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ABSTRACT
The current focus of research on parallel computing takes current
commercial hardware for granted. Here, we consider an alternative
approach: start with a time-tested algorithmic theory and develop
a supporting computer architecture and toolchain. This paper fo-
cuses on the hybrid memory architecture of this computer platform,
which is designed to efficiently support execution of both serial
and parallel code and switching between the two. A key part of
this architecture is a flexible all-to-all interconnection network that
connects processors to shared memory modules. To understand
some recent advances in GPU memory architecture and how they
relate to this hybrid memory architecture, we use microbenchmarks
including list ranking.

A second part of this work contrasts the scalability of applica-
tions with that of routines. In particular, regardless of the scalability
needs of full applications, some routines may involve smaller prob-
lem sizes, and in particular smaller levels of parallelism, perhaps
even serial. To see how a hybrid memory architecture can benefit
such applications, we simulate a computer with such an architecture
and demonstrate the potential for a speedup of 3.3X over NVIDIA’s
most powerful GPU to date on boosted decision trees, a timely
machine learning application.
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1 INTRODUCTION
Since the circa 2004 transition of mainstream computing to paral-
lelism, efforts of the research community have been centered around
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commercial multi-core or GPU hardware, unwittingly ceding strate-
gic intellectual leadership of the field to vendors. Extensive work
on mapping and tuning algorithms and performance programs for
a generation of products has dominated contemporary conferences,
journals and research dissertations. Vendors have been changing
their designs at a rather brisk pace rendering this work Sisyphean:
Even for cases where a vendor and a product line remained in
business, this work had to often be redone for successive genera-
tions, sometimes ab initio. System architecture research has not
fared much better. The focus of the “quantitative approach” is on
exploring limited updates to commercial systems. As committee
peer review is required to rank technically incomparable submis-
sions, it unwittingly conforms with dominant modes of operation.
Thus, publication and funding incentives risk upholding futile ef-
forts. The state of educating CS undergraduates to properly benefit
from parallelism widely available in the very machines they use
suggest further alarming evidence. Reflecting a rather broad com-
puter systems community, the sixth edition [7] justifies a recent
shift to heterogeneous platforms by stating: “it seems unlikely that
some form of simple multicore scaling will provide a cost-effective
path to growing performance”. However, we are concerned that
such a shift may augment Sisyphean efforts with Babel-Tower-type
problems, making a bad situation even worse.

We believe that promoting fundamental understandings and
robust knowledge, independent of commercial players, is key to
basic academic research. Thus, it would make sense for MEMSYS
to ask whether we can do better.

A completely different approach, dubbed “ExplicitMulti-Threaded
(XMT)”, is discussed in [12]. The lead immediate concurrent execu-
tion (ICE) abstraction underlying PRAM, the main theory of paral-
lel algorithms, is the concept that each step of a program needs to
state all the operations that can done concurrently and assume their
lock-step execution in unit time, but nothing else. The horizon en-
visioned by XMT is that of having the parallel programmer express
parallelism using ICE without ever needing to be concerned with
threading, race conditions or locality, while achieving competitive
performance. A vertically integrated hardware/software on-chip
system has been introduced and extensively prototyped, demon-
strating speedups by order of magnitude over same-generation
commercial platforms for irregular and fine-grained applications.
Removing the last obstacles to efficiently implementing textbook
PRAM algorithms as-is, this effort culminated in demonstrating [6]
that ICE programs can fully match the performance of manually op-
timized multi-threaded code on XMT, thereby establishing feasibil-
ity of the XMT-envisioned horizon. But, would an XMT/PRAM/ICE
approach lead to more robust insights? For algorithms the answer
is yes. The PRAM algorithms theory has been stable since the 1980s.
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Using PRAM algorithms as-is per [6] is very appealing and holds
promise, especially if supported by architecture as for XMT. But,
what are the prospects that architecture insights and, in particular,
memory architecture ones meet the test of time?

