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AN EFFICIENT PARALLEL BICONNECTIVITY ALGORITHM*

ROBERT E. TARJANt AND UZI VISHKINZ

Abstract. In this paper we propose a new algorithm for finding the blocks (biconnected components)
of an undirected graph. A serial implementation runs in O(n+ m) time and space on a graph of n vertices
and m edges. A parallel implementation runs in O(log n) time and O(n + m) space using O(n + m) processors
on a concurrent-read, concurrent-write parallel RAM. An alternative implementation runs in O(n?/p) time
and O(n?) space using any number p = n?/log? n of processors, on a concurrent-read, exclusive-write parallel
RAM. The last algorithm has optimal speedup, assuming an adjacency matrix representation of the input.

A general algorithmic technique that simplifies and improves computation of various functions on trees
is introduced. This technique typically requires O(log n) time using processors and O(n) space on an
exclusive-read exclusive-write parallel RAM.

Key words. parallel graph algorithm, biconnected components, blocks, spanning tree

1. Introduction. In this paper we consider the problem of computing the blocks
(biconnected components) of a given undirected graph G=(V, E). As a model of
parallel computation, we use a concurrent-read, concurrent-write parallel RAM
(CRCW PRAM). All the processors have access to a common memory and run
synchronously. Simultaneous reading by several processors from the same memory
location is allowed as well as simultaneous writing. In the latter case one processor
succeeds but we do not know in advance which. This model, used for instance in
[SV82], is a member of a family of models for parallel computation. (See [BH82],
[SV81], [V83c].)

We propose a new algorithm for finding blocks. We discuss three implementations
of the algorithm:

1. A linear-time sequential implementation.

2. A parallel implementation using O(log n) time, O(n+ m) space, and O(n+m)
processors, where n=|V| and m=|E|.

3. An alternative parallel implementation using O(n?*/p) time, O(n?>) space, and
any number p = n’/log® n of processors. This implementation uses a concurrent-read,
exclusive-write parallel RAM (CREW PRAM). This model differs from the
CRCW PRAM in not allowing simultaneous writing by more than one processor into
the same memory location. The speed-up of this implementation is optimal in the
sense that the time-processor product is O(n?), which is the time required by an optimal
sequential algorithm if the input representation is an adjacency matrix.

Implementation 2 is faster than any of the previously known parallel algorithms
[SJ81],[Ec79b], [TC84]. Eckstein’s algorithm [Ec79b] uses O(d log® n) time and O((n+
m)/d) processors, where d is the diameter of the graph. The first (resp. second)
algorithm of Savage and Ja’Ja’ [SJ81] uses O(log® n) (resp. O((log” n) log k)) time,
where k is the number of blocks, and O(n?/log n) (resp. O(mn+ n*log n)) processors.
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Tsin and Chin’s algorithm [TC84] matches the bounds of our implementation 3. These
algorithms use the CREW PRAM model, which is somewhat weaker than the
CRCW PRAM model. However, Eckstein [Ec79a] and Vishkin [V83a] present general
simulation methods that enable us to run implementation 2 on a CREW PRAM in
O(log® n) time, without increasing the number of processors. On sparse graphs, the
resulting algorithm uses fewer processors than either our implementation 3 or the
algorithm of Tsin and Chin.

We achieve our improvements through two new ideas:

1. A block-finding algorithm that uses any spanning tree. The previously known
linear-time algorithm for finding blocks uses a depth-first spanning tree [Ta72]. Depth-
first search seems to be inherently serial; i.e. there is no apparent way to implement
it in poly-log parallel time. The algorithm uses a reduction from the problem of
computing biconnected components of the input graph to the problem of computing
connected components of an auxiliary graph. This reduction can be computed efficiently
enough both sequentially and in parallel that the running time of the fastest parallel
connectivity algorithm becomes the only obstacle to a further improvement in
implementation 2. (See the discussion in § 5.)

2. A novel algorithmic technique for parallel computations on trees is introduced.
Given a tree, the technique uses an Euler tour of a graph obtained from the tree by
adding a parallel edge for each edge of the tree. Therefore, we call is the Euler tour
technique on trees. This technique allows the computations of various kinds of informa-
tion about the tree structure in O(log n) time using O(n) processors and O(n) space
on an exclusive-read exclusive-write parallel RAM. This model differs from the
CREW PRAM in not allowing simultaneous reading from the same memory location.
In the present paper we show how to use this Euler tour technique in order to compute
preorder and postorder numbering of the vertices of a tree, number of descendants
for all vertices, and other tree functions. Recently Vishkin [V84] proposed further
extensions of this technique. (See § 5.) After the appearance of the first version of the
present paper Awerbuch et al. [AIS84] and independently Atallah and Vishkin [AV84]
essentially applied Euler tours on trees to finding Euler tours of general Eulerian
graphs. See [AV84] for an explanation of this connection. The previously best known
general technique for parallel computations on trees is the centroid decomposition
method, which gives O(log® n)-time algorithms. See [M83] for a discussion of this
method and its use. The centroid decomposition method is the backbone of an earlier
paper by Winograd [Wi75].

