HW6: Breadth-First Search

Course: Informal Parallel Programming Course for High School Students, Fall 2007
Title: Breadth-First Search

Date Assigned: November 13, 2007

Date Due: November 27, 2007

1 Problem Statement

Breadth first search in parallel: Given a connected undirected graph G(V,E) and a vertex s € V, the
breadth-first search (BFS) method visits vertices in the following order: First, visit s, then visit (in some
order) all the vertices w € V, where the edge (s,w) € E; denote the set of these vertices by Vj, and the
singleton set consisting of s by Vp; in general, V; is the subset of vertices of V, which are adjacent on a
vertex in V;_; and have not been visited before (i.e., they are not in any of the sets Vy, V1, ...,V;_1). Each
set V; is called a layer of G and let /# denote the number of layers in G.

The input graph will be stored using incidence lists. Let V = 1,...,n and |E| = m. In this representation,
the edges are stored in an array of length 2m. This vector will contain first all the edges incident on vertex
1, then all the edges incident on vertex 2, and so on. Note that each edge will appear twice in this vector
(for an undirected graph).

This data structure will be provided using the following arrays:

edges[2m] [2]: the start and end vertex for each edge, grouped by the starting vertex.
vertices[n]: the index in the edges[] array where the adjacent edges for each vertex begin.
degrees[n]: the degree of each vertex

anti-parallel[2m]: for each edge, stores the index in the edges [] array where its anti-parallel
edge is stored.

An example is shown in figure 1.

antiparallel

vertices nnn
degrees

T R I SRR =1

() :

wlo]o]c]-[a]z]o]o]e[o]x

= T w oo

Figure 1: Incidence lists representation

2 Assignment

You will be required to submit three implementations with different solutions for the BFS problem:

1. Serial Implementation:

Describe a serial algorithm in the file algorithm.s.txt

Provide a brief work and time complexity analysis of this algorithm. Append this analysis
to the file algorithm.s.txt

Write an XMTC program (XMTSER) that executes this algorithm. Name your code file
bfs.s.c Important: The program should have as a result the lengths of the shortest path from
the start vertex to all the other vertices stored in the array called level.

Run this program using the data sets given in the Input section.
Collect the number of clock cycles for each run into file table.txt (see Output section).

2. Nested Parallel Implementation:

Describe a parallel algorithm using nested spawns in the file algorithm.np.txt.

Provide a brief work and time complexity analysis of this algorithm. Do this analysis in
two different ways: first taking into account that the inner spawn is serialized, and second
assuming that the nested spawn is truly supported (all threads of the nested spawns run in
parallel and are created in O(1) time). Append this analysis to the file algorithm.np.txt
Write an XMTC program (XMTNEST) that executes this algorithm. Name your code file
bfs.np.c Important: The program should have as a result the lengths of the shortest path
from the start vertex to all the other vertices stored in the array called level.

Run this program using the data sets given in the Input section.

Collect the number of clock cycles for each run into file table.txt (see Output section).

3. Parallel Implementation:

Describe a parallel algorithm in the file algorithm.p.txt. You are not allowed to used nested
spawns in this algorithm.

Provide a brief work and time complexity analysis of this algorithm. Append this analysis
to the file algorithm.p.txt

Write an XMTC program (XMTPAR) that executes this algorithm. Name your code file
bfs.p.c Important: The program should have as a result the lengths of the shortest path
from the start vertex to all the other vertices stored in the array called level.

Run this program using the data sets given in the Input section.
Collect the number of clock cycles for each run into file table.txt (see Output section).

3 Input

3.1 Setting up the environment

The header

files and the binary files can be downloaded from ~ swatson/xmtdata. To get the data files,

log in to your account in the class server and copy the bfs.zgz file from directory using the following

commands:

$ cp ~swatson/xmtdata/bfs.tgz ~/
$ tar xzvf bfs.tgz

This will create the directory bfs with following folders: data, src, and doc. Data files are available in
data directory. Put your c files to src, and #xt files to doc.

3.2 Input Format

The type and size of the data structures provided is given in the following table.