The hybrid memory architecture underlying XMT features: (i) A
master CPU with a traditional cache (“serial mode”) and a plurality
of CPUs using shared memory cache; none of the parallel CPUs
has local write caches. And (ii) low-overhead transition between
these serial and parallel memories. In conjunction with a high-
bandwidth, on-chip, all-to-all interconnection network, these allow
competitive performance regardless of how much parallelism a
given code presents.

This paper presents: (i) new evidence that both multi-core and
GPU design have been getting much closer to this hybrid memory
architecture given their original starting principles that guided
them in the opposite direction, reasoning that their current quest
for more effective support of fine-grained irregular parallelism drew
them closer to such memory architecture; and (ii) new speedup
results of 3.3X over NVIDIA’s most powerful GPU to date for a
timely machine learning algorithm.

There are several reasons why we believe that our paper can be
stimulating for MEMSYS:

• It provides a unique perspective. In particular, raising the
provocative question whether the recent shift to heteroge-
neous platforms has turned prior Sisyphean efforts into an
even more problematic Babel Tower is likely to get some
commotion from at least some of the audience. We hope
that memory and system researchers will realize the need
for operating outside the spell of incremental improvements
to commercial systems, and the opportunity for doing that,
especially once such incremental approaches are contrasted
with the PRAM-based option to do better on both robustness
and homogeneity.

• The evidence on multi-core and GPU design getting much
closer to the XMT hybrid memory architecture raises the
question whether the fundamental nature of parallel algo-
rithms and programs may have a similar effect to gravitation
power, drawing us in a certain direction regardless if we are
aware of it or not.

• The above mentioned demonstration of ICE programming
on XMT, along with success stories such as having XMT
programming taught to about 700 students in a single high
school (Thomas Jefferson High School for Science and Tech-
nology, Alexandria, VA) since 2009, suggest that providing
simple multicore scaling and a cost-effective path to growing
performance may not be as insurmountable as [7] and many
other computer architects opine.

Section 2 of this paper discusses the hybrid memory architecture
underlying XMT. Section 3 briefly describes boosted decision trees,
a timely application which we use to show the benefit of our hybrid
memory architecture, as well as the results we obtained for this
application. Finally, section 4 evaluates some choices we made in
the design of XMT.

2 MEMORY ARCHITECTURE OF XMT
2.1 Our goal
One old insight of XMT is the need to support effectively in one
architecture two memory paradigms: serial and parallel. Many pro-
grams consist of both serial sections of code and parallel sections,
potentially with varying degrees of parallelism. Amdahl’s Law im-
plies that speeding up one section alone will be of limited benefit;
to improve performance beyond a certain point, all sections must
be sped up. In addition to the need for strong serial support for
programs for which no parallel implementation is currently avail-
able, serial execution also shows up in more subtle ways in parallel
programs. First, portions of some parallel programs may have lim-
ited parallelism, and in such cases it may be faster to execute those
portions on a strong serial processor rather than underutilizing the
parallel processors. Second, programs with fine-grained parallelism,
even those with much available parallelism, need to switch between
serial and parallel modes of execution frequently to orchestrate the
spawning and synchronization of threads; for example, when par-
allelism is not represented by long running threads communicate
infrequently, rarely or not at all, and lower overheads for switching
to serial mode and back to parallel mode justify this.

From the memory architecture point of view, there is a tension
between the goals of supporting serial and parallel computation.
Serial code is more sensitive to memory latency than to bandwidth,
as there is limited opportunity for a single thread to hide latency,
while parallel code can issue many requests in parallel to hide
latency. Reducing latency often requires bringing data closer to the
processor, such as in a private cache. On the other hand, parallel
computation often requires sharing data among processors, and
protocols to maintain coherence among private caches scale poorly.