The idea of reducing the biconnectivity problem to a connectivity problem on an
auxiliary graph was discovered independently by Tsin and Chin [TC84], who used the
idea in their block-finding algorithm. However, their algorithm has two drawbacks:

(1) Their auxiliary graph contains many more edges than ours. This complicates
the computation of the auxiliary graph and, more important, does not lead to a fast
parallel algorithm using only a linear number of processors. One of the elegant features
of our algorithm is that the same reduction is used in all three implementations.

(2) Their computation of preorder and postorder numbers and number of descen-
dants in trees takes O(log n) time using n°/log n processors—almost the square of the
number of processors that we use.

The remainder of the paper consists of four sections. In §2 we develop the
block-finding algorithm and give a linear-time sequential implementation. In § 3 we
describe our O(log n)-time parallel implementation and present the Euler tour tech-
nique. Section 4 sketches our alternative parallel implementation. In § 5 we discuss
variants of the algorithm for solving two additional problems: finding bridges and
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directing the edges of a biconnected graph to make it strongly connected. We also
discuss possible future work.

Note. If a parallel algorithm runs in O(t) time using O( p) processors then it also
runs in O(t) time using p processors. This is because we can always save a constant
factor in the number of processors at the cost of the same constant factor in running
time.

Historical remark. A variant of the block-finding algorithm presented here was
first discovered by R. Tarjan in 1974 [T82]. U. Vishkin independently rediscovered a
similar algorithm in 1983 and proposed a parallel implementation and the Euler tour
technique [V83b]. Subsequent simplification by the two authors working together
resulted in the present paper.

2. Finding blocks. Let G =(V, E) be a connected undirected graph. Let R be the
relation on the edges of G defined by e, Re, if and only if e, = e, or e, and e, are on
a common simple cycle' of G. It is known that R is an equivalence relation [Ha69].
The subgraphs of G induced by the equivalence classes of R are the blocks (sometimes
called biconnected components) of G. The vertices in two or more blocks are the cut
vertices (sometimes called articulation points) of G ; these are the vertices whose removal
disconnects G. The edges in singleton equivalence classes are the bridges of G; these
are the edges whose removal disconnects G. (See Fig. 1.)

(a)
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F1G. 1. (a) An undirected graph. (b) Its blocks. Vertices 4,5, 6 and 7 are cut vertices. Edges {6, 7}, {5, 10},
and {5, 11} are bridges.

We can compute the equivalence classes of R, and thus the blocks of G, in
O(n+m) serial time using depth-first search [Ta72], where n=|V| and m=|E|.
Unfortunately, this algorithm seems to have no fast parallel implementation. In this

! In this paper a cycle is a path starting and ending at the same vertex and repeating no edge; a cycle
is simple if it repeats no vertex except the first, which occurs exactly twice.
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section we develop an O(n+ m)-time serial algorithm that is well-suited for parallel
implementation. The algorithm can use any spanning tree, not just a depth-first spanning
tree.

We shall define an auxiliary graph G’ of G whose connected components corre-
spond to the blocks of G. The vertices of G’ are the edges of G; if S is a set of edges
in G, S induces a block of G if and only if S induces a connected component of G'.
Let T be any rooted spanning tree of G. We shall denote the edges of T by v—>w,
where v is the parent of w, denoted by p(w). Let the vertices of T be numbered from
1 to n in preorder and identify each vertex by its number. G’ contains each edge of
G as a vertex and all edges of the following forms (see Fig. 2):

(i) {{u, w}, {v, w}}, where u—>w is an edge of T and {v, w} is an edge of G—T
such that v <w.

(ii) {{u, v}, {x, w}}, where u>v and x> w are edges of T and {v, w} is an edge
of G— T such that v and w are unrelated in T.

(iii) {{u, v}, {v, w}}, where u—>v and v-> w are edges of T and some edge of G
joins a descendant of w with a nondescendant of v.

