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Course Goals
Introduction to the theory of parallel algorithms

Parallel algorithmic thinking obtaining good speed-ups over 

best serial algorithm. 
Class presentations & dry HW Study the theory of parallel 
algorithms; design & asymptotic analysis of parallel algorithms. 

Programming reduce to practice. Why?

Hard speedups on real HW (XMT) � 1. Improved 
understanding. 2. YOU can do it: (i) in course assignments. (ii) 
for most advanced algorithms studied. 

Examination: (still open) CS&E research question
Will the current ``Billion-transistor-per-chip'' era provide a way 
for building a truly general-purpose parallel computer system 
on-chip? 

Focus Single program completion time. 

(Throughput is important, but is a different challenge)



How to Think Algorithmically in 
Parallel?

Uzi Vishkin



Commodity computer systems
Chapter 1 1946�2003: Serial. 5KHz�4GHz. 

Chapter 2 2004--: Parallel. 

Projection: #”cores”: ~dy-2003

BIG NEWS
Clock frequency growth: flat.
If you want your program to run significantly faster … you’re 

going to have to parallelize it � Parallelism: only game in 
town

Since 1980: 
#Transistors/chip 29K�~10sB!
Bandwidth/Latency 300X [HP12]

Programmer’s IQ? Flat..

Intel Platform 2015, March05



Parallelism everywhere

- Warehouse-scale computers, data-centers, 
clouds

- Supercomputer

- GPUs

- Many-cores

Basic knowledge of parallel algorithms:

- Necessary for these industry platforms 

- Does not mean that this is all you need to know



Who should produce the parallel code?
Choices [state-of-the-art compiler research perspective] 

•Programmer only

– Writing parallel code is tedious.

– Good at ‘seeing parallelism’, esp. irregular parallelism.

– But are bad at seeing locality and granularity considerations.

• Have poor intuitions about compiler transformations.

•Compiler only

– Can see regular parallelism, but not irregular parallelism.

– Great at doing compiler transformations to improve 
parallelism, granularity and locality.

⇒⇒⇒⇒ Hybrid solution: Programmer specifies high-level parallelism, 

but little else.  Compiler does the rest.

Goals:

•Ease of programming

– Declarative programming

(My) Broader questions
Where will the algorithms come from? 

Is today’’’’s HW good enough?
This course relevant for all 3 questions

Thanks: Prof. Barua



Serial RAM Step: 1 op (memory/etc). 
PRAM (Parallel Random-Access Model) Step: many ops. 

Serial doctrine                                                          Natural (parallel) algorithm

time = #ops                                                                     time << #ops 

1979- : THEORY figure out how to think algorithmically in parallel

What could I do in parallel 
at each step assuming 
unlimited hardware

�

#
ops

.. ..

..
.. ..

.. ..

#
ops

time time



Flavor of parallelism
Exchange Problem Replace A and B. Ex. A=2,B=5�A=5,B=2.
Serial Alg: X:=A;A:=B;B:=X.     3 Ops. 3 Steps. Space 1.
Fewer steps (FS): X:=A                B:=X                       

Y:=B                A:=Y          4 ops. 2 Steps. Space 2.

Array Exchange Problem Given A[1..n] & B[1..n], replace A(i) and B(i), i=1..n.
Serial Alg:  For i=1 to n do

X:=A(i);A(i):=B(i);B(i):=X   /*serial replace
3n Ops. 3n Steps. Space 1.
Par Alg1:  For i=1 to n pardo

X(i):=A(i);A(i):=B(i);B(i):=X(i) /*serial replace in parallel
3n Ops. 3 Steps. Space n.
Par Alg2: For i=1 to n pardo

X(i):=A(i)            B(i):=X(i)
Y(i):=B(i)            A(i):=Y(i)    /*FS in parallel

4n Ops. 2 Steps. Space 2n.
Discussion
- Parallelism requires extra space (memory). 
- Par Alg 1 clearly faster than Serial Alg.  
- Is Par Alg 2 preferred to Par Alg 1?



Snapshot: XMT High-level language
XMTC: Single-program multiple-data (SPMD) extension of 
standard C.
Includes Spawn and PS - a multi-operand instruction. 
Short (not OS) threads. 

Cartoon Spawn creates threads; a thread progresses at its own 
speed and expires at its Join. 
Synchronization: only at the Joins. 
So, virtual threads avoid busy-waits by expiring. 
New: Independence of order semantics (IOS).

Array Exchange. Pseudo-code for Par Alg1
Spawn(1,n){

X($):=A($);A($):=B($);B($):=X($) }



Example of Parallel algorithm Breadth-First-Search (BFS) 







Parallel complexity
W = ~(|V| + |E|)
T = ~d, the number of layers
Average parallelism = ~W/T

(i) “Concurrently” as in natural BFS: only 
change to serial algorithm
(ii) Defies “decomposition”/”partition”

Mental effort 
1. Sometimes easier than serial 
2. Within common denominator of other parallel 
approaches. In fact, much easier 



XMT project at UMD
Algorithms

PRAM parallel algorithmic theory. 
“Natural selection”. Latent, 
though not widespread, 
knowledgebase

ICE/WorkDepth Conjecture SV82: 
The rest (full PRAM algorithm) 
just a matter of skill

Lots of evidence that “work-
depth” works. Used as 
framework in main PRAM 
algorithms texts: JaJa92, 
KKT01 

programming & workflow

PRAM-On-Chip HW Prototypes

64-core, 75MHz FPGA of XMT
(Explicit Multi-Threaded) architecture

SPAA98..CF08

128-core intercon. network
IBM 90nm: 9mmX5mm,

400 MHz [HotI07]�Fund

work on asynch 
NOCS’10

• FPGA design�ASIC

• IBM 90nm: 10mmX10mm 

•
Stable compiler.                            Architecture scales to 1000+ cores on-chip



Software release

Allows to use your own computer for programming on an XMT 
environment and experimenting with it, including:
(i)Cycle-accurate simulator of the XMT machine
(ii)Compiler from XMTC to that machine

Also provided, extensive material for teaching or self-studying 
parallelism, including
(i)Tutorial + manual for XMTC (150 pages)
(ii)Classnotes on parallel algorithms (100 pages)
(iii)Video recording of 9/15/07 HS tutorial (300 minutes)



Parallel Random-Access Machine/Model

PRAM:

n synchronous processors all having unit time access to a shared memory. 
Each processor has also a local memory.
At each time unit, a processor can:
1. write into the shared memory (i.e., copy one of its local memory registers into 
a shared memory cell), 
2. read into shared memory (i.e., copy a shared memory cell into one of its local 
memory registers ), or 
3. do some computation with respect to its local memory. 



pardo programming construct 
- for Pi , 1 ≤ i ≤ n pardo
- A(i) := B(i)

This means
The following n operations are performed concurrently: processor P1 assigns B(1) into 

A(1), processor P2 assigns B(2) into A(2), ….

