
HW7: Graph Connectivity and Spanning Forests

Course: Informal Parallel Programming Course for High School Students, Fall 2007
Title: Graph Connectivity and Spanning Forests
Date Assigned: November 20, 2007
Date Due: December 11, 2007 ∗

∗ Submissions from students who are interested, but cannot make it by December 11, are also strongly
encouraged. Such students are asked to send Scott Watson (swatson@umd.edu) and George Caragea
(george@cs.umd.edu) an e-mail proposing a later date by which they intend to submit.

1 Assignment Goal

Identify the connected components and a (not necessarily minimal) spanning forest for an undirected
graph G = (E,V ) using the second connectivity algorithm described in section 11.2 of the class notes
[1].

2 Problem Statement

Given an undirected graph G = (V,E), the second connectivity algorithm identifies the connected com-
ponents of G using log(n)-proportional iterations. Implement an algorithm to derive a (not necessarily
minimal) spanning forest from this algorithm.

Brief algorithm description. The definition of a spanning forest is given in Section 11.3 of the class
notes [1]. To derive a (not necessarily minimal) spanning forrest, you can record all the edges which are
used in the hooking steps of the Connectivity algorithm. More specifically, in the second connectivity
algorithm, you will need to record the edges used in the second and third step of the algorithm, as
described on page 89 of the class notes, namely the Hooking on smaller and Hooking non-hooked-upon
steps.
Note. The order in which the edges in the spanning forest are discovered and recorded is arbitrary. In
fact, for the same input graph, you might get different (correct) spanning forests at different runs.

The graph G is provided using the incidence list representation (similar to the BFS assignment). See
Figure 1.

3 Assignment

1. Implement the parallel algorithm for generating a spanning forest using the Second Connectivity
Algorithm. Name your code file connectivity.p.c.

2. Implement a serial algorithm for generating a spanning forest using a serial connectivity algorithm
of your choice. Name your code file connectivity.s.c.

1



Important: Both parallel and serial algoritms must be as efficient as possible. You will be graded based
on both correctness and efficiency of your implementations.

4 Input

4.1 Setting up the environment

The header files and the binary files can be downloaded from ∼ swatson/xmtdata. To get the data files,
log in to your account in the class server and copy the connectivity.tgz file from directory using the
following commands:

$ cp ~swatson/xmtdata/connectivity.tgz ~/
$ tar xzvf connectivity.tgz

This will create the directory connectivity with following folders: data, src, doc, and results. Data files
are available in data directory. Put your c files to src, output file file to doc and result file to results.

4.2 Input Format

The type and size of the data structures provided is given in the following table.

#define N The number of vertices in the graph
#define M The number of edges in the graph (each edge counts twice)
int edges[M][2] The start and end vertex of each edge
int vertices[N] The index in the edges array, at which point the edges incident to vertex begin
int degrees[N] the degree of each vertex
int D[N] result array: stores the result pointer graph
int spanforest[N-1][2] result array: stores the edges in the spanning forest
int spanforest_size result value: gives the number of edges in the spanning forest

Declaration of temporary/auxiliary arrays: You can declare any number of global arrays and variables
in your program as needed. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];

Figure 1: Incidence lists representation

2



int temp2[2*N];
int pointer;

int main() {
//...
}

4.3 Data Sets

The following data sets are provided:

Dataset N M Header file Binary File
graph0 19 36 data/graph0/connectivity.h data/graph0/connectivity.32b
graph1 50 400 data/graph1/connectivity.h data/graph1/connectivity.32b
graph2 10000 40000 data/graph2/connectivity.h data/graph2/connectivity.32b
graph3 20000 40000 data/graph3/connectivity.h data/graph3/connectivity.32b

Note that each edge is listed twice in the input file. For example, the undirected graph0 has only 18
edges.

Graph example. We have provided an example graph given by the dataset graph0 for debugging and
exemplification purposes. This corresponds to the graph in Figure 2.