1(1,11)

(a)

1(141,11)
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{89} (79 {5.10}

FIG. 2. (a) A spanning tree of the graph in Fig. 1. Dashed edges are nontree edges. Vertices are numbered
in preorder. Numbers in parentheses are the low and high number of each vertex. (b) The auxiliary graph G'.

The intuition behind this construction is that every edge of G — T defines a cycle
consisting of this edge and the path in T joining its endpoints. All edges on this cycle
are in the same biconnected component. We add enough edges to G’ so that the vertices
in G’ corresponding to the edges on the cycle are in the same connected component.

THEOREM 1. Two edges of G are in a common block of G if and only if as vertices
of G’ they are in a common connected component of G'.

Proof. Any edge {x, y} of G— T defines a simple cycle of G, consisting of edge
{x, y} and the unique path in T joining x and y. These cycles are a cycle basis of G;
the edge set of any cycle is the mod-two sum of the edge sets of appropriate basis
cycles [Be73]. Define the relation R’ by e;R’e, if and only if e, and e, are two edges
of G on a common basis cycle, and let R'* be the reflexive, transitive closure of R’.
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We claim R'* = R. Since R is an equivalence relation and R’ < R, we have R'*< R.
To prove the converse, suppose e,Re,. Then e, and e, are on a common simple cycle,
which is a mod-two sum of basis cycles C,, C,, - - -, C,. Without loss of generality we
can order C;, C,, - - -, C; so that C; for i>1 has at least one edge in common with
some C; such that j <i. (Otherwise the mod-two sum of C;, C,, - - -, C, would induce
a disconnected subgraph.) It follows by induction on k that all edges in C,, C,, - - -, Ci
are equivalent under R'*, and in particular e,R'*e,. Thus R< R'*.

Let {u, v} and {x, w} be adjacent in G'. If case (i) holds, {u, v} is on the basis
cycle defined by {x, w}. (In this case x = v.) If Case (ii) holds, {u, v} and {x, w} are on
the basis cycle defined by {v, w}. If Case (iii) holds, say {y, z} is an edge with y a
descendant of w and z a nondescendant of v=x, then {u, v} and {x, w} are on the
basis cycle defined by {y, z}. Thus in all cases {u, v} and {x, w} are in the same block
of G.

Conversely, let {x, y} be an edge of G — T defining a basis cycle consisting of edge
{x, y}, edges on the tree path from z to x, and edges on the tree path from z to y,
where z is the nearest common ancestor of x and y. Without loss of generality suppose
x<y. By Case (i), {x, y} and {p(y), y} are adjacent in G'. The existence of {x, y}
implies by Case (iii) that any two edges on the tree path from z to x are adjacent in
G'. Similarly any two edges on the tree path from z to y are adjacent. If z=x, the
tree path from z to x is empty. Otherwise (i.e. z# x), x and y are unrelated, and by
Case (ii) {p(x), x} and {p(y), y} are adjacent in G'. Thus all edges on the basis cycle
are in the same connected component of G’. The theorem follows.

Theorem 1 gives the following O(n+ m)-time serial algorithm for finding blocks:

Step 1. Find a spanning tree T of G using any linear-time search method. Number
the vertices of G from 1 to n in preorder and identify each vertex by its preorder
number. Compute the number of descendants nd(v) of each vertex v by processing
the vertices in postorder using the recurrence nd(v)=1+Y {nd(w)|lv>w in T}. (We
regard every vertex as a descendant of itself.) A vertex w is a descendant of another
vertex v if and only if v=w=v+nd(v)—1[Ta74al.

Step 2. For each vertex v, compute low(v), the lowest vertex that is either a
descendant of v or adjacent to a descendant of v by an edge of G— T, and high(v),
the highest vertex that is either a descendant of v or adjacent to a descendant of v by
an edge of G— T. The complete set of 2n low and high vertices can be computed in
O(n+m) time by processing the vertices of T in postorder using the following
recurrences:

low(v) = min ({v}U {low(w)|v>w in TYU{w|{v, w} in G—T});

high(v) = max ({v} U {high(w)|v>w in T}U{w|{v, w} in G—T}).

Step 3. Construct G”, the subgraph of G’ induced by the edges of T, as follows.
(The edges of G” are those implied by cases (ii) and (iii).) For each edge {w, v} in
G — T such that v+ nd(v) =w, add {{p(v), v}, {p(w), w}} to G" (Case (ii)). For each
edge v->w of T such that v # 1 add {{ p(v), v}, {v, w}} to G" if low(w) < v or high(w) =
v+ nd(v) (Case (iii).)

