
HPPC 2009 Panel:
Are many-core computer vendors on track?

Martti Forsell1, Peter Hofstee2, Ahmed Jerraya3, Chris Jesshope4, Uzi
Vishkin5, and Jesper Larsson Träff6

1 VTT – Technical Research Centre of Finland
Oulu, Finland

2 IBM Systems and Technology Group
USA

3 CEA - LETI MINATEC
Grenoble, France

4 University of Amsterdam
Amsterdam, The Netherlands

5 University of Maryland Institute of Advanced Computer Studies (UMIACS)
Maryland, USA

6 NEC Laboratories Europe, NEC Europe Ltd.
St. Augustin, Germany

1 Introduction

The last session of the HPPC 2009 workshop was dedicated to a panel discussion
between the invited speakers and three additional, selected panelists. The theme
of the panel was originally suggested by Uzi Vishkin, and developed with the
moderator. A preamble was given in advance to the five panelists, and provoked
an intensive and determined discussion. The panelists were given the chance to
briefly summarize their view- and standpoints after the panel.

Panelists: Martti Forsell, Peter Hofstee, Ahmed Jerraya, Chris Jesshope, Uzi
Vishkin.

Moderator: Jesper Larsson Träff.

2 Preamble: Background and issues

The current proliferation of (highly) parallel many-core architectures (homo-
and heterogeneous CMP’s, GPU’s, accelerators) puts an extreme burden on the
programmer seeking (or forced) to effectively, efficiently, and with reasonable
portability guarantees utilize such processors. The panel will consider whether
what many-core vendors are doing now will get us to scalable machines that can
be effectively programmed for parallelism by a broad group of users.

Issues that may be addressed by the panelists include (but not exclusively):
Will a typical computer science graduate be able to program mainstream, pro-
jected many-core architectures? Is there a road to portability between differ-
ent types of many-core architectures? If not, should the major vendors look for



other, perhaps more innovative, approaches to (highly) parallel many-core archi-
tectures? What characteristics should such many-core architectures have? Can
programming models, parallel languages, libraries, and other software help? Is
parallel processing research on track? What will the typical computer science
student need in the coming years?

3 Martti Forsell

The sequential computing paradigm formulated in the 50’s has been tremen-
dously successful in the history of computing. The main reason for this is the
right type of abstraction capturing the essential properties of the underlying ma-
chine and providing good portability between machines with substantially dif-
ferent properties. The idealized properties of the computational model – single
cycle access time and sequential operation – can be emulated well enough even
with speculative superscalar architectures and considerably deep memory hier-
archies applying paging virtual memory. At the same time, sequential computing
is easy to learn and use, there is a thorough theory of sequential algorithms, and
efficient teaching in universities. Synchronization of subtasks of originally paral-
lel computational problems is trivial due to deterministic sequential execution.
Performance enhancement techniques, including exploitation of low-level paral-
lelism, speculations, and locality exploitation, are well-known and linked to the
paradigm.

Parallel computers introduced in the 60’s and the related parallel computing
paradigms have had a totally different reception than sequential ones, having
doomed them to marginal uses except in high-performance computing. During
this decade the situation has, however, changed totally with the arrival of multi-
core processors. Parallel computing is here to stay with no way back to sequen-
tial machines any more. This is because of power density problems preventing
exponential growth of clock frequencies for microprocessors. Unfortunately cur-
rent approaches to parallel computing (e.g. SMP, NUMA, CC-NUMA, vector
computing, and message passing) are weak making the whole paradigm poor.
Namely, the abstraction of the underlying parallel machinery is too low and in-
appropriate: A programmer is forced to take care of mapping of functionality,
partitioning of data, and synchronization. In the message passing model, one
even needs to take care of low-level sending and receiving messages between
processes. As a result, programming is difficult and error-prone. The portabil-
ity between machines with different properties is often limited and easily leads
to a need to rewrite the entire software for the new machine. The generality
of the theory of parallel algorithms is severely limited by architecture depen-
dency of current solutions, and teaching is virtually nonexistent at elementary
level even in universities. Execution of subtasks is asynchronous and the cost
of doing an explicit barrier synchronization is easily hundreds or thousands of
clock cycles. This severely limits the applicability of current approaches and
effectively rules out fine-grained parallel algorithms. Performance enhancement
techniques are not particularly innovative nor well-linked to thread-level paral-



lel execution since they are mostly copied from sequential computing, whereas
efficient techniques for parallel computing, including co-exploitation of ILP and
TLP, concurrent memory access, and multioperations, are missing.

