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Parallel Smulation of M any-core Processors:
I ntegration of Research and Education

Abstract

Providing undergraduate students with an opportunity fieeence meaningful academic
research has a potential impact on their future career eh@ar approach combines two
seemingly contradicting attributes: (i) to make it exagtithe effort targets a grand research
objective; and (ii) to make the experience self-assurirjarerall positive, the concrete task
handed to a student is feasible, given their backgroundiareldonstraints, while still

contributing towards the grand objective. We believe thet tan motivate a wider range of
undergraduate students, including underrepresenteggafiundergraduate engineering students
to pursue an engineering career path, academic or otherwise

In this paper, we describe a pilot of an on-going, multipéatyresearch project, carried out by
undergraduate female students incorporating researchdughtion in computer science and
engineering (CS&E). Many-core processors are becominmgasingly popular in
general-purpose computing. While most researchers agaééhis requires introduction of
parallelism to mainstream CS&E practice, and hence educgtarallel programming difficulties
remain obstacles that are yet to be overcome. For concestetie research project involves a
certain many-core framework, called eXplicit Multi-Thokag (XMT). The XMT framework
provides a general-purpose many-core architecture foigiamed parallel programs that scales
to a thousand lightweight cores, aiming to improve singsi &xecution time through
parallelism. What makes XMT attractive is that it has begrpsuted by significant evidence on
ease-of-programming and competitive performance. The XMiform consists of a
proof-of-concept 64-core FPGA and ASIC prototypes and alfziigonfigurable cycle-accurate
simulator (XMTSim), capable of modeling a target 1024-Cok&T.

Our work aims to parallelize XMTSim. (i) The grand objectigdo establish that XMT is an
effective self-simulating machine; namely, to efficierglynulate the XMTSim code by XMTSim
itself. What makes this objective grand, and thereforeirirgp is that one of the elegant features
of Turing machines was their ability to provide self-sintidas. This feature has been used in
support of the thesis that Turing machines are generalgserp(ii) The combined milestone for
the student projects is parallelizing the most computaligriime-consuming component of
XMTSim, the Interconnection Network (ICN) of XMT. (iii) Edcstudent is being given a part of
the job.

I ntroduction

Research opportunities for undergraduate students aogrtdeg more common, and
undergraduate students often expect to experience acadesearch before they graduate.
Moreover, a positive and meaningful experience with ergyiing research contributes to the
motivation of these students to pursue a future career imeagng and computer science,
whether in graduate school or industry. Yet, finding wayswblving undergraduate students in
active research introduces many challenges (e.g. [4]thBumore, ensuring that the research
experience benefits the students as well as advances tlhedatesean even greater challenge.



Our research involves parallel computing in the form of maaye processors. In order for an
existing program’s performance to improve with new genenatof multiprocessors, the program
needs to be parallelized. However, extracting parallefremm a serial task, and parallel
programming in general, is a major challenge to the softwatestry and anyone using
computers [5].

The undergraduate students that are involved in our reséance limited time to dedicate to
research, and usually come with little preparation. Thastfs add to the inherent complexities
of parallel programing. The eXplicit Multi-Threading (XNJGeneral-purpose many-core
platform for fine grained parallel programs makes an attra¢tamework given the above
challenges. XMT is easy to teach, facilitating a smoothamang curve for students that are new
to parallel programming and have limited background in perarchitectures [9].

In this work, we aim to parallelize the cycle-accurate siaol of XMT, XMTSim, with the
following goals:

1. Establish that XMT is an effective self simulating ma&)inamely simulating efficiently
the XMTSim code by XMTSim itself.

2. Parallelize the most computationally time-consumingponent of the simulation, the
Interconnection Network (ICN).

3. Carving out the parallelization task into small projestigable for a single undergraduate
student to pursue in one summer.

This paper presents a pilot study intended to reinforce liendhat XMT is easy to teach, by
demonstrating that the students were able to learn to papatigram well enough to advance our
research goal within the limited time scope. Our prelimynasults already show that
parallelizing the ICN obtains simulation speedups of x5dhpared to the best serial
implementation on a 64-core XMT. A large factor that enahlsdo achieve this goal was
breaking down the project into smaller, more manageablgoments.

Computer engineering and science is underrepresentedtayncgroups, mainly women and
minorities. There is an increasing effort to attract thaseigs, with one example being DREU:
distributed research experience for undergraduates frateroepresented groups [3]. We believe
that XMT makes for a good medium to attract these groups, mtton them in the field.

The XM T Many-core Platform

The primary goal of the eXplicit Multi-Threading (XMT) gers-purpose computer
architecture [10] has been improving single-task perforceahrough parallelism. XMT was
designed from the ground up to capitalize on the huge on+esipurces becoming available in
order to support the formidable body of knowledge, knownasiel Random Access Model
(PRAM) algorithmics [7], and the latent, though not widesgd, familiarity with it. Driven by the
repeated programming difficulties of parallel machinesgeaf-programming was a leading
design objective of XMT.