Modeling read&write conflicts to the same shared memory location 
Most common are:
- exclusive-read exclusive-write (EREW) PRAM: no simultaneous access by more 

than one processor to the same memory location for read or write purposes
- concurrent-read exclusive-write (CREW) PRAM: concurrent access for reads but not 

for writes
- concurrent-read concurrent-write (CRCW allows concurrent access for both reads 

and writes. We shall assume that in a concurrent-write model, an arbitrary processor 
among the processors attempting to write into a common memory location, 
succeeds. This is called the Arbitrary CRCW rule.

There are two alternative CRCW rules: (i) Priority CRCW: the smallest numbered, 
among the processors attempting to write into a common memory location, actually 
succeeds. (ii) Common CRCW: allows concurrent writes only when all the 
processors attempting to write into a common memory location are trying to write the 
same value.



Example of a PRAM algorithm: The summation problem

Input An array A = A(1) . . .A(n) of n numbers.
The problem is to compute A(1) + . . . + A(n).
The summation algorithm works in rounds. 
Each round: add, in parallel, pairs of elements: add each odd-numbered element and its 

successive even-numbered element.
If n = 8, outcome of 1st round is:

A(1) + A(2), A(3) + A(4), A(5) + A(6), A(7) + A(8)
Outcome of 2nd round:
A(1) + A(2) + A(3) + A(4), A(5) + A(6) + A(7) + A(8)

and the outcome of 3rd (and last) round:
A(1) + A(2) + A(3) + A(4) + A(5) + A(6) + A(7) + A(8)

B – 2-dimensional array (whose entries are B(h,i), 0 ≤ h ≤ log n and 1 ≤ i ≤ n/2h) used to 
store all intermediate steps of the computation (base of logarithm: 2). 

For simplicity, assume n = 2k for some integer k.
ALGORITHM 1 (Summation)
1. for Pi , 1 ≤ i ≤ n pardo
2. B(0, i) := A(i)
3. for h := 1 to log n do
4. if i ≤ n/2h

5. then B(h, i) := B(h − 1, 2i − 1) + B(h − 1, 2i)
6. else stay idle
7. for i = 1: output B(log n, 1); for i > 1: stay idle

Algorithm 1 uses p = n processors. 
Line 2 takes one round, 
Line 3 defines a loop taking 
log n rounds
Line 7 takes one round.



Summation on an n = 8 processor PRAM

Again Algorithm 1 uses p = n processors. Line 2 takes one round, line 3 defines a loop
taking log n rounds, and line 7 takes one round. Since each round takes constant time,
Algorithm 1 runs in O(log n) time. [When you see O (“big Oh”), think “proportional 
to”.]

So, an algorithm in the PRAM model
is presented in terms of a sequence of parallel 
time units (or “rounds”, or “pulses”); we
allow p instructions to be performed at each 
time unit, one per processor; this means
that a time unit consists of a sequence of 
exactly p instructions to be performed
concurrently.



Work-Depth presentation of algorithms

Alternative model and 
presentation mode.

Work-Depth algorithms are also 
presented as a sequence of 
parallel time units (or “rounds”, 
or “pulses”); however, each 
time unit consists of a 
sequence of instructions to be 
performed concurrently; the 
sequence of instructions may 
include any number.

2 drawbacks to PRAM mode: (i) Does not reveal how the algorithm will run on PRAMs 
with different number of processors; e.g., to what extent will more processors speed the 
computation, or fewer processors slow it? (ii) Fully specifying the allocation of 
instructions to processors requires a level of detail which might be unnecessary (a 
compiler may be able to extract from lesser detail)



WD presentation of the summation example
“Greedy-parallelism”: At each point in time, the (WD) summation algorithm 

seeks to break the problem into as many pair wise additions as possible, or, 
in other words, into the largest possible number of independent tasks that 
can performed concurrently.

ALGORITHM 2 (WD-Summation)
1. for i , 1 ≤ i ≤ n pardo
2. B(0, i) := A(i)
3. for h := 1 to log n
4. for i , 1 ≤ i ≤ n/2h pardo
5. B(h, i) := B(h − 1, 2i − 1) + B(h − 1, 2i)
6. for i = 1 pardo output B(log n, 1)
The 1st round of the algorithm (lines 1&2) has n operations. The 2nd round 

(lines 4&5 for h = 1) has n/2 operations. The 3rd round (lines 4&5 for h = 2) 
has n/4 operations. In general, the k-th round of the algorithm, 1 ≤ k ≤ log n + 
1, has n/2k-1 operations and round log n +2 (line 6) has one more operation 
(use of a pardo instruction in line 6 is somewhat artificial). The total number 
of operations is 2n and the time is log n + 2. We will use this information in 
the corollary below.

The next theorem demonstrates that the WD presentation mode does not suffer 
from the same drawbacks as the standard PRAM mode, and that every 
algorithm in the WD mode can be automatically translated into a PRAM 
algorithm.



The WD-presentation sufficiency Theorem

Consider an algorithm in the WD mode that takes a total of x = 

x(n) elementary operations and d = d(n) time. The algorithm 
can be implemented by any p = p(n)-processor PRAM within 
O(x/p + d) time, using the same concurrent-write convention as 
in the WD presentation.

