data packets at
any point during simulation. We simulated this approach with variable network load, and it
demonstrates increasing speedups as the number of packets in the network decreases, resulting in
an increasing number of inactive tree nodes.

It is important to note that active-node speedups are obtained in the step phase alone, where the
optimization effort was concentrated. In fact, some of the speedups are offset by a slight
slowdown in the reset phase, due to additional overhead required for the creation of the
active-node data structures. Future work will focus on parallelizing the reset phase.



Educational Insights

This is a pilot study of an on-going multi-year project. As such, validating and measuring our
success in achieving our stated goals is a continuing process. First, the fact that the students have
been able to provide correct (e.g., working) programs with speedups over serial versions is a
significant form of validation of the teachability of our XMTplatform. The results demonstrate a
step towards the completion of our combined milestone of a parallel ICN. Furthermore, both
students contributed to the selection and definition of the work to be performed. In order to do
this effectively, they had to highly familiarize themselves with the project as a whole.

What makes our project distinct from other research projects is the adaptation of an active
long-term research project to a set of limited scope projects to be done solely by undergraduate
students. To this end, we seek to define individual projects whose overall long term result is
greater than the sum of the parts. This, along with the limited time-scope of each project, is
different from other research projects designed specifically for undergraduate students. For
example, Hadfield describes the integration of research experience into the undergraduate
curriculum [4]. In their case, research training is provided to the students over multiple years, as
they work towards a cumulative research experience. In contrast, we aim to make the best out of a
single 10 week period that each student has available to dedicate to this research project.

Validating the objective of motivating undergraduate engineering students, in our case women, to
pursue an engineering career path is more complex. In order to effectively access this objective,
we would need to continue the project for a few more years, have more undergraduate students
participants, and also be able to follow the participants post graduation. As a short-term feedback
we interviewed the two students involved in the project thusfar.

Both students, K and R, felt that their summer research experience had some contribution in
re-enforcing their future plans for a career in engineering.

K was able to obtain a summer internship in the following summer. She found that her summer
research experience was very helpful in her work since, in contrast to other interns, she did not
feel overwhelmed by entering a large coding project. As partof our research team, she was able
to gain meaningful experience in a larger scope project, in familiarizing herself with code written
by someone other than herself, and in modifying and extending it coherently with its current
programming style.

R also felt that her experience taught her a lot about organization and design of a large
programming project using modularity. She thought one of the important things she learned from
this experience was learning to study independently from available resources. Since she had no
background in computer architecture before joining the project, she spent part of the summer
learning architecture, as well as strengthening her background in C programming.

R found that her involvement in this project encouraged her to pursue a graduate degree in
computer engineering after graduation, and also helped herdetermine which type of research she
would specifically be interested in pursuing. It also openedup more options for her next summer,
since she now feels confident about being able to obtain both other summer research positions and
internships. K plans to obtain a job in the computer engineering field following graduation, and
recommended our research project to R. Both said they would recommend it to others.



Conclusion

The XMT is a novel many-core architecture which is well suited for teaching the challenging task
of writing parallel programs in a many-core environment. This project presented a great
opportunity for undergraduate students to participate in cutting-edge research while reinforcing
their choice of pursuing an engineering career.

While undergraduates realize that their work cannot achieve a high-impact research goal alone,
our students were able to provide a validated first step towards the completion of our goal of
self-simulation. The experience they gained encouraged them to explore additional engineering
internships and research experience prior to graduation.

As future work, we intend to continue this project with more student participants. Once more data
is available, we intend to provide a more extensive evaluation of our goals. We are also interested
in comparing the career paths pursued by students involved in this project to those pursued by
students involved in other research projects and those not participating in active research during
their undergraduate education.
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