The XMT architecture, depicted in Figure 1, includes anyaafdightweight cores, Thread
Control Units (TCUs), and a serial core with its own cache §daTCU). The architecture



includes several clusters of TCUs connected to mutualjusive shared cache modules by a
highly optimized interconnection network [1]. XMT does tieature writable private caches
except for the Master TCU. Moreover, since the cache modukesmutually exclusive, no cache
coherence is required. TCUs include lightweight ALUs, Ingt inore heavy-weight units are
shared by all TCUs in a cluster. XMT is programmed in XMTC, raglie extension of the C
language which contains succession of serial and paraltid sections. The code of a parallel
section is expressed in the SPMD (single program, multipta)dstyle, specifying an arbitrary
number of virtual threads sharing the same code. Furtharslen the XMT architecture can be
found in [10].
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Figure 1:The XMT architecture.

XMT allows concurrent instantiation of as many threads asiiimber of available processors.
Tasks are efficiently started and distributed thanks to seeafi prefix-sum for fast dynamic
allocation of work and a dedicated instruction and datadicast bus.

To handle a high level of parallelism, the memory architectaf XMT partitions data from the
first level of on-chip caches. The interconnection netwd@{\) connects the TCUs (processors)
and the shared caches. It is implemented in a Mesh-of-Ta#garation with the goal of
minimizing the number of queuing bottlenecks for fast alidibde communication [2].

Architectural Simulation of XMT

Computer architects rely on software simulation tools talei@nd evaluate future architectures.
The main advantage of simulation is that it is less costlyrande flexible than hardware
implementation. A main disadvantage is that software isiB@antly slower than hardware,
which inhibits the extent of evaluation that is feasibleimwation. For instance, it may take
hours of simulation time to model one second of hardwareqssiag time.

XMTSim is the highly configurable cycle-accurate simulaibthe XMT architecture. It
accurately models the interaction between micro-architatcomponents, including the TCUs,
functional units, caches, and the interconnection netws§RTSim is verified against the



64-TCU FPGA prototype of the XMT architecture. More detaifsthe XMT toolchain can be
found in [6].

In contrast with the majority of today’s many-core processwhich may be utilized for a range
of tasks, but are designed specifically for graphics praegg8], XMT is a general-purpose
many-core processor by design. Establishing that XMT idfesgaulating machine would
provide supporting evidence for its general-purposeness.

Demonstrating that XMT is a self-simulating machine can deedby simulating XMTSim on
XMTSim. For completeness, XMTSim needs to be parallelizadi efficiently run on the target
XMT model. Parallelizing XMTSim also has the secondary ligé&improving simulation time:
XMT simulations can be run on the 64-core FPGA computer arttiédamore, the parallelized
code can be used as a template to port XMTSim to current comatligravailable parallel
machines.

Parallel ICN: Student-led Projects

The interconnect simulation constitutes a significant patte full chip simulation time in the
cycle-accurate XMT simulator, XMTSim. We found throughfiing the serial-Java XMTSim

on an Intel XEON server processor that it takes from 38% to 68%e simulation time
(depending on the program being simulated). ParallelitiegCN is therefore a logical first step
towards our overall objective of parallelizing XMTSim.

Undergraduate students at Swarthmore College, like in mo#rgr institutions, have limited time
that they can dedicate for active research. Typically, tteeychoose to dedicate 10 weeks during
a summer to full time research. Moreover, most studentgptefexplore different research and
internship opportunities during their undergraduate yeand as a result do not return to work on
the same project for more than one summer.

The students that join our research are typically risinggrsor seniors, with some background
in programming and digital systems, but with limited to nekground in computer architecture
and parallel and distributed systems. We therefore mustaithose 10 weeks efficiently to
familiarize the students with our research project, trhent to use the XMT toolchain, make
progress, and document their work for future students. Tioeteedicated by students to
documentation and its quality has a significant influencehereperience and productivity of
future students.

Any student joining our team should ideally be able to statth & well-defined task that can then
be expanded if time permits. The ICN code of XMTSim is selftained and more basic than
other components of the simulator, making it more suitatesialler projects, and for a limited
time scope. Next, we describe the ICN simulation and theesobpast student projects.

When we search for students to join our group, we give prater¢o those students that have
better preparation and demonstrate more profound interestr work. On top of these criteria,

we also give preference to female and minority studentsl&\hir research does not offer aspects
that may target these students in particular, we aim to eagetthese students to work with us.