[i.e., 5 theorems: EREW, CREW, Common/Arbitrary/Priority CRCW]

Proof 

xi - # instructions at round i.  [x1+x2+..+xd = x]

p processors can simulate xi instructions in ⌈xi/p⌉ ≤ xi/p + 1 time 

units. See next slide. Demonstration in Algorithm 2’ shows why 
you don’t want to leave this to a programmer.

Formally: first reads, then writes. Theorem follows, since

⌈x1/p⌉+⌈x2/p⌉+..+⌈xd/p⌉ ≤ (x1/p +1)+..+(xd/p +1) ≤ x/p + d



Round-robin emulation of y concurrent instructions

by p processors in ⌈y/p⌉ rounds. In each of the first ⌈y/p⌉ −1

rounds, p instructions are emulated for a total of z = p(⌈y/p⌉ − 1)

instructions. In round ⌈y/p⌉, the remaining y − z instructions are 
emulated, each by a processor, while the remaining w − y

processor stay idle, where w = p⌈y/p⌉



Corollary for summation example

Algorithm 2 would run in O(n/p + log n) time on a 
p-processor PRAM. 

For p ≤ n/ log n, this implies O(n/p) time. Later 
called both optimal speedup & linear speedup

For p ≥ n/ log n: O(log n) time.

Since no concurrent reads or writes � p-
processor EREW PRAM algorithm.



ALGORITHM 2’ (Summation on a p-processor PRAM)

1. for Pi , 1 ≤ i ≤ p pardo
2. for j := 1 to ⌈n/p⌉ − 1 do
- B(0, i + (j − 1)p) := A(i + (j − 1)p)
3. for i , 1 ≤ i ≤ n − (⌈n/p⌉ − 1)p
- B(0, i + (⌈n/p⌉ − 1)p) := A(i + (⌈n/p⌉ − 1)p)
- for i , n − (⌈n/p⌉ − 1)p ≤ i ≤ p
- stay idle
4. for h := 1 to log n
5. for j := 1 to ⌈n/(2hp)⌉ − 1 do (*an instruction j := 1 to 0 do means:
- “do nothing”*)
- B(h, i+(j −1)p) := B(h−1, 2(i+(j −1)p)−1) +  B(h−1, 2(i+(j −1)p))
6.    for i , 1 ≤ i ≤ n − (⌈n/(2hp)⌉ − 1)p
- B(h, i + (⌈n/(2hp)⌉ − 1)p) := B(h − 1, 2(i + (⌈n/(2hp)⌉ − 1)p) − 1) +
- B(h − 1, 2(i + (⌈n/(2hp)⌉ − 1)p))
- for i , n − (⌈n/(2hp)⌉ − 1)p ≤ i ≤ p
- stay idle
7. for i = 1 output B(log n, 1); for i > 1 stay idle
Nothing more than plugging in the above proof.
Main point of this slide: compare to Algorithm 2 and decide, which one you like better 
But is WD mode as easy as it gets? Hold on…Key question for this presentation



Measuring the performance of parallel algorithms

A problem. Input size: n. A parallel algorithm in WD 
mode. Worst case time: T(n); work: W(n).

4 alternative ways to measure performance:

1. W(n) operations and T(n) time.
2. P(n) = W(n)/T(n) processors and T(n) time (on a 

PRAM).
3. W(n)/p time using any number of p ≤ W(n)/T(n) 

processors (on a PRAM).
4. W(n)/p + T(n) time using any number of p processors 

(on a PRAM).

Exercise 1: The above four ways for measuring 
performance of a parallel algorithms form six pairs. 
Prove that the pairs are all asymptotically equivalent.



Goals for Designers of Parallel Algorithms
Suppose 2 parallel algorithms for same problem: 
1. W1(n) operations in T1(n) time. 2. W2(n) operations, T2(n) time. 
General guideline: algorithm 1 more efficient than algorithm 2 if 

W1(n) = o(W2(n)), regardless of T1(n) and T2(n); if W1(n) and 
W2(n) grow asymptotically the same, then algorithm 1 is 
considered more efficient if T1(n) = o(T2(n)).

Good reasons for avoiding strict formal definition—only guidelines
Example W1(n)=O(n),T1(n)=O(n); W2(n)=O(n log n),T2(n)=O(log n)

Which algorithm is more efficient? 
Algorithm 1: less work. Algorithm 2: much faster.
In this case, both algorithms are probably interesting. Imagine two 

users, each interested in different input sizes and in different 
target machines (different # processors). For one user 
Algorithm 1 faster. For second user Algorithm 2 faster.

Known unresolved issues with asymptotic worst-case analysis.



Nicknaming speedups
Suppose T(n) best possible worst case time upper bound on serial 

algorithm for an input of length n for some problem. (T(n) is 
serial time complexity for problem.) 

Let W(n) and Tpar(n) be work and time bounds of a parallel 
algorithm for same problem. 

The parallel algorithm is work-optimal, if W(n) grows 
asymptotically the same as T(n). A work-optimal parallel 
algorithm is work-time-optimal if its running time T(n) cannot be 
improved by another work-optimal algorithm.

What if serial complexity of a problem is unknown?

Still an accomplishment if T(n) is best known and W(n) matches it. 
Called linear speedup. Note: can change if serial improves.

Recall main reasons for existence of parallel computing: 

- Can perform better than serial

- (it is just a matter of time till) Serial cannot improve anymore



Default assumption regarding shared memory 
access resolution

Since all conventions represent virtual models of real machines: 
strongest model whose implementation cost is “still not very 
high”, would be practical.

Simulations results + UMD PRAM-On-Chip architecture 

�Arbitrary CRCW

NC Theory
Good serial algorithms: poly time. 

Good parallel algorithm: poly-log  time, poly processors.

Was much more dominant than what’s covered here in early 
1980s. Fundamental insights. Limited practicality.

In choosing abstractions: fine line between helpful and “defying gravity”



Technique: Balanced Binary Trees; 

Problem: Prefix-Sums
Input: Array A[1..n] of elements. Associative binary operation, denoted 

∗, defined on the set: a ∗ (b ∗ c) = (a ∗ b) ∗ c.
(∗ pronounced “star”; often “sum”: addition, a common example.)
The n prefix-sums of array A are:
A(1)
A(1) ∗ A(2)
..
A(1) ∗ A(2) ∗ .. ∗ A(i)
..
A(1) ∗ A(2) ∗ ..           ∗ A(n)

Prefix-sums is perhaps the most heavily used routine in parallel 
algorithms.