Historically speaking, the trends of architectural approaches towards increas-
ingly parallel and complex machines seem to point towards more difficult pro-
grammability. There exists, however, approaches to parallel computing, e.g. vec-
tor computing and PRAM, that are easy to program and therefore would solve
most of the problems listed above. While the somewhat successful vector com-
puting approach is limited to vectorizable algorithms due to an inability to
exploit control parallelism, the more flexible and theoretically beautiful PRAM
has been widely considered impossible to implement. According to our imple-
mentation estimation studies on advanced parallel architectures this conception
appears to be wrong. Therefore, to address programmability and applicability
issues, we are developing CMP architectures realizing the PRAM model and re-
lated application development methodology. We have just started a project to
build our first FPGA prototype. Interestingly we are not alone, two out of five
panel participants are doing research in this direction.

4 Peter Hofstee

Driven by the need to deliver continuous performance improvements without dis-
turbing the existing code base, all major high-performance CPU vendors have
opted for shared-memory multi-core/multi-thread architectures. With this ap-
proach, existing applications with a modest amount of concurrency still benefit
from the larger caches, increased memory capacity and bandwidths, and in-
creased I/O capabilities that a next-generation processor provides. The need to
provide incremental performance improvements on all applications also is forcing
vendors to continue to make modest improvements to per-thread performance,
and this limits their ability to achieve the best possible power efficiencies for con-
current applications. All major vendors now integrate the memory controllers.
Integration of I/O and graphics is likely to be next leading to more heterogeneous
multi core processors. Large machines can be expected to be built as clusters
of these SMP nodes, though it is likely that even across these clusters address
spaces will be increasingly unified and shared.

Given this type of hardware, the SMP node memory looks more or less ”flat”,
i.e. access latencies to memory are not significantly dependent on which core on
the chip is accessing what memory attached to the node. Even if memory is
shared across the cluster, latency and bandwidths are substantially different for
memory attached to the local node and memory attached to remote nodes.

In order to prepare students for the future we need a fundamentally new ap-
proach to the way students are taught. The fundamentals that drive algorithmic
efficiency on today’s and future hardware are:

Classical notions of complexity – the total number of operations (memory
accesses, algorithmic operations etc.) as taught today.



Concurrency – A more concurrent algorithm of the same overall complexity
is more valuable.

Predictability – An algorithm in which data references and control flow are
predictable is more valuable (data parallelism can be regarded as a form of
data and control flow predictability).

Locality – An algorithm with better data and control flow locality is more
valuable.

Each of these notions of complexity leads to fundamental transformations of
the algorithms that are beyond a compiler’s ability to perform automatically.
Language designers should therefore build on these fundamental notions of algo-
rithmic efficiency while preserving conciseness of expression and semantic clarity.
Of course libraries can help those who program computers, not every driver has
to be a mechanic, but we should teach computer science students the fundamen-
tals, as we will need many skilled people to restructure our code base such that
it can be efficiently targeted at today’s and future highly parallel processors.

5 Ahmed Jerraya

The shift from the single processor to heterogeneous multiprocessor architec-
tures poses many challenges for software designers, verification specialists and
system integrators. The main design challenges for multi-core processors are: pro-
gramming models that are required to map application software into effective
implementations, the synchronization and control of multiple concurrent tasks
on multiple processor cores, debugging across multiple models of computation
of MPSoC and the interaction between the system, applications and software
views, and the processor configuration and extension.

Programming an MPSoC means to generate software running on the MPSoC
efficiently by using the available resources of the architecture for communication
and synchronization. This concerns two aspects: software stack generation and
validation for the MPSoC and communication mapping on the available hard-
ware communication resources and validation for MPSoC. Efficient programming
requires the use of the characteristics of the architecture. For instance, a data
exchange between two tasks mapped on different processors may use different
schemes through either the shared memory or the local memory of one of these
processors. Additionally, different synchronization schemes (polling, interrupts)
may be used to coordinate this exchange. Furthermore, the data transfer be-
tween the processors can be performed by a DMA engine, thus permitting the
CPU to execute other computation, or by the CPU itself. Each of these com-
munication schemes has advantages and disadvantages in terms of performance
(latency, throughput), resource sharing (multitasking, parallel I/O) and com-
munication overhead (memory size, execution time). The ideal scheme would be
able to produce an efficient software code starting from high-level program using
generic communication primitives.

For the design of classic computers, high-level parallel programming concepts
(e.g. MPI) are used as an Application Programming Interface (API) to abstract



hardware/software interfaces during high level specification of software applica-
tions. The application software can be simulated using an execution platform of
the API (e.g. MPICH) or executed on existing multiprocessor architectures that
include a low level software layer to implement the programming model. In this
case the overall performances obtained after hardware/software integration can-
not be guaranteed and will depend on the match between the application and the
platform. Unlike classic computers, the design of heterogeneous MPSoC requires
a better matching between hardware and software in order to meet performances
requirements. In this case, the hardware/software interfaces implementation is
not standard; it needs to be customized for a specific application in order to get
the required performances.