In light of this, we have developed a hybrid architecture with two
components: (1) a “heavy” serial processor with a private writable
cache and (2) a number of “light” parallel processors, each without
a private writable cache. The two components are tightly coupled
such that switching from serial to parallel and back can accom-
plished in time on the order of 10-100 cycles.

To develop this hybrid architecture, we first considered what
limits performance from the algorithm side. Under the PRAM algo-
rithmic model, the relevant factors are (1) work, the total number of
operations to be performed and (2) depth, the length of the critical
path of execution. From the memory architecture point of view,
work comprises the amount of data read from and written to mem-
ory, and depth is dominated by the length of the sequence of round
trips to memory (LSRTM). We then asked, for a given choice of
workload, what is the best LSRTM that can be achieved from the
parallel algorithm side. After performing this optimization by hand,
we set out to automate this task. Through iteration of the hard-
ware as well as the software development toolchain, we refined the
automation of the process of achieving a given LSRTM.

2.2 Our design choices
Here, we describe our lead design choices for the two components
of our memory architecture and how they work together. See fig. 1.
This is just one possible set of choices we could have made; for a
discussion and evaluation of design choices, see section 4.
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Figure 1: Block diagram of hybrid memory architecture of
XMT. The serial portion comprises the MTCU, which in-
cludes a local cache. The spawn-join unit (yellow) is used
for transitioning between serial and parallel mode from
the control side, which is a bit suppressed in this current
memory-centered paper. The parallel portion comprises the
clusters (orange). The shared memory system comprises
the interconnection network, shared caches, and memory
controllers (green); it is used by both the serial and paral-
lel portions. The global register file (GRF) and prefix-sum
unit (blue) are used to coordinate concurrent execution of
threads.

2.2.1 Serial mode. In serial mode, a single master thread con-
trol unit (MTCU) executes code. The MTCU is a standard serial
processor core with its own private, writable cache. We choose a
write-through no-write-allocate policy for the cache to reduce the
potential for data to be brought into cache unnecessarily, which
helps reduce the time needed to flush the cache. The MTCU private
cache is connected to shared memory via a port on the intercon-
nection network just like the TCUs.

2.2.2 Parallel mode. In parallel mode, a number of thread con-
trol units (TCUs) execute the program contained within the current
parallel section of code (delimited by “spawn” and “join” instruc-
tions in XMT). TCUs are grouped into clusters (typically 16 TCUs
per cluster) that share some resources including a single port to the
shared cache.

TCUs lack private writable caches. Instead, several read-only
memories are used to reduce the latency, and in some cases band-
width, of accesses to shared memory:

• Each TCU stores a copy of the program in a local instruction
buffer. This allows TCUs to run at their own pace rather than
in lockstep.

• TCUs contain software-managed prefetch buffers, which
reduce latency by allowing TCUs to send read requests to
memory before they will be needed by the program and

reduce LSRTM by allowing TCUs to issue reads back-to-back
without waiting for them to complete one-by-one.

• Clusters contain read-only buffers, which are software-managed
caches that allow TCUs to reuse data read by other TCUs in
the cluster.

The shared cache is partitioned into cache modules, where each
module is backed by a partition of the global memory space. Clusters
communicate with the cache modules via an all-to-all interconnec-
tion network (ICN). For smaller configurations of XMT, the ICN is
a mesh-of-trees network (MoT); for configurations where a pure
MoT would be too large, a hybrid network is used instead where
some of the middle layers of the MoT are replaced with layers of a
butterfly network. All access by the TCUs to shared memory goes
through the ICN.

Finally, the cachemodules are connected tomainmemory (DRAM)
via one or more memory controllers, which are evenly partitioned
among the cache modules.

Requests bymultiple TCUs in a cluster are queued, as are requests
to the same cache module. Requests by the cache modules to the
memory controllers are also queued. We hash memory addresses
to spread memory accesses more evenly across the cache modules
to reduce hot spots.