ICN Simulation

The Mesh-of-Trees Interconnection Network (MoT-ICN) isrquosed of fan-in and fan-out trees.
There is a fan-out tree for each XMT processor cluster sgnai@mory requests, with the
processor cluster representing the root of the tree, anak-m fatee for every memory module
receiving requests, with the memory module representiagdbt of the tree. A similar network
returns data from memory to the processor clusters. A 64-XT MoT-ICN consists of two
sets of 64 fan-in and 64 fan-out trees to connect 64 coresBaitmemory modules in both
directions. Sample trees are shown in Figure 2.
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Figure 2:Sample ICN fan-out and fan-in trees.

The basic building block of each MoT-ICN tree is a pipelineptive, representing a node in the
tree. The pipeline primitive is simulated as 2-entry FIF®jraFigure 3. The modeling of each
stage requires two data storage holders, which we call INGind in reference to the input and
output buffers of a FIFO, and two signal variableandks These signals communicate the
occupation and availability states between neighborif@¥sl Simulation of one clock cycle
consists otepandresetphases. In the step phase, the data is moved between stagdobehe
values ofr andks. In thereset phaséhe values of the andkssignals are set according to the
number of full buffers. In thehift phasethe data is moved from the IN to the OUT buffers for
FIFOs that contain a single job. Within each of these phdkesimulation can potentially be
performed in parallel for all pipeline stages. Howeveryeoiness becomes an issue when the
actions of phases are intermixed.
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Figure 3:Sample pipeline. Only ks and r signals are shown, and datasffaym left to right.



In order to evaluate the effectiveness of a parallel simudatve need to generate an optimized
serial simulation of the MoT-ICN to serve as a baseline. Tihmikation of a full ICN consists of
the following steps:

1. Run the reset phase of all trees.

2. Determine the tree input ports for which packets will beegated (for setting thesignals
at the tree roots).

Run the step phase of all trees.

Pass the outputs of fan-out trees to fan-in trees.

o

Collect outputs.
6. Setinput packets.
Project |

The first undergraduate student project involved optingjzire serial version of the ICN
simulation, as well as making an initial attempt to parakelt with different levels of granularity.

The simulation of the MoT-ICN can be programmed with différdegrees of parallelism:
e Serial - The entire network is assigned to a single thread.
e Course-grained parallelism - Each tree is assigned to aaledi thread.

e Medium-grained parallelism - Groups of nodes in each treeaasigned to a dedicated
thread.

e Fine-grained parallelism - Each node is assigned to a dedi¢hread.

In the serial version we can control the order in which theasoare processed. This allows
certain optimizations that overlap the actions in diffeéqg@mases, hence minimizing the total
number of operations.

The fine-grained parallel version provides maximum paliaite since every node in the network
can be updated simultaneously, using a separate threaceudaowhe order in which the nodes
are processed is not deterministic when this level of paraih is introduced, thus preventing us
from utilizing some of the optimizations used in the seriision.

With a coarse-grained parallel version, one tree is alexttd each thread. As a result, there are
no conflicts between threads, and the same optimizatiomkingke serial version can be applied.
However, this version limits the number of threads, and wudiézes the processors on a
1024-core XMT configuration.

A medium-grained parallel version allocates multiple #u® per tree. An individual tree can
either be split up by node number (Figure 4) or by “sub-tréEgjure 5). The former allocation
technique allows to parameterize the number of nodes as$igreach thread for optimizing
performance, but introduces conflicts that prevent usieg#rial version optimizations. The
latter allocation technique makes for a more complicatsyasent of threads to nodes, but



guarantees no conflicts between internal nodes of sub-tieesallowing for more code
optimizations.
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Figure 4:Allocating threads based on node number.

(3 @96 G0 DG @9 (@) (D @) ()39 @9 Go) @) (@) (9 (&) G| )G9 (69)|Ge) GD &) (&)

Figure 5:Allocating threads based on subtrees.
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The baseline serial and subsequent parallel simulatiswitbed so far iterate through all the
nodes in the tree in each of the simulation phases. We calafiproach thevery-node
simulation. In order to improve simulation speed, we prep@$undamental change in the
underlying simulation algorithm, calleattive nodesimulation, where we only iterate through
those nodes in the tree that contain data packets at any gjimeihation phase. This approach is
potentially more efficient when the number of packets in N Is significantly lower than the
number of nodes.

The second undergraduate student project involved madjfiyoth the serial and best performing
parallel version of the ICN simulation to implement thetive-nodelgorithm, and comparing the
two. Currently, only the step phase loops through the acibges and the reset phase is used to
create an array containing references to the active nodes.



Experimental Results

We simulated a 64 processor, 64 memory module ICN configuratn a 64-core XMTSim
platform. Figure 6 presents the highlights of our results.
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Figure 6:Speedup vs. best serial version.