Therefore, for this kind of architectures, classic programming environments
do not fit: (i) high level programming does not handle efficiently specific I/O and
communication schemes, while (ii) low level programming explicitly managing
specific I/O and communication is time consuming and error-prone activity. In
practice, programming these heterogeneous architectures is done by developing
separate low level codes for the different processors, with late global validation
of the overall application with the hardware platform. The validation can be
performed only when all the binary software is produced and can be executed
on the hardware platform. Next generation programming environments need
to combine the high level programming models with the low level details. The
different types of processors execute different software stacks. Thus, an additional
difficulty is to debug and validate the lower software layers required to fully map
the high-level application code on the target heterogeneous architecture.

6 Chris Jesshope

Are manufacturers doing enough is perhaps the wrong question. We should be
asking whether they did enough to manage the entirely predictable shift from
sequential computing to parallel computing as a direct consequence of the power
wall. And the answer is probably no; we are unprepared.

Users have come to expect universality; sequential code works on all archi-
tectures either using source-code or binary-code compatibility and this is what
they now expect from multi-cores and concurrent heterogeneous systems. Con-
currency however, introduces all sorts of difficult problems, including the map-
ping and scheduling of work, races, deadlocks and fairness issues, etc. Ideally
applications engineers (programmers) should not be exposed to the latter.

A key issue therefore is whether we can separate algorithm-engineering issues
from concurrency engineering ones. Algorithm engineering does not usually re-
quire concurrency, just a deterministic parallel implementation. A major problem
is in dealing with synchronisation state, it complicates algorithm engineering un-
necessarily and constrains the problem mapping. It is not strictly necessary and
there are approaches, which aim to provide such a separation of concerns. These
are emerging technologies however, and are academic rather than commercial.



A further issue is whether we can program in a manner which is independent
of the scale of concurrency to which the the code will eventually be targeted,
i.e. can we code once and run anywhere, in order to have code portability across
different classes of target architecture. Again there seems to have been little work
moving us in this direction. It requires abstract concurrent programming models
that allow the capture of maximal concurrency and, ideally, also capture locality.
A typical approach is to take code and to parallelise it to given target with a
given granularity of parallelism. However, when you change the parameters or
the target it needs to be rewritten. The alternative is to program at the finest
grain possible and then sequentialise the code automatically when a target is
chosen. In this way the same code can be efficiently executed on any target
and the procedure of sequencing parallelism is a rather trivial one compared to
parallelisation. Again work is being carried out in this area but is also academic.

Models that are maximally concurrent but abstract (e.g. SVP) and coor-
dination languages that allow this separation of concerns (e.g. S-Net) have
been developed in the EU AETHER project, which has taken a 10-year-out
view on programming highly concurrent and heterogeneous systems (see: http:
//www.aether-ist.org/).

7 Uzi Vishkin

Hardware vendors have been forced into replacing the serial paradigm that has
worked for them well for decades by parallel computing based on many-core
architectures. To date, no commercial easy-to-program general-purpose many-
core machine for single-task completion-time has been available. In fact, several
decades of parallel architectures have been able to produce only rather limited
success stories. A 2003 NSF Blue Ribbon committee effectively declared their
programming a ”disaster area” by noting that to many programmers it is ”as
intimidating and time consuming as programming in assembly language”. Hard-
ware vendors need to reproduce the serial success for many-cores. Adopting,
without significant modification, the same parallel architectures would instead
drag mainstream computing into the same disaster area.

Customers buying a computer interact with its software, but their link to
the hardware is indirect, by nature. However, the cyclic process of hardware
improvements leading to software improvements, which lead back to hardware
improvements and so on, known as the software spiral, facilitated for many years
a direct link between customers and hardware. Hardware designers could directly
serve their customers by helping to run serial code faster. Alas, the software spi-
ral is now broken. Consequently, getting application software developers (ASDs)
to switch to the emerging generation of many-core systems has become much
more critical to serving these customers. However, the incentive to develop soft-
ware for the new machines has decreased considerably. Code development and
maintenance is much more expensive, as initial development time is higher and
code is more error prone. Not only that the investment is higher, the returns on
it are much riskier: even if machines continue to support the current develop-



ment platform, some hard-to-predict future upgrades may offer new options for
optimization of performance, allowing competitors to develop better software,
at a lesser cost, by just adopting a wait-and-see approach. Thus, computer de-
signers need to understand the legitimate concerns of software developers and
do what they can to ”woo” them.

The explicit multi-threading (XMT) approach www.umiacs.umd.edu/users/
vishkin/XMT/ could affect the above discussion in two ways. First, it affirms con-
cerns that hardware improvements that may significantly reduce investment in
code development by just waiting till they are installed are indeed possible. The
second way is that incorporation of the hardware upgrades that XMT suggests,
could make it possible to support the broad family of PRAM algorithms, greatly
alleviating current concerns about ease-of-programming. Moreover, every person
majoring in CS should be able to program the commodity many-core system of
the future. Teachability of XMT programming has been demonstrated at various
levels from rising 6th graders to graduate students, and students in a freshman
class were able to program 3 parallel sorting algorithms.