Step 4. Find the connected components of G” using any kind of linear-time search.

Step 5. Extend the equivalence relation on the edges of T (the vertices of G”) to
the edges of G— T by defining {v, w} equivalent to { p(w), w} for each edge {v, w} of
G — T such that v <w (Case (i).)

It is easy to implement this algorithm to run in O(n+ m) time using standard
techniques. (See [Ta72]). If only a serial implementation is desired, the algorithm can
be simplified somewhat (see [Ta82]); the algorithm as presented is designed for easy
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parallel implementation. Note that each edge of G— T is a vertex of degree one in
G', and G” contains n—1 vertices and at most m —1 edges.

Remark. Although we have assumed that G is connected, we can use the algorithm
to find the blocks of a disconnected graph by applying it to each of the connected
components (in series in the case of the implementation in this section, in parallel in

the case of the implementations in §§ 3 or 4). This does not change the resource bounds
of the algorithm.

3. A fast parallel implementation. In this section we describe how to implement
the block-finding algorithm of § 2 to run in O(log n) time using O(n+ m) processors
on a CRCW PRAM. We shall emphasize the ideas involved, only sketching the details.
As the input representation, we assume that the vertex setis V={1,2, - - -, n} and that
each undirected edge {i, j} is represented by two directed edges (i, j) and (j, i). Each
vertex i has a list of its outgoing edges: adj(i) points to the first such edge and
next((i, j)) points to the edge after (i, j) on i’s list. (If there is no such edge, next((i, j)) =
null.) Each edge (i, j) also has a pointer to its reversal (j, i). Each vertex i and each
directed edge (i,j) has its own processor, denoted by pr(i) and pr(i, j), respectively.

Remark. This input representation is the most convenient one for our purposes,
but it is not the only one that will work. For example, we can begin with an array of
the 2m directed edges in arbitrary order and use the O(log m)-time, O(m)-processor
sorting algorithm of Ajtai, Komlds, and Szemerédi [AKS83] to sort the edges by first
component. Once the edges are sorted, it is easy to construct incidence lists. Sorting
the edges (i, j) lexicographically on (min {i, j}, max {i, j}) allows the construction of
pointers between each edge and its reversal. Thus we obtain the desired input rep-
resentation. While the asymptotic running time of this sorting algorithm is only
O(log m), the constant factor is huge. Instead of this algorithm, we can use the
randomized sorting algorithm of Reif and Valiant [RV83]. It will sort in time O(log m)
almost surely using m processors. A third possibility is to perform this sorting in time
O(log n) and m processors using an adaptation of the simple notion of ‘“‘orthogonal
trees”. However, this takes O(n*) space. For more information on such sorting
algorithms see Thompson [Th83].

Step 1. Construction of a spanning tree and computation of the preorder number
and number of descendants of each vertex.

First we construct an unrooted spanning tree by using a modification of the
Shiloach-Vishkin connected components algorithm [SV82]. We assume some
familiarity with this algorithm. The algorithm maintains for each vertex v a pointer
D(v). Initially D(v) = v for all vertices v. As the algorithm proceeds, the D-pointers
are the parent pointers of a forest, each tree of which contains vertices known to be
in a single connected component of the graph. (If v is the root of a tree in this D-forest,
D(v)=v.) The D-pointers are changed by two kinds of steps:

Shortcutting. Replace D(i) by D(D(i)) for some vertex i. Such a step changes
the structure of the D-forest by moving v and its descendants closer to the root of its
tree, but does not change the vertex partition defined by the D-trees.

Hooking. Replace D(D(i)) by D(j), where D(i) is the root of a D-tree, j is a
vertex in another D-tree, and {i, j} is an edge in the graph.

We modify the Shiloach-Vishkin algorithm so that all the edges are initially marked
as nontree edges, and each time a hooking step is performed, the corresponding graph
edge {i,j} is marked as a tree edge. When the algorithm finishes, all the vertices are
in a single D-tree, and the marked edges define a spanning tree. The original algorithm
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runs in O(log n) time using O(n+ m) processors; these bounds are not affected by
the modifications for computing a spanning tree.

One detail of this method deserves further discussion. Processors corresponding
to several directed edges (i, j) may simultaneously try to write to the same location
D(D(i)) to cause a hooking, but only one succeeds. In order to keep track of which
one succeeds, we use an auxiliary array a. When a processor pr((i, j)) tries to cause
a hooking step to take place, it first writes its name into a(D(i)) by the assignment
a(D(i)) < pr((i, j)). For a fixed value of D(i), only one such processor succeeds. The
successful processor pr((i, j)) then carries out the actual hooking step and marks both
(i,j) and (j, i).