#define N The number of vertices in the graph

#define M The number of edges in the graph (each edge counts twice)

edges[M][2] The start and end vertex of each edge

vertices[N] The index in the edges array, at which point the edges incident to vertex begin
degrees[N] the degree of each vertex

antiparallel[M] | for each edge, stores the index in the edges array where its anti-parallel edge is stored.

gatekeeper[N] | gatekeeper per vertex

locks[M] Array of locks

level[N] result array: stores the distance from the source for each vertex

In order to use the same code and dataset with multiple starting nodes, you will assume that a C
preprocesor variable START is available. During compilation you will be able to modify this preprocesor
variable using -D START=. .. compiler option. This has the same effect as if the first line of your code
has the compiler directive: #define START ... (substitute an integer in place of ...). for grading
purposes, your program will be compiled and run with different starting nodes using this method. If you
do not adhere to this convention, your assignment may not be graded fully.

You can declare any number of global arrays and variables in your program as needed. For example,
this is valid XMTC code:

#define N 16384

int templ[16384];
int temp2[2*N];
int pointer;

int main() {
/...
}

3.3 Data Sets

The following two datasets are provided:

Data set | n = # Vertices | m = # Edges | Start node | Header file Binary File

Hexagon 20 86 0 | data/hexagon/bfs.h | data/hexagon/bfs.32b
Large 1000 10000 142 | data/large/bfs.h data/large/bfs.32b
Huge 10000 100000 101 | data/huge/bfs.h data/huge/bfs.32b

The below list provides details for each data set.

1. Hexagon graph: The dataset hexagon corresponds to the graph in figure 2.

2. Large: This is a rather large graph, generated with an automated tool. In order to test for cor-
rectness of your algorithm, you can check that the following (node:level) pairings hold: (199:2),
(300:3), (900:3), (401:3).

3. Huge: This is an even larger graph, generated with an automated tool.

Figure 2: The hexagon dataset

4 Output

Prepare and fill the following table: Create a text file named table.txt in doc. Remove any printf
statements from your code while taking these measurements. Printf statements increase the clock
count. Therefore the measurements with printf statements may not reflect the actual time and work done.

Dataset: Hexagon | Large | Huge
XMTPAR Clock cycles
XMTNEST Clock cycles
XMTSER Clock cycles

5 Submission

The use of the make utility for submission make submit is required. Make sure that you have the correct
files at correct locations (src and doc directories) using the make submitcheck command. Run following
commands to submit the assignment:

$ make submitcheck
$ make submit

6 Hints and remarks

Note that an efficient parallel solution might require nested spawning. The current XMTC compiler
implementation allows nesting spawn statements but serializes the inner spawns, so it does not support
nested parallelism through nesting spawn statements. You are asked to start by writing a parallel algo-
rithm using nested spawns because it is easier think in terms of nested spawns than single-spawns (see
below) and a program with nested spawns can be transformed into one that only uses single-spawns
(within the outer spawn) relatively painlessly. Additionally, once nested spawns are fully supported, this
is how programmers will be expected to write code.

For the third algorithm where you are not allowed to use nested spawns, you can use another construct
called a single-spawn (sspawn ()). A running thread can start exactly one more thread by using the

4

sspawn () (single-spawn) instruction. By using a balanced binary tree type approach, a thread can start
n more threads in logn steps. For details about the sspawn () instruction, you are referred to the XMT
manual and the Appendix A of this document.

In implementing the parallel solution, you might come across a case where two or more threads try

to write to the same memory location simultaneously. The XMT platform forbids arbitrary concurent
writes, the only mechanism that can be used in this case being prefix-sum to memory psm ().

If you have any questions, please send an e-mail to Scott Watson, swatson @umd.edu

A Clarifications on using single-spawn

When using single-spawn to start a new thread, a synchronization step between the parent and the child
thread is necessary. Since the child thread can potentially start executing as soon as a new thread-id is
allocated, the synchronization will ensure that the initialization block for the child is executed (by the
parent) before the child starts.

In the current version of the XMT framework, it is the responsibility of the programmer to implement this
synchronization, using a busy-wait technique. For this purpose, a special global array will be used; the
child thread will keep reading from a certain location in this array and will not proceed until the parent
writes a value in that location, signaling that the initialization data is in place. To ensure atomicity
of reads and writes, prefix-sum to memory operations will be used to read and write the shared lock
variables.

Example:

int locks[100];

spawn (low,high) {
int child_1ID;

int lock;

if (thread is a single-spawned thread) {
lock = 0;
while (lock==0) { // spin wait

psm(lock, locks[$]);

sspawn (child_1ID)
{

Initialization Block: Code for newly spawned thread
lock=1;
psm(lock,locks[child_ID]); // give signal to child

Some other code here ...

All the other guidelines and restrictions regarding the usage of sspawn described in the XMTC
Manual and the XMTC Tuturial still apply.

