
Joint UIUC/UMD Parallel Algorithms/Programming Course (Extended Abstract)

David Padua

Department of Computer Science

University of Illinois at Urbana-Champaign

padua@illinois.edu

Uzi Vishkin

The University of Maryland Institute for Advanced

Computer Studies (UMIACS)
 vishkin@umd.edu

Jeffrey C. Carver

Department of Computer Science

University of Alabama

carver@cs.ua.edu

Abstract—This extended abstract reviews an education

experiment conducted through shared teleconferencing

sessions between a University of Illinois course on Parallel

Programming for Science and Engineering Majors and a

University of Maryland on Parallel Algorithms in fall 2010, as

well as shared programming assignments. The students were

given the opportunity to compare OpenMP programming on

an 8-processor SMP machine with PRAM-like programming

using a 64-processor XMT machine.

Keywords: parallel computing education, OpenMP, PRAM,

XMT, XMTC.

I. INTRODUCTION

Power constraints forced the computing industry to bet

future performance growth on parallelism, though it remains

unclear how commodity parallel general-purpose computers

of the future will be built and programmed for performance.

Programmers of today’s parallel machines must overcome

several ‘productivity busters’ beyond just identifying

operations that can be executed in parallel: (i) impose the

Culler-Singh [2] 4-step programming-for-locality recipe:

decomposition, assignment, orchestration, and mapping,

which is often difficult; (ii) reason about concurrency,

including race conditions, in threads; (iii) for machines such

as GPU, that fall behind on serial (or low parallelism) code,

whole programs must be highly parallel. Moreover,

according to [1] (as well as [3]), only hero programmers

succeed exploiting the vast parallelism in today’s machines,

leading to a quest for new computing stacks. An education

agenda needs to recognize and adapt to this reality.

Parallel computing exists for providing speedups over

serial computing. Its democratization mandates that the

general body of computer science students and graduates

will be capable of achieving good speedups. If a general-

purpose computer could be programmed effectively by too

few programmers, or requires excessive learning,

application software development would be prohibitively

expensive, greatly weakening the market potential of such a

computer. Motivated by the observation that education is a

facilitator, a testbed as well as a benchmark for such

capability, we devoted nearly half of a fall 2010 semester

for joint teleconferencing sessions teaching OpenMP and

XMTC, and comparing them. OpenMP is a standard

programming platform for several current parallel machines.

PRAM is a parallel algorithms theory developed mostly

during the 1980s. This rich theory has been criticized as

presenting an overly simplistic abstraction of parallel

architectures. Explicit Multi-Threading (XMT
i
) is a many-

core architecture designed to provide efficient hardware

support for XMTC, a PRAM-like programming language. It

is worth mentioning that architectural support for parallel

programming has long been a topic of interest for

workshops such as HIPS. ISCA’11 includes for the first

time a workshop devoted to such future support. Yet, both

require greater clarity on which parallel programming

approaches are actually desired.

The UIUC course was titled Parallel Programming for

Science and Engineering Majors and most of its students

were non-CS majors, with a big variance of backgrounds.

The UMD course was titled Parallel Algorithms. The

students who took it for credit were mostly entering

Electrical and Computer Engineering graduate students with

a mix of backgrounds.

David Padua (DP) taught OpenMP programming. His

teaching provided parallel architecture knowledge needed

for OpenMP programming. Uzi Vishkin (UV) taught

parallel (PRAM) algorithms with about 20 minutes devoted

to XMTC programming. Most of the remaining sessions at

UIUC, not shared by UMD students, were devoted to MPI.

UIUC students also submitted more OpenMP programming

assignments. The remaining sessions at UMD were devoted

to more parallel algorithms. UMD students did a significant

amount of dry homework related to the design and analysis

of parallel algorithms and submitted a more demanding

XMTC programming assignment.