ALGORITHM 1 (Prefix-sums)

1. for i , 1 ≤ i ≤ n pardo
- B(0, i) := A(i)
2. for h := 1 to log n
3.   for i , 1 ≤ i ≤ n/2h pardo
- B(h, i) := B(h − 1, 2i − 1) ∗ B(h − 1, 2i)
4. for h := log n to 0
5.   for i even, 1 ≤ i ≤ n/2h pardo
- C(h, i) := C(h + 1, i/2)
6.   for i = 1 pardo
- C(h, 1) := B(h, 1)
7.   for i odd, 3 ≤ i ≤ n/2h pardo
- C(h, i) := C(h + 1, (i − 1)/2) ∗ B(h, i)
8. for i , 1 ≤ i ≤ n pardo
- Output C(0, i)

Summation (as before)

C(h,i) – prefix-sum  of 
rightmost leaf of [h,i]

}

}



Prefix-sums algorithm

Example

Complexity Charge operations to nodes. Tree has 2n-1 nodes.
No node is charged with more than O(1) operations.
�W(n) = O(n). Also T(n) = O(log n)
Theorem: The prefix-sums algorithm runs in O(n) work and O(log n) time.



Application - the Compaction Problem
The Prefix-sums routine is heavily used in parallel 
algorithms. A trivial application follows:
Input Array A = A[1. . N] of elements, and binary 
array B = B[1 . . n].
Map each value i, 1 ≤ i ≤ n, where B(i) = 1, to the 
sequence (1, 2, . . . , s); s is the (a priori unknown) 
numbers of ones in B. Copy the elements of A 
accordingly. 
The solution is order preserving. But, quite a few 
applications of compaction do not require that.
For computing the mapping, simply find prefix 
sums with respect to array B. 
Consider an entry B(i) = 1. If the prefix sum of i is j 
then map A(i) into C(j). 
Theorem The compaction algorithm runs in O(n) 
work and O(log n) time.



Snapshot: XMT High-level language
(same as earlier slide)

XMTC: Single-program multiple-data (SPMD) extension of 
standard C.
Includes Spawn and PS - a multi-operand instruction. 
Short (not OS) threads. 

Cartoon Spawn creates threads; a thread progresses at its own 
speed and expires at its Join. 
Synchronization: only at the Joins. 
So, virtual threads avoid busy-waits by expiring. 
New: Independence of order semantics (IOS).



XMT High-level language (cont’d)
The array compaction problem
Input: A[1..n]. Map in some order all 

A(i)  not equal 0  to array D.

Essence of an XMT-C program
int x = 0; /*formally: psBaseReg x=0*/
spawn(0, n-1) /* Spawn n threads; $ 

ranges 0 to n − 1 */
{ int e = 1;

if (A[$] not-equal 0)
{ ps(e,x);
D[e] = A[$] }

}
n = x;

Notes: (i) PS is defined next (think 
F&A). See results for e0,e2, e6 and 
x. (ii) Join instructions are implicit.

1

0

5

0

0

0

4

0

0

1

4

5

e0

e2

e6

A D

e$ local to thread $;
x is 3



XMT Assembly Language
Standard assembly language, plus 3 new instructions: Spawn, Join, and PS.

The PS multi-operand instruction
New kind of instruction: Prefix-sum (PS).
Individual PS, PS Ri Rj, has an inseparable (“atomic”) outcome: 
(i) Store Ri + Rj in Ri, and 
(ii) store original value of Ri in Rj.

Several successive PS instructions define a multiple-PS instruction. E.g., the 
sequence of k instructions:
PS R1 R2; PS R1 R3; ...; PS R1 R(k + 1)
performs the prefix-sum of base R1 elements R2,R3, ...,R(k + 1) to get: 
R2 = R1; R3 = R1 + R2; ...; R(k + 1) = R1 + ... + Rk; R1 = R1 + ... + R(k + 1).

Idea: (i) Several ind. PS’s can be combined into one multi-operand instruction.
(ii) Executed by a new multi-operand PS functional unit.



Mapping PRAM Algorithms onto XMT
(1st visit of this slide)

(1) PRAM parallelism maps into a thread structure

(2) Assembly language threads are not-too-short (to increase 
locality of reference)

(3) the threads satisfy IOS

How (summary):

I. Use work-depth methodology [SV-82] for “thinking in 
parallel”. The rest is skill. 

II. Go through PRAM or not. 

For performance-tuning, in order to later teach the compiler. (To 
be suppressed as it is ideally done by compiler):

Produce XMTC program accounting also for: 

(1) Length of sequence of round trips to memory,

(2) QRQW. 

Issue: nesting of spawns.



Experimental: ICE Programming Language

ICE: is a lock-step extension of standard C. That includes the 
pardo (Parallel Do) keyword.
In Lock-Step, no parallel contexts will start executing a statement, 
until all contexts has finished executing the previous one

Table: Pardo creates parallel contexts. Each one of the contexts is 
tied to all others (think of marching line of soldiers)
Synchronization: After every statement.
True to PRAM algorithms, the algorithms can be implemented as is.
For context: SIMT (single instruction multi-threading) of CUDA/Nvidia will execute first 
Stm2 and later Stm3 

Pardo (i=0;3;1) {
Stm1;
If (i%2==0)

stm2;
Else

stm3;
}

Context ID i = 0 i = 1 i = 2 i = 3

(T)ime=0 Stm1 Stm1 Stm1 Stm1

T=1 (i%2==0)? (i%2==0)? (i%2==0)? (i%2==0)?

T=2 Stm2 Stm3 Stm2 Stm3

T=3



Workflow from parallel algorithms to programming 
versus trial-and-error

Option 1

PAT

Rethink algorithm: 
Take better 

advantage of cache

Hardware

PAT

Tune

Hardware

Option 2

Parallel algorithmic 

thinking (ICE/WD/PRAM)

Compiler

Is Option 1 good enough for the parallel programmer’s model?