Remark. This idea for obtaining a spanning tree from a connected components
computation has been used before. In particular Savage and Ja’Ja’ [SJ81] used it to
derive a minimum spanning forest algorithm from the connectivity algorithm of
Hirschberg, Chandra and Sarwate [HCS79].

Having determined the edges of an unrooted spanning tree, we choose a root and
number the vertices of the resulting rooted tree in preorder. To do this we first construct
for each vertex i a list of the outgoing edges corresponding to tree edges. We can do
this in O(log m) = O(log n) time with O(m) processors by using a standard “doubling”
technique [Wy79]. For each (i, j), we initialize treenext((i, j)) = next((i, j)) and then
repeat the following step, in parallel on all edges (i, j), [log m] times (until none of
the treenext values change): if treenext((i,j)) is not null and not marked, replace
treenext((i, j)) by treenext(treenext((i,j))). Once all the treenext values are computed,
we define treeadj(i), for each vertex i, to be adj(i) if adj(i) is null or marked,
treenext(adj(i)) otherwise. The treeadj and treenext maps define incidence lists for the
spanning tree.

Next, we construct a circular list corresponding to an Eulerian tour of the directed
version of the spanning tree. For each edge (i, j), the next edge tournext((i,j)) in the
tour is treenext((j, i)) if treenext((j, i)) is not null, treeadj(i, j) otherwise. This tour
corresponds to the order of advancing and retreating along edges during a depth-first
transversal of the tree, starting at an arbitrary vertex. To root the tree, we break the
Eulerian tour at an arbitrary edge, causing some edge, say (i, j), to be the first edge
on the list. Vertex i becomes the root of the tree. We call the broken list the traversal
list. This traversal list is the backbone of the Euler tour technique that is introduced
in this paper. In the sequel, we show that this list is the key to computing a number
of tree functions.

We can number the edges of the traversal list from 1 to 2n —2 in traversal order
in O(log n) time with O(n) processors by using the doubling technique to compute
for each edge (i,j) the number of edges from (i, j) to the end of the list. We do this
by initializing numtoend ((i, j)) = 1 and ptr((i, j)) = null for all ((i, j)). Once this compu-
tation is complete, the number of edge (i, j) is 2n — 1 — numtoend ((i, j)).

Of two edges (i, j) and (j, i), the lower-numbered one corresponds to an advance
from i to j along tree edge {i, j} and the higher-numbered one to a retreat from j to i
along {i, j}. Using the edge numbers, we can thus mark each directed edge as either
an advance edge or a retreat edge. For each vertex j other than the root, there is exactly
one advance edge (i, j); the parent p(j) of j in the tree is i.

In the traversal list, the advance edges (i, j) occur in preorder on j. We can thus
number the vertices in preorder using doubling, much as we computed the edge
numbers. The only differences are that we initialize numtoend (i, j) to be 1 if (i, j) is
an advance edge, 0 otherwise, and when the computation is complete, if (i,j) is an
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advance edge, we define n+1—numtoend (i, j) to be the reorder number of vertex j.
Once preorder numbers are computed, we replace each occurrence of a vertex by its
preorder number, retaining an inverse map to restore the original vertex names when
the computation is complete. (For each number i, we remember vertex(i), the vertex
with number i.)

Remark. Although not needed in this paper, a similar computation will number
the vertices in postorder; for each vertex j other than the tree root, there is exactly
one retreat edge (j, i), and the retreat edges appear in the transversal list in postorder
on j.

The last part of Step 1 is the computation of the number of descendants nd(j)
of each vertex j. If j is not the tree root, nd(j) is just the number of advance edges
from (p(j), j) to the end of the list (including (p(j), j)) minus the number of advance
edges from (j, p(j)) to the end of the list. Two doubling computations, one of which
we have already done to compute preorder numbers, and a parallel subtraction give
the number of descendants of all the vertices.

Step 2. Computation of low(j) and high(j) for each vertex j.

We shall describe how to compute low; the computation of high is similar. Using
doubling on the adjacency lists, we can compute locallow(j)=min ({j}U{k|(j, k) is
an unmarked (nontree) edge}) for each vertex j in O(log n) time using O(m) processors.
Below we assume without loss of generality that n is a power of 2. We define an
auxiliary value globallow[i, j]1=min ({locallow(k)|i = k=j}), i.e., globallow[i, j] is the
minimum of locallow over the interval [i,i+1,---,j]. For each 0=a=logn we
compute globallow of the intervals [(k—1)2%+1, - - -, k2%]} for 1 = k= n/2" (The total
number of such intervals is O(n). They have the property that any interval [i, - - -, j],
1=i=j=n, can be represented as a union of at most 2 log n of them.)