Helping to design the experiment, Jeffrey Carver (JC)

also administered an anonymous questionnaire filled by the

students. The questionnaire was accessed by DP and UV

only after all grades were posted, per IRB guidelines. The

questionnaire provided the following feedback:

- All responding students, but one, wrote that XMTC comes

ahead of OpenMP for achieving speedups. The actual

speedup results support this XMTC advantage. For

example, none of the 42 students in the joint course got any

speedups using OpenMP programming on a simple irregular

problem (breadth-first search on graphs) using an 8-

processor SMP. However, these students got speedups in the

range 7X-25X on a 64-processor XMT machine built using

field-programmable gate-arrays (FPGA) technology. This

comparison makes sense since the silicon area requirement

of the XMT design is under that of 2 SMP processors.

- An interesting split between the UIUC and UMD students

was around how they judged the help of PRAM algorithms

for XMT programming. UMD students felt strongly that

PRAM algorithms helped considerably with XMT

programming, while most Illinois students felt otherwise.

Recall that the exposure of UIUC students to PRAM

algorithms and XMT programming was much more limited,

and their understanding of this material was not challenged

through either analytic homework, or exams. When faced

with the same programming challenges, the performance of

UIUC and UMD students was similar. Pedagogically, this

may demonstrate that students must be exposed to a

minimal amount of parallel algorithms and their

programming, and be properly challenged on their analytic

understanding, in order to internalize their merit. If this

conclusion is valid, it creates tension with the pressure on

instructors of parallel computing courses to cover several

programming paradigms along with their required

architecture background.

II. OTHER IMPRESSISION AND LESSONS FOR REPEATING

THE JOINT EXPERIMENT

1. Due to its higher level of abstraction, and its focus on

algorithms but not their programming, the PRAM part of the

joint course was able to convey algorithms for more

advanced problems than the other parts, though, as

explained above, the understanding of this part was only

tested on the UMD students. 2. When we started planning

the experiment we were already assigned to teach our

respective courses. The experiment confirmed that it would

be better to do such experiments on more homogenous

populations, starting with a CS graduate course. 3. Due to

the IRB approval process, and the requirement to submit all

questionnaires prior to the beginning of the course, it is

important to complete the full planning of the course and all

its homework, prior to finalizing the questionnaire.

III. CONCLUSION

Parallel computing platforms seek to succeed the serial

platform, but so far with limited success and promise [1, 3].

Our joint effort aims to develop ways for whetting the

appetite of students for learning about parallelism through

their first experience. This experience got to be both

meaningful and positive. Moreover, we believe that success

that students have with achieving good performance,

especially if it does not involve excessive effort on

programming and debugging, could make a lasting

impression in their mind and attract them to seek doing

more of it after they graduate. On the other hand, a

traumatic experience with parallel programming and very

limited speedups, or none at all, are likely to have the

opposite effect. We also hope that as we and others continue

to develop these concepts, new stacks that embrace these

concepts will emerge and, in due course, vendors will buy

into them.

Course homepages
https://agora.cs.illinois.edu/display/cs420fa10/Home and

http://www.umiacs.umd.edu/users/vishkin/TEACHING/ene

e459p-f10.html

For a summary of the education aspects of the

PRAM/XMT approach, see [4]; references therein include

teaching experience extending from middle school to

graduate courses, course material including class notes and

programming assignments, video presentations of a full-day

tutorial and a full-semester graduate course, a software

platform (comprising a compiler and cycle-accurate

simulator) available for free download, and the XMT

hardware.

REFERENCES

[1] S.H. Fuller and L.I. Millett. “The Future of Computing

Performance: Game Over or Next Level? The Computer
Science and Telecommunications Board’s (CSTB) of the U.S.
National Academies, December 2010. This report contrasts
the opportunities of parallel computing becoming mainstream
with today’s reality where only hero programmers manage to
exploit the vast parallelism of current commodity hardware.

[2] D. Culler and J. Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan-Kaufmann, 1999.

[3] Patterson, D. The trouble with multi-core: Chipmakers are
busy designing microprocessors that most programmers can’t
handle. IEEE Spectrum (July 2010).

[4] U. Vishkin. Algorithms-based extension of serial computing
education to parallelism, extended abstract. Workshop on
Integrating Parallelism Throughout the Undergraduate
Computing Curriculum, in Conjunction with PPoPP 2011,
San Antonio, Texas, February 12, 2011
http://www.umiacs.umd.edu/users/vishkin/XMT/PPOPP-
CPATH2011.pdf

i
 Not to be confused with the Cray XMT