Options 1B and 2 start with a PRAM algorithm, but not option 1A. 

Options 1A and 2 represent workflow, but not option 1B.

Not possible in the 1990s.

Possible now: XMT@UMD

Why settle for less?

Insufficient 
inter-thread 
bandwidth?

Domain 
decomposition, 

or task 
decomposition

Program
Program

Prove

correctness

Still correct

Still correct



Exercise 2 Let A be a memory address in the shared memory of a PRAM. Suppose
all p processors of the PRAM need to “know” the value stored in A. Give a fast EREW 
algorithm for broadcasting A to all p processors. How much time will this take?

Exercise 3 Input: An array A of n elements drawn from some totally ordered set. The 
minimum problem is to find the smallest element in array A.
(1) Give an EREW PRAM algorithm that runs in O(n) work and O(log n) time.
(2) Suppose we are given only p ≤ n/ log n processors numbered from 1 to p. For the 
algorithm of (1) above, describe the algorithm to be executed by processor i, 1 ≤ i ≤ p.
The prefix-min problem has the same input as for the minimum problem and we need to
find for each i, 1 ≤ i ≤ n, the smallest element among A(1),A(2), . . . ,A(i).
(3) Give an EREW PRAM algorithm that runs in O(n) work and O(log n) time for the
problem.

Exercise 4 The nearest-one problem is defined as follows. Input: An array A of size n
of bits; namely, the value of each entry of A is either 0 or 1. The nearest-one problem is
to find for each i, 1 ≤ i ≤ n, the largest index j ≤ i, such that A(j) = 1.
(1) Give an EREW PRAM algorithm that runs in O(n) work and O(log n) time.
The input for the segmented prefix-sums problem, includes the same binary array A as
above, and in addition an array B of size n of numbers. The segmented prefix-sums
problem is to find for each i, 1 ≤ i ≤ n, the sum B(j) + B(j + 1) + . . . + B(i), where j
is the nearest-one for i (if i has no nearest-one we define its nearest-one to be 1).
(2) Give an EREWPRAM algorithm for the problem that runs in O(n) work and O(log n)
time.



Recursive Presentation of the Prefix-Sums Algorithm
Recursive presentations are useful for describing both serial and parallel algorithms. 
Sometimes they shed new light on a technique being used.
PREFIX-SUMS(x1, x2, . . . , xm; u1, u2, . . . , um)
1. if m = 1 then u1 := x1; exit
2. for i, 1 ≤ i ≤ m/2 pardo
- yi := x2i−1 ∗ x2i

3. PREFIX-SUMS(y1, y2, . . . , ym/2; v1, v2, . . . , vm/2)
4. for i even, 1 ≤ i ≤ m pardo
- ui := vi/2

5. for i = 1 pardo
- u1 := x1

6. for i odd, 3 ≤ i ≤ m pardo
- ui := v(i−1)/2 ∗ xi

To start, call: PREFIX-SUMS(A(1),A(2), . . . ,A(n);C(0, 1),C(0, 2), . . . ,C(0, n)).
Complexity Recursive presentation can give concise and elegant complexity analysis. 
Excluding the recursive call in instruction 3, routine PREFIX-SUMS, requires: ≤ α time, 
and ≤ βm operations for some positive constants α and β.  The recursive call is for a 
problem of size m/2. Therefore,
T(n) ≤ T(n/2) + α
W(n) ≤ W(n/2) + βn
Their solutions are T(n) = O(log n), and W(n) = O(n).



Exercise 5: Multiplying two n × n matrices A and B results in another n × n matrix
C, whose elements ci,j satisfy ci,j = ai,1b1,j + ..+ ai,kbk,j + ..+ ai,nbn,j.
(1) Given two such matrices A and B, show how to compute matrix C in O(log n) time
using n3 processors.
(2) Suppose we are given only p ≤ n3 processors, which are numbered from 1 to p.
Describe the algorithm of item (1) above to be executed by processor i, 1 ≤ i ≤ p.
(3) In case your algorithm for item (1) above required more than O(n3) work, show how
to improve its work complexity to get matrix C in O(n3) work and O(log n) time.
(4) Suppose we are given only p ≤ n3/ log n processors numbered from 1 to p.
Describe the algorithm for item (3) above to be executed by processor i, 1 ≤ i ≤ p.



Merge-Sort
Input: Two arrays A[1. . n], B[1. . m]; elements from a totally 

ordered domain S. Each array is monotonically non-
decreasing.

Merging: map each of these elements into a monotonically non-
decreasing array C[1..n+m] 

The partitioning paradigm
n: input size for a problem. Design a 2-stage parallel algorithm:

1. Partition the input into a large number, say p, of independent 
small jobs AND size of the largest small job is roughly n/p.

2. Actual work - do the small jobs concurrently, using a separate 
(possibly serial) algorithm for each.

Ranking Problem
Input: Same as for merging.

For every 1<=i<= n, RANK(i,B), and 1<=j<=m, RANK(j,A) 

Example: A=[1,3,5,7,9],B[2,4,6,8]. RANK(3,B)=2;RANK(1,A)=1



Merging algorithm (cnt’d) 
Observe Merging & Ranking: really same problem.

Show M�R in W=O(n),T=O(1) (say n=m):  

C(k)=A(i) � RANK(i,B)=k-i-1

Show R�M in W=O(n),T=O(1):

RANK(i,B)=j�C(i+j+1)=A(i)

“Surplus-log” parallel algorithm for the Ranking
for 1 ≤ i ≤ n pardo

• Compute RANK(i,B) using standard binary search 

• Compute RANK(i,A) using binary search

Complexity: W=(O(n log n), T=O(log n)



Serial (ranking) algorithm
SERIAL − RANK(A[1 . . ];B[1. .])
i := 0 and j := 0; add two auxiliary elements A(n+1) and 

B(n+1), each larger than both A(n) and B(n)

while i ≤ n or j ≤ n do

• if A(i + 1) < B(j + 1)

• then RANK(i+1,B) := j; i := i + 1

• else RANK(j+1),A) := i; j := j + 1

In words Starting from A(1) and B(1), in each round:

1. compare an element from A with an element of B

2. determine the rank of the smaller among them

Complexity: O(n) time (and O(n) work...)