2.2.3 Transition from serial to parallel. When spawning threads,
the MTCU first flushes its private cache to shared cache. This en-
sures that all data is available to the TCUs without the need for
cache coherence protocols. Assuming that not too much data is
brought into the local MTCU cache, the flush will be efficient. A
possible optimization here would be to flush only those cache lines
containing data that will be needed in parallel mode.

Then, starting immediately after the spawn instruction, the
MTCU broadcasts the spawn block to the TCUs one instruction
after another. Because each TCU has its own copy of the program
and its own program counter, each thread can progress at its own
pace.

2.2.4 Transition from parallel to serial. After all threads finish
executing, TCUs wait for all outstanding requests to sharedmemory
to complete, and then control returns to theMTCU. All local parallel
memories (e.g., read-only buffer) are invalidated; no data needs to
be written from local memory to shared memory since the local
memories are read only.

3 APPLICATION: BOOSTED DECISION TREES
An increasingly-popular approach to machine learning is gradient
boosted decision trees, as implemented by XGBoost [2]. XGBoost
is designed to perform well on serial and parallel CPUs and has
recently been extended to be supported by GPUs [9] as well. Accord-
ing to the authors of XGBoost, it has been used by many winners of
machine learning competitions, including all of the top-10 winners
of KDDCup 2015 as well as many top-3 winners on the popular
machine learning competition website Kaggle (acquired by Google
in 2017): 17 of the 29 challenge winning solutions published on
Kaggle’s blog during 2015 used XGBoost, compared with 11 that
used deep neural networks. In some senses, Kaggle represents the
marketplace for data scientists: companies often sponsor competi-
tions on Kaggle to find solutions to problems of interest to them,
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and they also use Kaggle for recruiting data scientists, either by
evaluating the Kaggle ranks of applicants to data scientist posi-
tions or by sponsoring competitions on Kaggle whose purpose is
recruiting.

Reducing the training timewould be beneficial to users of XGBoost.
Indeed, speedups have been demonstrated using GPUs [9], and
work continues on reducing times even on CPUs (e.g., the cur-
rent beta version of the Intel Data Analytics Acceleration Library
(DAAL) [8]). However, we conjecture that there is room for further
speedups, and we have produced initial evidence to validate this
conjecture. GPUs are tuned for approaches such as deep learning
that consist mostly of regular operations with high computational
intensity such as matrix multiplication and convolution. In contrast,
XGBoost relies heavily on irregular operations with low computa-
tional intensity, such as sorting, compaction, and prefix sums with
indirect addressing. Although support for irregular algorithms on
GPUs appears to be improving, it still lags far behind support for
regular algorithms.

3.1 High-level review of algorithm
A decision tree is a binary tree where internal nodes represent
yes-or-no questions about an instance and leaf nodes represent
the label to be reported for all instances that lead to that leaf. A
simple type of decision tree is one in which each internal node
asks whether a certain feature of the input is below or above some
threshold, where the choice of feature and threshold are parameters
of the model.

On their own, decision trees may be prone to overfitting. One
approach to mitigate this is by limiting the depth, and thus the
complexity, of the tree. The downside to this is that a single shallow
decision tree is a fairly weakmodel. To compensate for this, multiple
decision trees can be trained and their results averaged to produce
a stronger model. XGBoost uses a boosted decision tree approach,
in which trees are added one by one to refine the output produced
by the trees in the model so far.

XGBoost uses a greedy approach to build each decision tree. To
begin, XGBoost starts by creating a single leaf node and assigning
all of the training examples to that leaf. XGBoost builds the tree
by recursively splitting the examples at each leaf so as to produce
the highest information gain, stopping when the gain falls below a
specified threshold.

The majority of the time taken by XGBoost is spent searching
for the best split point (a feature and its threshold) for each leaf.
For each possible split, XGBoost looks at the left and right sides
of the split and for each side computes a score representing how
large of a refinement will be made by this split; the information
gain is the sum of these two scores minus the score of the original,
un-split node. A simple scoring function provided by XGBoost is
to compute the square of the sum of the errors (signed differences)
between the true output for each training example and the current
prediction.

