
1

Observations The world is yet to see a truly successful general-
purpose parallel computer for single task completion time

~2003 Wall Street traded companies desperate enough to give up the safety of
the only paradigm that worked for them for parallel computing.
2008 Not (yet?) desperate enough to follow knowledge and understanding
(theory and practice) of ~40 years of parallel computing. Mystified by urge to
repeat the same mistakes expecting different results ☺ ☺

If this presentation will not offend you, please talk to me after the panel ☺
☺ ☺ not trained to explain/treat this urge condition

Uzi Vishkin

Proposed QUESTION: can such a computer be developed?

Thread 1 [Led to: To many users programming existing
parallel computers is “as intimidating and time consuming
as programming in assembly language”, NSF Blue-
Ribbon Panel on Cyberinfrastructure]

Build-first, figure-out how to program later (- 1990)

Failed: rather limited use, in spite of huge effort; … some
programming language emerged (~1990s)

Improbable

• History
repeats itself first as

• Tragedy
second as

• Farce
1. Use proven (general-purpose) parallel architecture

failures as basis for building multi-cores
2. Rush to standardize languages before having at least

a successful architecture prototype
3. Ignore algorithms technology. Algorithms: Only CS

field where winner is undisputed. What will your multi-
core approach teach in the algorithms course?

Serial algorithms: big success. PRAM algorithms: (i)
natural extension of serial algorithms; (ii) won every
idea battle; others lost even when PRAM was absent!
(iii) finally can be built (UMD PRAM-On-Chip)

(improbable plot)
--Karl Marx
…we manage to

make even Marx
look champion of
effectiveness

Impasse
All vendors committed to multi-cores. Yet, their architecture and

how to program them for single task completion time not clear
(are they clueless?) ÎAvoid investment in long-term
application SW development since: (i) architecture is about to
change, and/or (ii) may bet on the wrong horse

You may want to ask why core CS algorithms people are not
participating today? Answer: they have little new to add.

Would you believe that 19 of 38 participants of IBM-NSF 12/1988
workshop on directions for parallel computing were
algorithms/theory people?!

So, what was the main message of these people back then?

Thread 2 History Let’s first figure out how to think
algorithmically in parallel. Build later.

Parallel Random-Access Machine/Model (PRAM)
Abstraction Concurrent accesses to memory, same time as one

Lots of detail (e.g., how to allocate each among p processor to a
task)
Still, architects considered the PRAM way too simple

Conjecture [SV82] It is enough to do this:

Serial doctrine Natural (parallel) algorithm
What could I do in parallel
at each step assuming
unlimited hardware #

ops
..

.. ..#
ops

time = #ops time << #ops

Just be sure that #opsparallel ~ #opsserial
The rest (a full PRAM algorithm) is just a matter of skill.

Postscript: lots of evidence that this “work-depth methodology”
works. Used as framework in PRAM algorithms textbooks:
JaJa-92, Keller-Kessler-Traeff-01

Î
time time

The PRAM Rollercoaster ride

Late 1970’s Dream
HISTORY Won the battle of ideas on parallel algorithmic

thinking. No silver or bronze! Model of choice in all
theory/algorithms communities. 1988-90: Big chapters in
standard algorithms textbooks. “Nothing could stop it…”

TRAGEDY FCRC’93: “PRAM is not feasible”. BUT, even the
1993+ despair did not produce proper alternativeÎ Not much1993+ despair did not produce proper alternativeÎ Not much
choice beyond PRAM!

Dream coming true? PRAM-On-Chip vision: 64-processor eXplicit-
multi-threaded (XMT) FPGA-prototype (not simulator) @UMD.
SPAA’07, CompFrontiers’08.

How come: crash course on parallel computing
– How much processors-to-memories bandwidth?

Enough Limited
Ideal Programming Model: PRAM Programming difficulties

2

5-year old impasse
Chapter 1 1946Î2003: Serial. 5KHzÎ4GHz.
Chapter 2 2004--: Parallel. #”cores”: ~dy-2003

Since 2003 clock frequency
growth is flat HP-07:

Source: Intel Platform 2015
Date: March 2005

growth is flat. HP 07:
If you want your program to run significantly faster … you’re going

to have to parallelize it Î Parallelism: only game in town
#Transistors/chip 1980Î2011: 29KÎ30B!

When (NOT if) can we start teaching parallel algorithms &
programming at all level? Brace for malpractice suits if not:

22-year old dinosaurs trained for 50-year career dominated by
parallelism by programming yesterday’s computers. We don’t
only under-teach: we mis-teach bad serial habit

“Informed” conjecture: must teach in CS Freshman year

Impasse excuse
All vendors committed to multi-cores. Yet, their architecture and

how to program them for single task completion time not clear
Î But, how do we know which approach to teach?! Like SW
vendors, our preferred course of action is to wait and see who
emerges as winners.

Nice try, but:
1 What about graduates before this is resolved?1. What about graduates before this is resolved?
2. When resolved: will you not teach the basics? The PRAM level

of cognition is necessary, as it falls in the common
denominator of other approaches. (It is also sufficient for a real
architecture…)

3. Demonstrated: PRAM-like programming can be taught to high-
school students (F’07) & non-CS majors (S’08): “CS&E is
where the action is!”; compare appeal with malpractice suit

Conclusion
Any successful general-purpose approach must (also)

answer: what will be taught in the algorithms class?
Otherwise dead-end

PRAM: only current answer
PRAM-On-Chip: Showing how PRAM can pull it
Culler-Singh 1999: “Breakthrough can come from

architecture if we can somehow truly design aarchitecture if we can somehow…truly design a
machine that can look to the programmer like a
PRAM”

Final thought
Meritocracy will lead us to a solution and away from a

farce. Not an …ism dogma or business cartels. This is
up to us:

IPDPS09? Organize (fair) competition among solutions

Q&A
Question: Where can I find more information
Answer: www.umiacs.umd.edu/users/vishkin/XMT/index.shtml
Question: Why PRAM-type parallel algorithms matter, when we

can get by with existing serial algorithms, and parallel
programming methods like OpenMP on top of it?

Answer: With the latter you need a strong-willed Comp. Sci. PhD y g p
in order to come up with an efficient parallel program at the
end. With the former (study of parallel algorithmic thinking and
PRAM algorithms) high school kids can write efficient (more
efficient if fine-grained & irregular!) parallel programs.

Some Quotes

- The single-chip supercomputer prototype built by Prof. Uzi Vishkin's group
uses rich algorithmic theory to address the practical problem of building an
easy-to-program multicore computer. Vishkin's XMT chip reincarnates the
PRAM algorithmic technology developed over the past 25 years, uniting the
theory of yesterday with the reality of today. Charles Leiserson, MIT, 2007.

- I am happy to hear of the impending announcement of a 64 processor
prototype of Uzi Vishkin's XMT architecture. This system represents a
significant improvement in generality and flexibility for parallel computer
systems because of its unique ability to exploit fine-grain concurrency. It will y q y p g y
be able to exploit a wider spectrum of parallel algorithms than today's
microprocessors can, and this in turn will help bring general purpose parallel
computing closer to reality. Burton Smith, Microsoft Technical Fellow, 2007.

- Today’s multi-core processors support coarse grain parallelism. Professor
Vishkin has defined a new parallel architecture that supports extremely fine-
grained threading. On XMT, a program can be profitably decomposed into
tasks as small as 10 instructions. With a complete programming model and
an impressive FPGA-based prototype, Professor Vishkin is proposing a
compelling alternative design for future microprocessors. Geoff Lowney,
Intel Fellow, April 2008.