Linear work parallel merging
Partitioning for 1 ≤ i ≤ n/p pardo [p <= n/log and p | n]

• b(i):=RANK(p(i-1) + 1),B) using binary search 

• a(i):=RANK(p(i-1) + 1),A) using binary search

Actual work 

Observe Ranking task can be 

broken into 2p independent “slices”.

Example of a slice

Start at A(p(i-1) +1) and B(b(i)).

Using serial ranking advance till:

Termination condition

Either A(pi+1) or some B(jp+1) loses

Parallel algorithm

2p concurrent threads



Linear work parallel merging (cont’d)

Observation 2p slices. None larger than 2n/p. 

(not too bad since average is 2n/2p=n/p)

Complexity Partitioning takes O(p log n) work and O(log n) 
time, or O(n) work and O(log n) time. Actual work 
employs 2p serial algorithms, each takes O(n/p) time. 
Total work is O(n) and time is O(log n), for p=n/log n.



Exercise 6: Consider the merging problem as above. Consider a variant of the above
merging algorithm where instead of fixing x (p above) to be n/ log n, x could be any 
positive integer between 1 and n. 
Describe the resulting merging algorithm and analyze its time and work complexity as a 
function of both x and n.

Exercise 7: Consider the merging problem as above, and assume that the values of the
input elements are not pair wise distinct. Adapt the merging algorithm for this problem,
so that it will take the same work and the same running time.

Exercise 8: Consider the merging problem as above, and assume that the values of n
and m are not equal. Adapt the merging algorithm for this problem. What are the new
work and time complexities?

Exercise 9: Consider the merging algorithm as above. Suppose that the algorithm
needs to be programmed using the smallest number of Spawn commands in an XMT-C
single-program multiple-data (SPMD) program. What is the smallest number of Spawn
commands possible? Justify your answer.
(Note: This exercise should be given only after XMT-C programming has been intro-
duced.)



Technique: Divide and Conquer 
Problem: Sort (by-merge)

Input: Array A[1 .. n], drawn from a totally ordered domain.
Sorting: reorder (permute) the elements of A into array B, such 

that B(1) ≤ B(2) ≤ . . . ≤ B(n).
Sort-by-merge: classic serial algorithm. This known algorithm 

translates directly into a reasonably efficient parallel algorithm.  
Recursive description (assume n = 2l for some integer l ≥ 0):
MERGE − SORT(A[1 .. n];B[1 .. n])
if n = 1
then return B(1) := A(1)
else call, in parallel, 
- MERGE − SORT(A[1 .. n/2];C[1 .. n/2]) and
- MERGE − SORT(A[n/2 +1 .. n);C[n/2 + 1 .. n])
Merge C[1 .. n/2] and C[n/2 +1) .. N] into B[1 .. N]



Merge-Sort 

Example:

Complexity The linear work merging algorithm runs in O(log n) time. 
Hence, time and work for merge-sort satisfy: 
T(n) ≤ T(n/2) + α log n; W(n) ≤ 2W(n/2) + βn where α, β > 0 are constants. 
Solutions: T(n) = O(log2 n) and W(n) = O(n log n).

Merge-sort algorithm is a “balanced binary tree” algorithm. See above figure and 
try to give a non-recursive description of merge-sort.



PLAN 
1. Present 2 general techniques:

- Accelerating cascades 

- Informal Work-Depth—what “thinking in parallel” means in this 
presentation

2. Illustrate using 2 approaches for the selection problem: 
deterministic (clearer?) and randomized (more practical)

3. Program (if you wish) the latter

Problem: Selection
Input: Array A[1..n] from a totally ordered domain; integer k, 1 ≤ k ≤ n. A(j) is k-

th smallest in A if ≤k−1 elements are smaller and ≤ n−k elements are larger. 

Selection problem: find a k-th smallest element.
Example. A=[9,7,2,3,8,5,7,4,2,3,5,6]; n=12;k=4. Either A(4) or A(10) (=3) is 4-th 

smallest. For k=5, A(8)=4 is the only 5-th smallest element.

Instances of selection problem: (i) for k=1, the minimum element, (ii) for k=n, 
the maximum (iii) for k = ⌈n/2⌉, the median. 



Accelerating Cascades - Example
Get a fast O(n)-work selection algorithm from 2 “pure” selection algorithms:
(1) Algorithm 1 has O(log n) iterations. Each reduces a size m instance of 

selection in O(log m) time and O(m) work to an instance whose size is ≤ 
3m/4.  Why is the complexity of Algorithm 1 O(log2n) time and O(n) work?

(2) Algorithm 2 runs in O(log n) time and O(n log n) work.
Pros: Algorithm 1: only O(n) work. Algorithm 2: less time. 
Accelerating cascades technique way for deriving a single algorithm that is 

both: fast and needs O(n) work. 
Main idea start with Algorithm 1, but not run it to completion. Instead, switch to 

Algorithm 2, as follows:
Step 1 Use Algorithm 1 to reduce selection from n to ≤ n/ log n. Note: O(log log 

n) rounds are enough, since for (3/4)rn ≤ n/ log n,  we need (4/3)r ≥ log n, 
implying r = log4/3log n.

Step 2 Apply Algorithm 2.
Complexity Step 1 takes O(log n log log n) time. The number of operations is 

n+(3/4)n+.. which is O(n). Step 2 takes additional O(log n) time and O(n) 
work. In total: O(log n log log n) time, and O(n) work. 

Accelerating cascades is a practical technique.

Algorithm 2 is actually a sorting algorithm.



Accelerating Cascades

Consider the following situation: for problem of size n, there 
are two parallel algorithms. 