XGBoost makes use of the following insight: if the training exam-
ples are sorted in order of increasing value of a given feature, then
all possible splits for that feature can be trivially found by walking
through the list. Furthermore, the sums of errors can be updated
while walking through the list simply by subtracting the error of

the current element from the sum for the right side and adding it to
the sum for the left side. This implies that the sums that are needed
are the prefix-sums of the errors in this sorted order. Because a
different sorted order is needed for each feature, the order in which
the training examples are accessed is constantly changing, leading
to an irregular memory access pattern.

3.1.1 Overview of parallel algorithm on XMT. Our parallel algo-
rithm for XGBoost on XMT takes the serial algorithm and replaces
each step with a corresponding parallel alternative:

• We sort the training examples using a shared-memory sam-
ple sort. In contrast to work on GPUs [9] that uses radix
sort, this is less regular but provides more parallelism for
some inputs. We do not rearrange the examples themselves
in memory but instead maintain arrays of pointers to the
examples in sorted order, one per feature. This results in
more irregular memory access in later steps but saves work
when splitting nodes.

• To compute the sums of errors, we use a parallel prefix-sums
algorithm. This is similar to [9]; however, XMT can exploit
more parallelism in this step than GPUs: on XMT, all TCUs
can participate in computing the prefix-sums for a single
feature whereas the GPU algorithm only uses a single thread
block per feature.

• To find the split with the maximum score, we use a paral-
lel reduction algorithm with maximum as the associative
binary operator. Again, this is similar to [9] but without the
limitation of one thread block per feature.

• To split each node and rearrange its associated examples
accordingly, we apply parallel prefix-sums to perform com-
paction. In contrast, [9] employs two strategies to handle
splitting: (a) for the first few levels of the tree, do not rear-
range the examples. Instead, mark each example with the
node it now belongs to after each split. (b) For deeper levels
of the tree, rearrange the examples after each split using
radix sort.

The XMT algorithm above and the GPU algorithm of [9] repre-
sent different trade-offs resulting from the memory architectures
of the respective platforms. The XMT algorithm favors reducing al-
gorithmic complexity (work and depth) at the expense of increased
irregularity, maintaining pointers to examples and rearranging
them as necessary to avoid idle threads in later steps. In contrast,
the GPU algorithm maintains regularity as much as possible at the
expense of increased work and depth by deferring irregular data
movement until the overhead of skipping over examples that do
not belong to the current node becomes prohibitive.

We also note that both the XMT and GPU algorithms involve
numerous transitions between serial and parallel execution, as most
of the above steps are executed many times and each execution of
a step incurs multiple serial-to-parallel transitions. The impact of
this is discussed in sections 4.4 and 4.5.

3.2 Method
We compare XMT to commercial CPU and GPU platforms for the
machine learning approach of gradient boosted decision trees and
obtain significant speedups.
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Software To facilitate a fair comparison, we compared our code
against the following:

(1) XGBoost, both serial and parallel CPU implementations [2]
(2) the GPU-accelerated version of XGBoost [9].

Here, we focus on the training step, as it is more time consuming
than inference and the parallelism is more difficult to exploit. This
is not to exclude inference: although inference on decision forests
is embarrassingly parallel across the trees, we still would expect
some benefit on XMT since the problem is irregular.

XGBoost is written in C++ (with GPU kernels in CUDA), but
there is currently no C++ compiler available for XMT. Therefore,
we needed to rewrite the XGBoost algorithm in XMTC, with a focus
on computing the same result as the original XGBoost code while
exposing some parallelism. This starting point may prove to be a
disadvantage here, as XGBoost was designed with the strengths
and weaknesses of multi-core CPUs and GPUs in mind, and after
more extensive work, we may be able to get better speedups.