Initialization. Assign globallow[i, i]< locallow(i) for all 1=i=n.
for a <1 to log n pardo

for0=k=(n/2%)—1do

globallow[k2* +1, (k+1)2%]«

min (globallow[k2* +1, (2k —1)2*71],
globallow[(2k —1)2° 7' +1, (k+1)2%))

end for

end for

This computation takes O(log n) time using n processors. (Actually, n/log n processors
suffice but this is not important here.)

We compute low(j) for each vertex j using the formula
low(j) = min {locallow(k)|j = k =j+ nd(j)—1}.

That is, we compute globallow[j, j+nd(j)—1], for each vertex j. The computation
below uses the property that the interval [j,- - -,j+nd(j)—1] is a union of at most
2log n intervals on which globallow has already been computed. The variables
little(j) and big(j) initially mark the endpoints of the interval. During the course
of the computation the interval [little(j), - - -, big(j)] contains the subinterval of

[j,---,jtnd(j)—1] that has not yet been taken into account in the computation
of low(j).
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for 2=j=n pardo
Initialize: little(j) < j; big(j)«j+nd(j)—1;
low(j) < n+1 (Comment: This is a default value)
for a <1 to logn do
if little(j)—1 is not divisible by 2
then low(j) < min (low(j), globallow([little(j), little(j)+2*""—1])
little(j) < little(j) +2%7"
end if
if big(j) is not divisible by 2
then low(j) < min (low(j), globallow[big(j)—2%"'+1, big(j)])
big(j) < big(j)—2*""
end if
if little(j) > big(j)
then Halt and output low(j)
end if
end for
end for

It is easy to verify the following. (1) All our requests for values of globallow are for
intervals that have been previously computed. (2) The intervals that are taken into
account in the computation of low(j) actually cover the interval [j, - - -, j+nd —1]. (3)
The whole computation of Step 2 takes O(log n) time using O(n) processors.

Step 3. Construction of the auxiliary graph G”".

This computation requires only O(1) time using O(m) processors, since testing
the appropriate condition for each possible edge of G” takes O(1) time. After this test,
which takes place in parallel, we have a set of at most m — 1 processors, each of which
knows an edge of G".

Step 4. Finding the connected components of G”".

We apply the connected components algorithm of Shiloach and Vishkin. The
information computed in Step 3 is sufficient as input to this algorithm, which takes
O(log n) time and O(n+ m) processors. Once the algorithm finishes, each vertex (i, j)
of G” (advance edge of the spanning tree) has a D-pointer to a canonical “vertex”
(x, y) representing the connected component containing (i, j).

Step 5. Extension of the equivalence relation found in Step 4 to the edges of G—T.

For each nontree edge (i, j) such that i <j, we assign D((i, j)) <« D((p(j),j)). This
takes O(1) time and O(m) processors.

This completes the computation except for restoring the original vertex names.
An inspection of the various steps shows that none uses more than O(log m) = O(log n)
time, more than O(n+ m) space, or more than O(n+ m) processors. The only place
concurrent writing is used is in the connected components algorithm, used in Steps 1
and 4.

4. An alternative parallel implementation. In this section we develop an
implementation of the block-finding algorithm that runs in O(log®n) time using
O(n*/log® n) processors on a CREW PRAM, assuming that the input graph is represen-
ted by an adjacency matrix. Since we can always trade time for processors, this method
gives an O(n*/p) time algorithm using p processors, for any p=n’/log’ n. This
algorithm has optimal speed-up, assuming an adjacency matrix representation of the
input. We shall not go through the details of the implementation but merely mention
where it differs from the O(log n)-time implementation of the previous section.

There are two known connected components algorithms that run in O(log” n)
time using O(n?/log” n) processors: the algorithm of Vishkin [V81], which runs on a
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CRCW PRAM, and the algorithm of Chin, Lam, and Chen [CLC81], which runs on
a CREW PRAM. Although the latter is more complicated, we shall use it instead of
the former in Steps 1 and 4, since it uses a less powerful computation model. Chin,
Lam, and Chen describe how to adapt their algorithm to compute a (minimum)
spanning forest.

Step 1. Construction of a spanning tree and computation of the preorder number
and number of descendants of each vertex.