Algorithm A: W1(n) and T1(n). Algorithm B: W2(n) and T2(n) 
time. Suppose:  Algorithm A is more efficient (W1(n) < 
W2(n)), while Algorithm B is faster (T1(n) < T2(n) ). 
Assume also: Algorithm A is a “reducing algorithm”: 
Given a problem of size n, Algorithm A operates in 
phases. Output of each successive phase is a smaller 
instance of the problem. The accelerating cascades 
technique composes a new algorithm  as follows:

Start by applying Algorithm A. Once the output size of a 
phase of this algorithm is below some threshold, finish 
by switching to Algorithm B.



Algorithm 1, and IWD Example
Note: not just a selection algorithm. Interest is broader, as the 

informal work-depth (IWD) presentation technique is illustrated. 
In line with the IWD presentation technique, some missing 
details for the current high-level description of Algorithm 1 are 
filled in later. 

Input Array A[1..n]; integer k, 1 ≤ k ≤ n. 
Algorithm 1 works in “reducing” ITERATIONS:
Input: Array B[1..m]; 1≤ k0≤m. Find k0-th element in B. 
Main idea behind a reducing iteration is: find an element α of B 

which is guaranteed to be not too small (≤ m/4 elements of B 
are smaller), and not too large (≤ m/4 elements of B are larger). 
Exact ranking of α in B enables to conclude that at least m/4 
elements of B do not contain the k0-th smallest element. 
Therefore, they can be discarded. The other alternative: the k0-
th smallest element (which is also the k-th smallest element 
with respect to the original input) has been found.



ALGORITHM 1 - High-level description (Assume: log m and m/ log m are integers.)
1. for i, 1 ≤ i ≤ n pardo

B(i) := A(i)
2. k0 := k; m := n
3. while m > 1 do
3.1.   Partition B into m/log m blocks, each of size log m as follows. Denote

the blocks B1,..,Bm/log m, where B1=B[1..logm],..,Bm/log m=B[m+1−log m..m].
3.2.   for block Bi, 1 ≤ i ≤ m/log m pardo

compute the median αi of Bi, using a linear time serial selection algorithm
3.3.   Apply a sorting algorithm to find α the median of medians (α1, . . . , αm/log m).
3.4.   Compute s1, s2 and s3. s1: # elements in B smaller than α, s2: # elements equal 

to α, and s3: # elements larger than α.
3.5.   There are three possibilities:
3.5.1    (i) k0≤s1: the new subset B (the input for the next iteration) consists of the 

elements in B, which are smaller than α (m:=s1; k0 remains the same)
3.5.2    (ii) s1<k0≤s1+s2: α is the k0-th smallest element in B; algorithm terminates
3.5.3    (iii) k0>s1+s2: the new subset B consists of the elements in B, which

are larger than α (m := s3; k0:=k0−(s1+s2) )
4.  (we can reach this instruction only with m = 1 and k0 = 1)

B(1) is the k0-th element in B.



Reducing Lemma At least m/4 elements of B are smaller than α, 
and at least m/4 are larger.

Proof

Corollary 1 Following an iteration of Algorithm 1 the value of m 
decreases so that the new value of m is at most (3/4)m.



Informal Work-Depth (IWD) description
Similar to Work-Depth, the algorithm is presented in terms of a sequence of 

parallel time units (or “rounds”); however, at each time unit there is a 
set containing  a number of instructions to be performed concurrently

Descriptions of the set of concurrent instructions can come in many flavors. 

Even implicit, where the number of instruction is not obvious.

Example Algorithm 1 above: The 
input (and output) for each 
reducing iteration is given as a 
set. We were also not specific 
on how to compute s1, s2 and s3.

The main methodical issue 
addressed here is how to train 
CS&E  professionals “to think in 
parallel”. Here is the informal 
answer: train yourself to provide 
IWD description of parallel 
algorithms. The rest is detail 
(although important) that can be 
acquired as a skill (also a matter 
of training).



The Selection Algorithm (wrap-up)
To derive the lower level description of Algorithm 1, simply apply 

the prefix-sums algorithm several times. 
Theorem 5.1 Algorithm 1 solves the selection problem in O(log2n) 

time and O(n) work. The main selection algorithm, composed of 
algorithms 1 and 2, runs in O(n) work and O(log n log log n) 
time.

Exercise 10 Consider the following sorting algorithm. Find the median element and then 
continue by sorting separately the elements larger than the median and the ones 
smaller than the median. Explain why this is indeed a sorting algorithm. What will be 
the time and work complexities of such algorithm?

Recap: (i) Accelerating cascades framework was 
presented and illustrated by selection algorithm. (ii) A 
top-down methodology for describing parallel 
algorithms was presented. Its upper level, called 
Informal Work-Depth (IWD), is proposed as the 
essence of thinking in parallel. 



Randomized Selection
Parallel version of serial randomized 

selection from CLRS, Ch. 9.2

Input Array A[p...r]
RANDOMIZED_PARTITION(A,p,r)  
1. i := RANDOM (p,r)
/*Rearrange A[p...r]: elements <= 

A(i) followed by those > A(i)*/
2. exchange A(r) �A(i)
3. return PARTITION(A,p,r)

PARTITION(A,p,r)
1. x := A(r)
2. i := p-1
3. for j := p to r-1
4. if A(j) <= x
5. then i := i+1
6. exchange A(i) �A(j)
7. exchange A(i+1) �A(r)
8. Return i+1

Input Array A[p...r], i. Find i-th smallest
RANDOMIZED_SELECT(A,p,r,i)
1. if p=r
2. Then return A(p)
3. q := RANDOMIZED_PARTITION(A,p,r)  
4. k := q-p+1
5. if i=k
6. then return A(q) 
7. else if i < k
8. then return                 

RANDOMIZED_SELECT(A,p,q-1,i)
9. else return 

RANDOMIZED_SELECT(A,q+1,r,i-k)

Basis for proposed programming project



Integer Sorting
Input Array A[1..n], integers from range [0..r−1]; n and r are 

positive integers.

Sorting: rank from smallest to largest.

Assume n is divisible by r. Typical value for r might be n1/2; other 
values possible.

Two comments about the parallel integer sorting algorithm:

(i) Its performance depends on the value of r, and unlike other 
parallel algorithms we have seen, its running time may not be 
bounded by O(logkn) for any constant k (“poly-logarithmic”). 
It is a remarkable coincidence that the literature includes only 
very few work-efficient non ploy-log parallel algorithms. 