Figure 2: Graph example: graph0 dataset.

4.4 Hints and Remarks

Separating concurrent reads and writes: Consider the first iteration of the algorithm applied to the
graph in Figure 2. Initially, nodes 14-17 each belong to a trivial rooted star that consists of only one
node, as shown in Figure 3.a.

In the Hooking on smaller step of the first iteration, the edges {(15,14),(16,15),(17,16)} will be used
to hook star 15 onto 14, star 16 onto 15 and star 17 onto 16 respectively. This is done by executing
in parallel D[D[u]] = D[v] for each edge (u,v) in the above set. In the PRAM algorithm, the execution
proceeds in a synchronous manner, where first all the processors read D[v] and D[u], then they all write
D[D[u]]. The result is the rooted tree shown in Figure 3.b.

The XMT platform implements a less-synchronous PRAM platform where the order in which the TCUs
execute the above assignment is not determined. This can result in a mix of concurrent reads and writes
to the elements of the array D.

Depending on the implementation of the memory read and write operations, this can cause the pointer
graph to be left in an inconsistent or invalid state. To avoid this issue, we propose the following scheme:

3



use two arrays to store the pointer graph, e.g. D_read and D_write; perform all the read operations from
the first array and all the write operations into the second one. For example, the above assignment can
be rewritten as: D_write[D_read[i]] = D_read[i]. Note that you need to ensure that the updated pointer
graph is stored in the appropriate array at the end of each iteration.

Figure 3: First iteration of the Second Connectivity algorithm applied on nodes 14-17 of the graph in
Figure 2. (a) Initial state of the pointer graph. (b) The pointer graph after the Hooking on smaller step.

Resolving Concurrent Writes: In the second Connectivity algorithm, a rooted star is allowed to per-
form at most one hooking per iteration (either in step 2 or in step 3 of the algorithm). In the PRAM
algorithm, the case where more than one hooking is possible is solved using concurrent writes in the
Arbitrary CRCW convention.

For XMT, we recommend using prefix-sums operation combined with a gatekeeper array, similar to the
BFS problem; for example, before hooking a rooted star onto a rooted tree using edge (u,v), execute a
psm() instruction on an array entry corresponding to D[u]. Proceed with the hooking operation only if
the prefix-sum returns 0.

5 Output

5.1 Cycle counts

Prepare and fill the following table: Create a text file named table.txt in doc. Remove any printf
statements from your code while taking these measurements. Printf statements increase the clock
count. Therefore the measurements with printf statements may not reflect the actual time and work done.

Dataset: graph0 graph1 graph2 graph3
Parallel Clock cycles
Serial Clock cycles
Speedup

Speedup is defined as SerialClockCycles/ParallelClockCycles.

5.2 Result

Following a run of your algorithm on the graph3 dataset, give the final pointer graph in the provided
array D[N] and the resulting spanning forest in span f orest[N− 1][2]. Give the number of edges in the

4



spanning forest in the variable span f orest_size. Note that both the pointer graph and the spanning forest
are not uniquely determined, and can even change between executions.

To collect this information, submit your implementation to the FPGA using the following command:
xmtfpga connectivity.b -d ../data/graph3/graph.32b -a 1004304 -l 240008.

Retrieve the memory dump created by running the above job using the xmtfpgadb command. Place
this file into the results subdirectory and rename it g3.txt. This file will be submitted and tested for
correctness.

6 Submission

The use of the make utility for submission make submit is required. Make sure that you have the correct
files at correct locations (src, doc and results subdirectories) using the make submitcheck command.
Run following commands to submit the assignment:

$ make submitcheck
$ make submit

If you have any questions, please send an e-mail to Scott Watson, swatson@umd.edu

References

[1] U. Vishkin. Thinking in parallel: Some basic data-parallel al-
gorithms and techniques. In use as class notes since 1993.
http://www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/classnotes.pdf,
September 2007.

5


