HW?2: Integer Sort & Radix Sort

Course: CMSC751/ENEE759, Spring 2009
Title: Integer Sort and Radix Sort

Date Assigned: February 23th, 2009

Date Due: Tuesday March 10th, 2009

Contact: Alex Tzannes - tzannes @cs.umd.edu

1 Assignment Goal

The goal of this assignment is to implement the Integer Sorting and Radix Sort algorithms presented in
the class notes (Section 6) in XMTC and run it on the XMT FPGA. The input is an array A[l..n] of
integers in the range [0..r — 1].

For Integer Sort we will assume that 7 is divisible by r and r = \/n. The goal is to rank the elements
of the input array from smallest to largest.

For Radix Sort we will assume that r = n>. The goal is to sort the elements of the input array from
smallest to largest.

2 Description of Integer Sort

Please be aware that this description is slightly different from that in the class notes.
Step 1. Partition A into n/r subarrays: By = A[0..r — 1], By = A[r..2r—1],..., B,/,_; = A[n—r.n—1].
Compute the following two sets of values:

1. number(v,s): the number of elements of subarray B, that have value v

2. serial(i): the number of elements A(j) such that A(j) = A(i) and precede element i in its subarray
B; (i.e., serial(i) counts only j < i, where | j/r| = |i/r] =), for 1 <i<n.

NOTE: This step is slightly different than what is presented in the class notes since it doesn’t require
you to sort the subarrays.
Example: By = (2,3,2,2) (r=4). Then, number(2,1) = 3, and serial(3) = 1.

Step 2. Separately (and in parallel) for each value 0 < v < r— 1 compute the prefix-sums of number(v,0),
number(v,1) .. number(v,n/r — 1) into ps(v,0), ps(v,1) ... ps(v,n/r — 1), and their sum (the number
of elements whose value is v) into cardinality(v). For this algorithm, the definition of prefix sum at
position x is the sum of elements [0..x — 1], i.e., ps[x] = ¥_ A[i], and ps[0] = 0. Therefore ps(v,0) =0
and globalPS(0) = 0 in step 3. Also note that ps is an XMTC keyword, so use a different name for your
array when you code this step.

Step 3. Compute the prefix sums of cardinality(0), cardinality(1) ...cardinality(r—1) into global PS(0),
globalPS(1) ...globalPS(r—1).

Step 4. In parallel for every element i (0 < i <n— 1), compute its rank:
rank(i) = serial (i) + ps(v,s) + global PS(v)
where v = A(i) and By the subarray of element i (s = [i/r])

EBO Bs-1 BEs En/r-1

Serial(d)—]
PS(v,5)—]
]

globalPS(vi—

3 Description of Radix Sort

Radix sort uses integer sort as its base so it is advisable to tackle it after you finish integer sort. As
mentioned in the introduction the range r of values for radix-sort is larger than the number of elements
to sort n and for that reason using a parallel integer sort or a serial bucket sort is inefficient. Radix sort
overcomes the issue of a larger range by sorting k times, each time taking into account only a portion of
the actual value of the input elements.

Imagine having the binary representation (since we are working on computers) of a value v of the
input (v € [0..r — 1]). It is b = log, r bits long. Now break it up in k segments, each [= b/k bits long
(assume that b is divisible by k). Radix sort works in k rounds sorting the input elements not using their
value, but the value of their i/ segment, starting from the one that contains the least significant bit, and
moving up towards the most significant bit.

As an example we present the case where k=2:

Step 1. Apply the integer sorting algorithm to sort the input array A using

A(1)(mod+\/r), A(2)(mod\/r), ..., A(n)(mod+\/r) as keys.
If the computed rank of element i is j then B(j) := A(i).

Step 2. Apply the integer sorting algorithm again, now on array B using

[B(1)/V/r], B(2)/V/r), ..., [B(n)/\/r] as keys.

4 Assignment

1. Serial Sort: Implement a stable (order preserving) serial sort in XMTC (a template program
isort.s.cis provided). While you can choose any algorithm you want, you probably want to im-
plement an order preserving bucket sort, since it will be used as part of the parallel sort. The serial
implementation will be used to calculate the speedup achieved by the parallel implementation.

2. Parallel Integer Sort: Implement the parallel integer sorting algorithm described above (and in
your class notes) in XMTC (a template program isort.p.c is provided).

3. Serial Radix Sort: Implement serial radix sort in XMTC with k = 2. Save your program as
rsort.s.c

4. Parallel Radix Sort: Implement parallel radix sort in XMTC. Start with k = 2, see why that choice
of k, while adequate for the serial version, is inadequate for the parallel version, and implement it
for k = 4 as well. Save your program as rsort.p.c

4.1 Setting up the environment

The header files and the binary files can be downloaded from /opt/xmt/class/xmtdata/. To get the data
files, log in to your account in the class server and copy the isort.tgz file using the following commands:

$ cp /opt/xmt/class/xmtdata/isort.tgz ~

$ tar xzvf isort.tgz

This will create the directory isort with following folders: data, src, and doc. Data files are available in
data directory. Edit the c files in src, and the zxt file in doc.