Computing platforms To obtain serial and parallel CPU per-
formance results, we ran XGBoost on a modern Linux machine with
two 8-core Intel Xeon E5-2690 processors (16 cores in total). To
obtain GPU results, we ran XGBoost on an Amazon EC2 p3.2xlarge
instance, which includes eight cores of an Intel Xeon E5-2686 v4
CPU and a Tesla V100 GPU (Volta microarchitecture), NVIDIA’s
most advanced GPU to date.

Results for XMT were obtained using XMTSim, a cycle-accurate
simulator of the XMT architecture derived from a commitment to
silicon of XMT using FPGA. XMTSim was configured to simulate
an XMT processor that would use silicon area comparable to the
Tesla V100 (16,384 TCUs, 32 MB shared cache) and also provide
nearly the same bandwidth to DRAM (768 GB/s).

XGBoost configuration and datasetXGBoost on all platforms
was configured to generate 120 trees with a maximum depth of 6.

The dataset used in this experiment was the Higgs boson dataset
taken from the Kaggle machine learning challenge website. It con-
sists of 250,000 training examples with 30 features each. This dataset
was also used by the authors of XGBoost in their work.

3.3 Speedups
The results show that among the platforms above, XMT would
outperform both the CPU and the GPU; see fig. 2.

As far as we found out, other work on parallel implementations of
decision forests does not report direct comparisons to the best serial
implementation.Work on training tree ensembles usingMapReduce
[10] did not report any speedup versus best serial due to lack of
memory on the serial machine.

Work on boosted trees [11] achieved a self-speedup of up to 42×
on a 48-core shared memory machine and up to 25× on a 32-core
distributed memory machine, but no results are reported relative
to best serial.

4 DISCUSSION OF DESIGN CHOICES
The above is one possible design choice for a hybrid memory ar-
chitecture, which we made based on looking at various parallel
workloads. Up to a point, the community has agreed on the tran-
sition from serial computing to parallel computing. Although no
description is publicly available, NVIDIA GPUs appear to have a
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Figure 2: Speedups of XGBoost on various platforms rela-
tive to the most powerful NVIDIA GPU. XMT has a speedup
of 3.3X while the CPU platforms have slowdowns (speedup
<1X).

high-performance all-to-all network connecting parallel processors
to shared cache. However, the CPU and GPU each have some sepa-
rate memories, where data shared between them must be copied
from one to the other. In addition to discrete GPUs, AMD also
produces Accelerated Processing Units (APUs), which combine a
traditional CPU and GPU on a single die, and Intel also produces
CPUs with an integrated GPU. However, the balance of silicon area
between CPU cores and GPU cores on these chips has so far not
favored GPU performance as in discrete GPUs.

4.1 Evidence for advances in GPU memory
architecture

Our discovery of recent changes in modern NVIDIA GPU memory
architecture is a bit anecdotal. It began with our earlier attempts
to run cycle-accurate simulations of programs running on modern
GPUs. We used FusionSim [13], based on GPGPU-Sim [1], as a
starting point and adapted the included configuration, which was
designed to match the NVIDIA GTX 480 GPU (Fermi architecture),
to attempt to match the NVIDIA Tesla M40. We used FusionSim
rather than GPGPU-Sim alone since we sought to model the tran-
sitions between serial and parallel execution in addition to the
parallel kernels themselves.

We ran a list ranking benchmark based on parallel pointer jump-
ing as a (highly irregular) benchmark of three NVIDIA GPUs as well
as FusionSim. Our goal was to develop a cycle-accurate simulation
of the Tesla M40 GPU that we would then use for further work
plans. However, we had to abandon our plans since we could not
get FusionSim to match the actual performance of modern GPUs.
The differences we observed can be seen in fig. 3. For large inputs
sizes of 1 million elements or more, FusionSim matches the Tesla
M40. However, we point out two discrepancies for lists smaller than
this.