The every-node approach was simulated with each of the faievs: serial execution, coarse,
medium, and fine-grained parallelism. The best serial @i@twas run on the embedded serial
processor of XMT (not the Intel processor mentioned egrliEne coarse-grained parallelism
version was the optimal one, with speedups of 45x over thedeeml version. As discussed
above, this version allocates one tree to each thread asdrtimimizes synchronization conflicts
between threads. The simulated ICN consists of 2x64 tre@shvgcale well with our simulated
64-core XMTSim platform. The other versions demonstrateelgperformance due to the
overhead incurred by instantiating a larger number of tisea

The active-node approach achieves additional gains, ¢iraya speedups of up to 54x compared
to the best serial implementation. These speedups arevadhigth the coarse-grained
parallelism variant, with a network load where one packseist through each fan-out tree root
every cycle. These packets are then routed homogeneously tile available destination ports.
Recall that the active-node approach only iterates thréonggghnodes containing data packets at
any point during simulation. We simulated this approachhwiériable network load, and it
demonstrates increasing speedups as the number of packie¢snetwork decreases, resulting in
an increasing number of inactive tree nodes.

It is important to note that active-node speedups are ofdaimthe step phase alone, where the
optimization effort was concentrated. In fact, some of {heeslups are offset by a slight
slowdown in the reset phase, due to additional overheadreztjior the creation of the
active-node data structures. Future work will focus on lpelizing the reset phase.



Educational Insights

This is a pilot study of an on-going multi-year project. A€Buvalidating and measuring our
success in achieving our stated goals is a continuing pso€ést, the fact that the students have
been able to provide correct (e.g., working) programs witeslups over serial versions is a
significant form of validation of the teachability of our XMalatform. The results demonstrate a
step towards the completion of our combined milestone ofralighICN. Furthermore, both
students contributed to the selection and definition of tbekwo be performed. In order to do
this effectively, they had to highly familiarize themsedweith the project as a whole.

What makes our project distinct from other research prsjecthe adaptation of an active
long-term research project to a set of limited scope prejecbe done solely by undergraduate
students. To this end, we seek to define individual projetisse overall long term result is
greater than the sum of the parts. This, along with the lidhiit®e-scope of each project, is
different from other research projects designed spedyfiéal undergraduate students. For
example, Hadfield describes the integration of researchrece into the undergraduate
curriculum [4]. In their case, research training is prodde the students over multiple years, as
they work towards a cumulative research experience. Irashitwe aim to make the best out of a
single 10 week period that each student has available tealedio this research project.

Validating the objective of motivating undergraduate @egring students, in our case women, to
pursue an engineering career path is more complex. In avdefectively access this objective,
we would need to continue the project for a few more yearse Inaere undergraduate students
participants, and also be able to follow the participants goaduation. As a short-term feedback
we interviewed the two students involved in the project tfans

Both students, K and R, felt that their summer research expsr had some contribution in
re-enforcing their future plans for a career in engineering

K was able to obtain a summer internship in the following stenrhe found that her summer
research experience was very helpful in her work since, intrast to other interns, she did not
feel overwhelmed by entering a large coding project. As pbour research team, she was able
to gain meaningful experience in a larger scope projectnnilfarizing herself with code written
by someone other than herself, and in modifying and extgnitdicoherently with its current
programming style.

R also felt that her experience taught her a lot about orgéiniz and design of a large
programming project using modularity. She thought one efithportant things she learned from
this experience was learning to study independently froail@vle resources. Since she had no
background in computer architecture before joining thggqutoshe spent part of the summer
learning architecture, as well as strengthening her backgtin C programming.

R found that her involvement in this project encouraged di@ursue a graduate degree in
computer engineering after graduation, and also helpeddtermine which type of research she
would specifically be interested in pursuing. It also opemgdnore options for her next summer,
since she now feels confident about being able to obtain kb#r summer research positions and
internships. K plans to obtain a job in the computer engingdield following graduation, and
recommended our research project to R. Both said they wealshnmend it to others.



Conclusion

The XMT is a novel many-core architecture which is well sdifer teaching the challenging task
of writing parallel programs in a many-core environmentisigroject presented a great
opportunity for undergraduate students to participataittiry-edge research while reinforcing
their choice of pursuing an engineering career.

While undergraduates realize that their work cannot aehgéeligh-impact research goal alone,
our students were able to provide a validated first step wswoe completion of our goal of
self-simulation. The experience they gained encouragem to explore additional engineering
internships and research experience prior to graduation.

As future work, we intend to continue this project with monedent participants. Once more data
is available, we intend to provide a more extensive evanaif our goals. We are also interested
in comparing the career paths pursued by students involvids project to those pursued by
students involved in other research projects and thoseartitipating in active research during
their undergraduate education.
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