
HW5: Shared-Memory Sample Sort

Course: Informal Parallel Programming Course for High School Students, Fall 2007
Title: Shared-Memory Sample Sort
Date Assigned: October 30, 2007
Date Due: November 13, 2007

1 Assignment Goal

The goal of this assignment is to provide a randomized sorting algorithm that runs efficiently on XMT.
The Sample Sort algorithm follows a "decomposition first" pattern and is widely used on multiprocessor
architectures. Being a randomized algorithm, its running time depends on the output of a random number
generator. Sample Sort performs well on very large arrays, with high probability.

In this assignment, we propose implementing a variation of the Sample Sort algorithm that performs
well on shared memory parallel architectures such as XMT.

2 Problem Statement

The Shared Memory Sample Sort algorithm is an implementation of Sample Sort for shared memory
machines. The idea behind Sample Sort is to find a set of p−1 elements from the array, called splitters,
which partition the n input elements into p groups set0 . . .setp−1. In particular, every element in seti is
smaller than every element in seti+1. The partitioned sets are then sorted independently.

The input is an unsorted array A. The output is returned in array Result. Let p be the number of
processors. We will assume, without loss of generality, that N is divisible by p. An overview of the
Shared Memory Sample Sort algorithm is as follows:

Step 1. In parallel, a set S of s× p random elements from the original array A is collected, where p is
the number of TCUs available and s is called the oversampling ratio. Sort the array S, using an
algorithm that performs well for the size of S. Select a set of p−1 evenly spaced elements from
it into S′: S′ = {S[s],S[2s], . . . ,S[(p−1)× s]}
These elements are the splitters that are used below to partition the elements of A into p sets (or
partitions) seti, 0 ≤ i < p. The sets are set0 = {A[i] | A[i] < S′[0]}, set1 = {A[i] | S′[0] < A[i] <
S′[1]}, . . . , setp−1 = {A[i] | S′[p−1] < A[i]}.

Step 2. Consider the input array A divided into p subarrays, B0 = A[0, . . . ,N/p−1], B1 = A[N/p, . . . ,2N/p−
1] etc. The ith TCU iterates through subarray Bi and for each element executes a binary search on
the array of splitters S′, for a total of N/p binary searches per TCU. The following quantities are
computed:

• ci j - the number of elements from Bi that belong in partition set j. The ci j makes up the
matrix C as in figure 1.

1

Figure 1: The C matrix built in Step 2.

• partitionk - the partition (i.e. the seti) in which element A[k] belongs. Each element is tagged
with such an index.

• serialk - the number of elements in Bi that belong in setpartitionk but are located before A[k]
in Bi.

For example, if B0 = [105,101,99,205,75,14] and we have S′ = [100,150, . . .] as splitters, we
will have c0,0 = 3, c0,1 = 2 etc., partition0 = 1, partition2 = 0 etc. and serial0 = 0, serial1 = 1,
serial5 = 2.

Step 3. Compute prefix-sums psi, j for each column of the matrix C. For example, ps0, j,ps1, j,. . . ,psp−1, j

are the prefix-sums of c0, j,c1, j,. . . ,cp−1, j.

Also compute the sum of column i, which is stored in sumi. Compute the prefix sums of the
sum1, . . . ,sump into global_ps0,...,p−1 and the total sum of sumi in global_psp. This definition of
globalps turns out to be a programming conveninence.

Step 4. Each TCU i computes: for each element A[j] in segment Bi, i · N
p ≤ j < (i+1)N

p −1:

pos j = global_pspartition j + psi,partition j + serial j

Copy Result[pos j] = A[j].

Step 5. TCU i executes a (serial) sorting algorithm on the elements of seti, which are now stored in
Result[global_psi, . . . ,global_psi+1−1].

At the end of Step 5, the elements of A are stored in sorted order in Result.

2

3 Hints and Remarks

Sorting algorithms The Sample Sort algorithm uses two other sorting algorithms as building blocks:

• Sorting the array S of size s× p. Any serial or parallel sorting algorithm can be used. Note
that for the "interesting" values of N (i.e. N� p), the size of S is much smaller than the size
of the original problem. An algorithm with best overall performance is expected.