First, for small input sizes (less than 8000 elements), FusionSim
underestimates the run time of the benchmark relative to all three
of the actual GPUs. This implies that there are additional overheads
for launching kernels on the actual GPUs that are not reflected in
FusionSim.
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Figure 3: Cycle accuracy of FusionSim (GPGPU-Sim) relative
to three NVIDIA GPUs running a list ranking benchmark.

Second, the more recent Tesla K20 and M40 GPUs exhibit a
steeper increase in runtime at around 250 thousand elements than
at any other point, but FusionSim does not reflect this; FusionSim
more closely follows the older GTX 260 in this respect.

In particular, the second observation above led us to suspect that
NVIDIA made some improvements between the release of the GTX
260 in 2008 and the Tesla K20 in 2012. We could not make sense of
the nature of this improvement based on published papers. In fact,
we found it surprising given the well-cited keynote talk [4] with its
claim: “locality equals efficiency”; how can parallel architectures
that equate locality with efficiency (and minimizing reliance on
non-local memories) provide such strong support for high rates
of data movement? So, we felt that we need to dig deeper. To our
surprise we found a patent [5] filed five years earlier, which went
barely unnoticed in the literature suggesting that NVIDIA is indeed
heading in a direction that seems a near opposite of [4]. That is,
providing much better support for shared memory at the expense of
local memories on its GPUs. Interestingly, [5] still suggests similar
motivation to [4]; namely, that it would be better from an energy
consumption point of view. However, we have not been able to
find support in the literature for improved energy consumption as
a result of trading local memories for shared ones. In fact, much
of the architecture literature seems to continue being influenced
by [4] and its call for limiting data movement. Indeed, when we
then looked up information about the streaming multiprocessor
in their P100 Volta, we didn’t expect to find that even the register
file is shared. It will be interesting to find out at the conference
how representative is our anecdotal experience. Finally, the extent
to which support for low-overhead transition between serial and
parallel execution is being followed remains to be seen as GPUs
continue to evolve.

4.2 Integrated vs. discrete GPUs
Some recent Intel processors have integrated GPUs that share their
memory system with that of the CPU cores. Two examples are the
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Figure 4: Time taken by various processors on a list rank-
ing benchmark, including a serial CPU (Intel Xeon E5-2686
v4), an integrated GPU (Intel Core i5-4690K), a discrete GPU
(NVIDIA Tesla M40), and a simulated XMT system config-
ured to match the Tesla M40.

Intel Core i5-4690K (with an Intel HD Graphics 4600 GPU) and the
more recent Intel Xeon E3-1578L v5 (with an Intel Iris Pro Graphics
P580 GPU). A notable difference between these two is that the P580
has 128 MB of eDRAM on the same package, which is used as a
level 4 cache. The results we were able to get for the Intel Xeon
E3-1578L v5 were a bit inconsistent, which we speculate may be
due to the first generations of Intel GPUs with eDRAM not being
fully optimized. Therefore, we discuss only the Intel Core i5-4690K
in the following comparisons.

4.3 Performance on irregular algorithms: list
ranking

We use the same list ranking benchmark as before to determine
whether the integration of the GPU provides an advantage here
and to see whether we can detect any improvement due to more
recent Intel GPUs being more tightly integrated. See fig. 4. For the
largest list (16 million elements), the i5-4690K achieves a speedup
versus serial of 2.6X. The integrated GPU is outperformed by the
more powerful discrete M40 GPU for all list sizes, which is expected
since this benchmark involves little communication between the
GPU and the CPU. Notably, XMT performs nearly as well as the
serial CPU for small inputs while beating the M40 GPU even for
large inputs.