We apply the algorithm of Chin, Lam, and Chen to mark the entries in the
adjacency matrix corresponding to tree edges. We can convert each row of the adjacency
matrix to an incidence list for the corresponding vertex (of edges incident in the
spanning tree) by using a balanced binary tree with n leaves to guide the computation.
(For each marked entry, we need to compute the next marked entry in the row.) The
computation is similar to a standard partial-sum computation and takes O(log® n) time
with O(n/log” n) processors (see for instance [V81]). Since we can carry out the
computation for all rows in parallel, the total time is O(log® n) with O(n?/log® n)
processors. Establishing pointers between each directed edge (i, j) and its reverse is
easy. Now we have the representation of the unrooted spanning tree used in § 3. The
remainder of the Step 1 computation proceeds as in § 3, taking O(log n) time on O(n)
processors.

Step 2. Computation of low and high.

Computing locallow(j) requires n parallel minimum computations. Each takes
O(log” n) time using O(n/log” n) processors [Wy79], a total of O(n’/log® n) processors.
The remainder of the low computation proceeds as in § 3 taking O(log n) time using
O(n) processors. The computation of high is similar.

Step 3. Constuction of the auxiliary graph G".

This is easy in O(log® n) time with O(n’/log” n) processors.

Step 4. Finding the connected components of G”.

Step 5. Extension of the equivalence relation found in Step 4 to the edges of G~ T.

This is easy in O(log®) time with O(n?/log® n) processors.

5. Extensions and future work. There are two related problems that can be solved
using variants of our algorithm, in the same resource bounds. Neither of these requires
the second connected-component-finding step (Step 4). The first is the problem of
finding all bridges of a graph. The bridges are just the one-edge biconnected com-
ponents. Thus we can use the biconnected components algorithm directly. However,
there is a simpler algorithm. Suppose we number the vertices in preorder with respect
to any spanning tree; identify vertices by number; compute nd(v), the number of
descendants of the vertex, for each vertex v; and compute the low and high functions
defined in §2. A tree edge v—>w with v the parent of w is a bridge if and only if
w=low(w) and high(w)=w+nd(w)—1, i.e. if and only if both low(w) and high(w)
are descendants of w [Ta74b], [TC83]. No nontree edge is a bridge. By applying this
test, we can find all bridges in O(logn) time and O(n+m) processors on a
CRCW PRAM using the algorithm of §2, or in O(n*/p) time using any number
p =n’/log®> n of processors on a CREW PRAM using the algorithm of § 3. The latter
bounds for bridge-finding were first obtained by Tsin and Chin [TC83] using this
approach; the former bounds are new.

The second problem is that of directing the edges of a bridgeless graph so that
the resulting directed graph is strongly connected. Atallah [ At84] proposed an algorithm
for this problem that runs in O(log n) time using O(n?) processors on a CRCW PRAM.
Vishkin [V84] gave an algorithm with the same resource bounds as our method for
finding bridges and biconnected components. We shall propose an alternative, simpler
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algorithm. As above, assume that we have found a spanning tree, numbered the vertices
in preorder, identified each vertex by its number, and computed low(v) for each vertex
v. Let {v, w} be a nontree edge. We call {v, w} a back edge if v and w are related in
the tree and a cross edge otherwise. We can determine in O(1) time and O(m) processors
the cross edges and back edges, since a nontree edge {v, w} with v <w is a back edge
if and only if w is a descendant of v, i.e. w=v+nd(v)—1. We define lowback(v)
analogously to low(v) but using only back edges, as follows:

lowback(v) = min ({v} U {lowback(v)|v > win T}U {w|{v, w} is a backedge}).

We can compute lowback just as we computed low, in the same resource bounds.

Now suppose G has no bridges. To convert G to a strongly connected directed
graph, we direct the edges as follows:

(i) If {v, w} is a back edge with v <w, direct {v, w} from w to v.
(ii) If {v, w} is a cross edge with v <w, direct {v, w} from v to w.

(iii) If {v, w}is a tree edge with v < w, direct {v, w} from v to w if lowback(w) <w

or if low(w)=w, and from w to v otherwise.

The intuition behind this construction is to direct back edges from descendant to
ancestor and tree edges from parent to child. This suffices if there are no cross edges
(i.e. the tree is a depth-first spanning tree). To handle the cross edges we direct them
from lower to higher endpoint and reverse the natural directions of some of the tree
edges as described in (iii).

THEOREM 2. The directed graph formed by applying rules (i), (ii), and (iii) is
strongly connected.