• Serially sorting partitions of Result by each TCU. Any serial sorting algorithm can be used.
Remember to follow the restrictions imposed on spawn blocks, such as not allowing function
calls, and avoid concurrent reads or writes to memory.

Oversampling ratio The oversampling ratio s influences the quality of the partioning process. When
s is large, the partitioning is more balanced with high probability, and the algorithm performs
better. However, this means more time is spent in sampling and sorting S. The optimum value for
s depends on the size of the problem. We will use a default value of s = 8 for the inputs provided.

Random numbers for sampling Step 1 requires using a random number generator. Such a library
function is not yet implemented on XMT. We have provided you with a pre-generated sequence
of random numbers as an array in the input. The number of random values in the sequence is
provided as part of the input. The numbers are positive integers in the range 0..1,000,000. You
need to normalize these values to the range that you need in your program. Use a global index
into this array and increment it (avoiding concurrent reads or writes) each time a random number
is requested, possibly wrapping around if you run out of random numbers.

Number of TCUs Although the number of TCUs on a given architecture is fixed (e.g. 1024 or 64),
for the purpose of this assignment we can scale down this number to allow easier testing and
debugging. The number of available TCUs will be provided as part of the input for each dataset.

4 Assignment

1. Parallel Sort: Write a parallel XMTC program ssort.p.c that implements the Shared Memory
Sample Sort algorithm. This implementation should be as fast as possible.

2. Serial Sort: Write a serial XMTC program ssort.s.c that implements the Shared Memory Sample
Sort algorithm. This implementation will be used to for speedup comparison. You can use one
of the serial sorting algorithms implemented as part of sample sort, or you can write a different
sorting algorithm.

4.1 Setting up the environment

The header files and the binary files can be downloaded from ∼ swatson/xmtdata. To get the data files,
log in to your account in the class server and copy the ssort.tgz file from directory using the following
commands:

$ cp ~swatson/xmtdata/ssort.tgz ~/
$ tar xzvf ssort.tgz

This will create the directory ssort with following folders: data, src, and doc. Data files are available in
data directory. Put your c files to src, and txt files to doc.

3

4.2 Input Format

The input is provided as an array of integers A.

#define N The number of elements to sort.
int A[N] The array to sort.
int s The oversampling ratio.
#define NTCU The number of TCUs to be used for sorting.
#define NRAND The number of random values in the RANDOM array.
int RANDOM[NRAND] An array with pregenerated random integers.
int result[N] To store the result of the sorting.

You can declare any number of global arrays and variables in your program as needed. The number of
elements in the arrays (n) is declared as a constant in each dataset, and you can use it to declare auxiliary
arrays. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];
int temp2[2*N];
int pointer;

int main() {
//...
}

4.3 Data sets

Run all your programs (serial and parallel) using the data files given in the following table. You can
directly include the header file into your XMTC code with #include or you can include the header file
with the compile option -include. To run the compiled program you will need to specify the binary data
with –data-file option.

Dataset N NTCU Header File Binary file
d1 256 8 data/d1/ssort.h data/d1/ssort.32b
d2 1024 8 data/d2/ssort.h data/d2/ssort.32b
d3 4096 8 data/d3/ssort.h data/d3/ssort.32b
d4 4096 64 data/d4/ssort.h data/d4/ssort.32b
d5 16k 64 data/d5/ssort.h data/d5/ssort.32b

5 Output

The array has to be sorted in increasing order. The array result should hold the array of sorted values.

Prepare and fill the following table: Create a text file named table.txt in doc. Remove any printf
statements from your code while taking these measurements. Printf statements increase the clock
count. Therefore the measurements with printf statements may not reflect the actual time and work done.

Dataset d1 d2 d3 d4 d5
Parallel sort clock cycles
Serial sort clock cycles

4

5.1 Submission

The use of the make utility for submission make submit is required. Make sure that you have the correct
files at correct locations (src and doc directories) using the make submitcheck command. Run following
commands to submit the assignment:

$ make submitcheck
$ make submit

If you have any questions, please send an e-mail to Scott Watson, swatson@umd.edu

5