4.2 Input Format for Integer Sort

The input is provided as an array of integers A.

#define N The number of elements to sort.

#define R The number different values. Values will be in [0..R — 1].
#define NbyR | The value of N/R. Also the number of sub-arrays in Step 1.
int A[N] The array to sort.

int rank[N] To store the resulting ranks.

You can declare any number of global arrays and variables in your program as needed. The number of
elements in the arrays (V), the number of values (R) and their quotient (NbyR) are declared as constants
in each dataset, and you can use them to declare auxiliary arrays. For example, this is valid XMTC code:

int serial[N];
int prefixSum[R] [NbyR];

int main() {
/...
}
4.3 Input Format for Radix Sort

The input is provided as an array of integers A.

#define N The number of elements to sort.

#define R The number different values. Values will be in [0..R — 1].
int A[N] The array to sort.

int result[N] | To store the sorted elements.

4.4 Data sets for Integer Sort

Both the serial and parallel versions of your program will be using the data files given in the following
table. You can directly include the header file into your XMTC code with #include or you can include
the header file with the compiler option -include.

Dataset | N R | Header File Binary file

dl 256 16 | data/d1/isort.h | data/d1/isort.xbo
d2 4096 | 64 | data/d2/isort.h | data/d2/isort.xbo
d3 64k | 256 | data/d3/isort.h | data/d3/isort.xbo

4.5 Data sets for Radix Sort

Both the serial and parallel versions of your program will be using the data files given in the following
table. You can directly include the header file into your XMTC code with #include or you can include
the header file with the compile option -include.

Dataset | N R | Header File Binary file

dl1 256 | 64K | data/d1/rsort.h | data/d1/rsort.xbo
d2 4096 | 16M | data/d2/rsort.h | data/d2/rsort.xbo
d3 64k | 4G | data/d3/rsort.h | data/d3/rsort.xbo

Note that the large dataset has values from [0..4G — 1] = [0..23? — 1] but since an integer only has 32
bits and it is signed the values are really only in [0..23! —1].

4.6 Compiling and Executing

You can compile the parallel program using the following command line for the small dataset (d1):
> xmtcc -include ../data/dl/isort.h ../data/dl/isort.xbo isort.p.c -o isort.p

If the program compiles correctly a file called isort.p.b will be created. This is the binary exe-
cutable you will run on the FPGA using the following command:

> xmtfpga isort.p.b

If you wish to have the rank printed on the screen by the program compile using the -D PRINT_RESULT
flag. For larger datasets we will provide a textual memory dump of the rank array. To compare your
results against them use the following command when running the program:

> xmtfpga isort.p.b --memdump dump —--dumpvar rank

After the execution, a file called dump will be left in the directory and you can compare it using diff
to the provided correct solution.
Adapt the above commands to compile the radix sort programs as well.

4.7 Debugging

In order to test you integer sort implementation you need to write a procedure that runs two simple tests
on the output of the sorting program, the rank array. The tests are:

1. Check that the ranks in the rank array appear exactly once and are in the range of [0..N — 1].

2. Check that ranking produces an array that is indeed sorted in ascending order.

Your testing routines should be derived from the most efficient PRAM algorithms you can design.
Please report in fable.txt (see Section 4.8) the parallel complexity of these algorithms.

Provide pseudo-code for your checks at the end of the table.txt (see Section 4.8 below) as well
as their work and time complexity for full credit.

4.8 Output

For integer sort, the input array A has to be ranked in increasing order, as described in Section 2. The
ranking should be order-preserving (i.e. if A[i] = A[j], and i < j then rank[i] < rank][j]) and it should be
stored in array rank.

For razix sort, the input array A has to be sorted in increasing order, into array result. Note that the
output of the two algorithms has slightly different format: for the first we ask the ranks, while for the
second the actual sorted array.

Fill-in the text file called table.txt in the doc directory. Remember to remove any printf
statements from your code before taking measurements, as well as any checking code. Printf
statements and checking code (see Section 4.7) increase the clock count. Therefore the measurements
with printf statements may not reflect the actual time and work done.

Note that a part of your grading criteria is the performance of your parallel implementation on the
largest dataset (d3) for both integer-sort and radix-sort. Therefore you should try to obtain the fastest
running parallel program. As a guideline, for the larger dataset (d3) our Serial Integer Sort runs in
6877346 cycles, and our Parallel Integer Sort runs in 777748 cycles (speedup ~8.8x) on the FPGA
computer. Also our Serial Radix-Sort with k = 2 runs in 64659107 cycles and our Parallel Radix-Sort
with k = 4 runs in 3563886 cycles (a speedup of ~ 18x).

Dataset dl | d2 | d3
Parallel isort clock cycles

Serial isort clock cycles

Dataset dl | d2 | d3
Parallel rsort clock cycles

Serial rsort clock cycles

Check Time Complexity | Work Complexity
Each rank i € [0..N — 1] appears exactly once
The resulting array is indeed sorted

4.9 Submission

The use of the make utility for submission make submit is required. Make sure that you have the correct
files at correct locations (src and doc directories) using the make submitcheck command. Run following
commands to submit the assignment:

$ make submitcheck
$ make submit