Proof. We must show that every vertex is reachable from vertex 1 (the tree root)
and vertex 1 is reachable from every vertex. We show that every vertex v is reachable
from vertex 1 by induction on the preorder number of v. Obviously vertex 1 is reachable
from itself. Suppose vertices 1,2, - -, v—1 are reachable from vertex 1 and consider
vertex v. There is some tree edge {u, v} with u <. If this edge is directed from u to
v, then v is reachable from vertex 1. Otherwise, by rule (iii), low(v) < v and lowback(v) =
v. This means that there is a cross edge directed from low(v) to some descendant of
v, say X.

Vertex x is reachable from low(v) and hence from 1 by the induction hypothesis.
Furthermore, v is reachable from x by a directed path consisting of tree edges and
back edges. Otherwise, let y # v be the lowest ancester of x and descendant of v
reachable from v by such path. We know low(x) = low(v) < v = x. By rule (iii), it must
be the case that lowback(y) <y; otherwise the tree edge {p(y), ¥} is directed from y
to p(y), contradicting the choice of y. But this implies, also by rule (iii), that there is
a directed cycle containing y and p(y) consisting of a back edge from a descendant
of y to lowback(y) and all tree edges on the tree path between these vertices. This also
contradicts the choice of y. We conclude that v is indeed reachable from x, and hence
from 1. By induction all vertices are reachable from 1.

It remains for us to show that vertex 1 is reachable from every vertex. This will
follow if we can prove that from any vertex v# 1 we can reach a vertex larger in
postorder. If lowback(v) < v, there is a directed path from v to lowback(v) by rule (iii).
If lowback(v)=v but low(v) <v, there is a directed edge from v to its parent. The
only remaining possibility is low(v) = v. In this case high(v) > v+ nd(v) —1, i.e. high(v)
is not a descendant of v, for otherwise the tree edge { p(v), v} would be a bridge. Let
{x, high(v)} be an edge connecting a descendant x of v to high(v). This edge must be
a cross edge, directed from x to high(v). We claim that every descendant of v, including
x, is reachable from v (by a directed path containing only descendants of v). This
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follows from the fact that low(v)= v using an argument like that used to prove that
every vertex is reachable from vertex 1. Hence high(v) is reachable from v. In all cases
a vertex larger than v in postorder is reachable from v, and it follows that vertex 1 is
reachable from every vertex. [

Directing the edges according to rules (i)-(iii) takes O(1) time using O(m)
processors once the vertices are numbered in preorder and low and lowback are
computed.

We close this section and the paper with a few remarks about future work. The
parallel tree computations we have used may have applications to other graph problems.
This deserves study. Also, there are still open problems concerning parallel biconnec-
tivity algorithms. The algorithm of this section, as does the algorithm of Tsin and Chin
[TC84], has optimal speed-up for dense graphs but not for sparse ones, whereas the
algorithm of § 3 is off by a factor of log n from optimal speed-up. A question worth
exploring is whether there is an O((n+ m)/p)-time algorithm using p processors, for
p sufficiently small (say p=(n+m)/log’n or p=(n+m)/logn.) Such an algorithm
is unknown even for the problem of computing connected components.

Suppose that an algorithm of time O((n+ m)/p) could be found for the problem
of computing connected components. Then the implementation of § 3 implies a block-
finding algorithm of time O((nlog n+m)/p) using p=nlog n+m processors, pro-
vided we are given a proper input representation. In order to see this, consider the
following representation of the input graph for the block-finding problem. The vertex
setis V={1,2,-- -, n}. Each edge {i, j} is represented by two directed edges (i, j) and
(j, i). The 2m directed edges of the graph appear in ascending lexicographic order in
a vector of length 2m. (That is, (iy,j;) <(i,,j,) if i;<i, or i;=1i, and j, <j,.) Each
vertex i has a pointer to its first outgoing edge. The implementation of § 3 still requires
the following modification. Recall the construction of the list of outgoing edges in the
tree for every vertex. This was done using doubling, which required O(log n) time
using only O(m/log m) processors. Instead, we construct a sorted vector (similar to
the input vector) of length 2n —2 that contains all directed edges of the tree. This takes
time O(log n) using O(m) processors: For each directed edge in the tree we need to
find its serial number relative to the other directed edge of the tree. We use a balanced
binary tree with 2m leaves, one for each input directed edge, to guide the computation,
which is a standard partial sum computation where each active leaf enters one and
gets in return its serial number relative to other active leaves. This is similar to the
computation following Step 1 of this section. A similar remark applies to the computa-
tion of locallow(j) (just before the construction of the tree).
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