4.4 Serial-parallel transition overhead
The GPU version of the boosted decision tree program as tested
in section 3 has over ten thousand kernel launches, and the XMT
version has nearly as many parallel sections. Here, we examine the
overhead of this more closely under two runtimes: OpenCL and
OpenGL

4.4.1 OpenCL. Figure 5 shows the overhead of switching from
serial execution to parallel and back in terms of the time taken to
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launch an empty OpenCL kernel. Surprisingly, the discrete K20
and M40 GPUs outperform the integrated GPU even for small
numbers of threads. XMT spawns threads faster than any GPU
by over an order of magnitude when the amount of parallelism is
low and remains faster than the GPUs even when much parallelism
is available.
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Figure 5: Time taken to launch a single empty OpenCL ker-
nel (spawn block on XMT) with respect to the number of
threads launched. This is a measure of the time required to
transition from serial to parallel and back. For each plat-
form, the run time starts increasing once the number of
threads reaches the maximum the platform can run at a
time. For theK20 andM40, we use aminimumof 256 threads
(indicated by the dotted line) since these GPUs are not de-
signed for fewer threads; in our tests, running this bench-
mark with fewer than 256 threads was slower than with 256
threads.

4.4.2 OpenGL. We suspected that the poor performance of the
integrated GPU relative to the discrete GPUs may be due in part to
the NVIDIA OpenCL runtime being more optimized than its Intel
counterpart. In an attempt to avoid the overhead of OpenCL, we
tested a short OpenGL graphics benchmark consisting of a single
OpenGL shader program that combines two textures (essentially
arrays of pixels) using a simple arithmetic operation. Because this
is a graphics benchmark, we were limited to running on computers
that were configured to allow using the GPU for rendering graphics
rather than only for GPGPU computation. Hence, we do not have
results for the NVIDIA K20, M40, or V100 GPUs.

Figure 6 shows that for inputs up to 2048 pixels, the Intel i5
processor with HDGraphics 4600 is faster than the discrete NVIDIA
GTX 1060 GPU. Possible explanation for this advantage can be
found in the Memory section of [3].
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Figure 6: Figure: Time to execute a short OpenGL shader that
applies a SAXPYoperation (y := y+ax) to two textures x and y
versus texture size in pixels (length times width). For inputs
up to 2048 pixels, the integrated GPU of the Intel i5-4690K
processor is faster, indicating lower overhead.

4.5 Sensitivity to serial-parallel transition
overhead

To gain some understanding of the importance of low-overhead
transition from serial to parallel in a complete application, we ex-
amine what would happen if this overhead were increased relative
to baseline provided by the XGBoost results above. In fig. 7, we
show the effect of increasing the spawn latency, which is the hard-
ware portion of the transition overhead, from its original value
of 23 cycles to various values up to and including 50,000 cycles.
Latencies up to about 1000 cycles have little effect on speedup, but
performance falls off beyond that point. For comparison, the typical
GPU kernel launch latency is around 10,000 cycles. If the overhead
for serial-to-parallel transition on XMT were as high as it is for the
GPU, then XMT would perform no better than the GPU.
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5 CONCLUSION
As their name suggests, streaming multiprocessor memory orga-
nizations have long provided strong support for moving data in
and out of execution units. However, as long advocated by our
XMT/PRAM approach, the need to better support irregular parallel
algorithms led some successful GPU designs to increasingly move
towards reliance on shared memories, breaking away with their
past emphasis on local memories and locality at all cost. While this
has led to marked improvements, their limited ability to support
down-scaling of parallelism, especially for discrete GPUs, is hurting
them significantly for supporting some full applications. The em-
phasis of some sections of the machine learning market on methods
such as stochastic gradient descent (SGD), and their reliance on full
matrix multiplication, for deep learning, appears to take a toll for
other prominent market success stories in machine learning, such
as the boosted decision trees application discussed in this paper.

However, our experience with XMT suggests that something
bigger is at stake here. We demonstrated strong speedup on general-
purpose applications, full support of the main theory of parallel al-
gorithms and easy parallel programming; and, therefore, directions
for finally providing simple multicore scaling and a cost-effective
path to growing performance, finally overcoming what [7] and
many other computer architects suggest is insurmountable.
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