(ii) It already lent itself to efficient implementation on a few 
parallel machines in the early 1990s. (Remark later.)

The algorithm work as follows:



1. Partition A into n/r subarrays: B1=A[1..r]..Bn/r=A[n−r+1..n]. Using serial bucket sort (see 
Exercise 12 below), sort each subarray separately (and in parallel for all subarrays). Also 
compute: (1) number(v,s) - the number of elements whose value is v in subarray Bs, for 
0≤v≤ r−1, and 1≤s≤n/r; and (2) serial(i) - the number of elements A(j) such that A(j)=A(i) 
and precede element i in its subarray Bs (i.e., serial(i) counts only j < i, where ⌈j/r⌉ = ⌈i/r⌉
= s), for 1 ≤ i ≤ n.
Example B1=(2,3,2,2) (r=4). Then, number(2,1) = 3, and serial(3)=1.
2. Separately (and in parallel) for each value 0 ≤ v ≤ r−1 compute the prefix-sums of 
number(v,1), number(v,2) ..  number(v,n/r) into ps(v,1), ps(v,2) .. ps(v,n/r), and their sum 
(the number of elements whose value is v) into cardinality(v).
3. Compute the prefix sums of cardinality(0), cardinality(1) .. cardinality(r−1)
into global−ps(0), global−ps(1) .. global−ps(r−1).
4. In parallel for every element i, 1≤i≤n [Let v = A(i) and Bs the subarray of element i (s = 
⌈i/r⌉]: The rank of element i is 1+serial(i)+ps(v,s−1)+global−ps(v−1)
[where ps(0,s)=0 and global−ps(0)=0]

Exercise 11: Describe the integer sorting 
algorithm in a “parallel program”, similar to
the pseudo-code that we usually give.

Complexity
1: T=O(r), W=O(r) per subarray; total: T=O(r), 
W=O(n). 
2: r computations; each T=O(log(n/r)),W=O(n/r); 
total T=O(log n), W=O(n) work. 
3: T=O(log r), W=O(r). 
4: T=O(1), W=O(n) work. 
Total: T=O(r + log n), W=O(n).



Theorem 6.1: (1) The integer sorting algorithm runs in O(r+log n) time and O(n) work. (2) 
The integer sorting algorithm can be applied to run in time O(k(r1/k+log n)) and O(kn) 
work for any positive integer k.
Showed (1). For (2): radix sort using the basic integer sort (BIS) algorithm:
A sorting algorithm is stable if for every pair of two equal input elements A(i) = A(j) where 
1 ≤ i < j ≤ n, it ranks element i lower than element j. 
Observe: BIS is stable. 
Only outline the case k = 2. 

2-step algorithm for an integer sort problem with r=n in T=O(√n) W=O(n)
Note: the big Oh notation suppresses the factor k=2. 
Assume that √n is an integer.
Step 1 Apply BIS to keys A(1) (mod √n), A(2) (mod √n) ..  A(n) (mod √n). If the computed 
rank of an element i is j then set B(j) := A(i).
Step 2 Apply again BIS this time to key ⌊B(1)/√n⌋, ⌊B(2)/√n⌋ .. ⌊B(n)/√n⌋.

Example 1. Suppose UMD has 35,000 students with social security number as IDs. Sort 
by IDs. The value of k will be 4 since √1B ≤ 35,000 and  4 steps are used.
2. Let A=10,12,9,2,3,11,10,12,4,5,9,4,3,7,15,1 with n=16 and r=16. Keys for Step 1 are 
values modulo 4: 2,0,1,2,3,3,2,0,0,1,1,0,3,3,3,1. Sorting & assignment to array B: 
12,12,4,4,9,5,9,1,10,2,10,3,11,3,15. Keys for Step 2 are ⌊v/4⌋, where v is the value of an 
element of B (i.e., ⌊9/4⌋=2). The keys are 3,3,1,1,2,1,2,0,2,0,2,0,2,0,3. The result relative 
to the original values of A is 1,2,3,3,4,5,7,9,9,10,10,11,12,12,15.



Remarks 1. This simple integer sorting algorithm has led to efficient implementation
on parallel machines such as some Cray machines and the Connection Machine (CM-
2). [BLM+91] and [ZB91] report giving competitive performance on the machines that 
they examined. Given a parallel computer architecture where the local memories of 
different (physical) processors are distant from one another, the algorithm enables 
partitioning of the input into these local memories without any inter-processor
communication. In steps 2 and 3, communication is used for applying the prefix-sums
routine. Over the years, several machines had special constructs that enable very fast
implementation of such a routine.
2. Since the theory community looked favorably at the time only on poly-log time 
algorithm, this practical sorting algorithm was originally presented in [CV-86] for a routine 
for sorting integers in the range 1 to log n as was needed for another algorithm.

Exercise 12: (Redundant if you remember the serial bucket-sort algorithm).
The serial bucket-sort (called also bin-sort) algorithm works as follows. Input: An array
A = A(1), . . . ,A(n) of integers from the range [0, . . . , n−1]. For each value v, 0 ≤ v ≤ 
n−1, the algorithm forms a linked list of all elements A(i) = v, 0 ≤ i ≤ n−1. Initially,
all lists are empty. Then, at step i, 0 ≤ i ≤ n − 1, element A(i) is inserted to the linked
list of value v, where v = A(i). Finally, the linked list are traversed from value 0 to
value n − 1, and all the input elements are ranked. (1) Describe this serial bucket-sort
algorithm in pseudo-code using a “structured programming style”. Make sure that the
version you describe provides stable sorting. (2) Show that the time complexity is O(n).



The orthogonal-tree algorithm
Integer sorting problem Range of integers: [1 .. n]. In a nutshell: the algorithm is 

a big prefix-sum computation with respect to the data structure below. For 
each integer value v, 1 ≤ v ≤ n, it has an n-leaf balanced binary tree.



1 (i) In parallel, assign processor i, 1 ≤ i ≤ n to each input element A(i). Focus
on one element A(i). Suppose A(i) = v. 
(ii) Advance in log n rounds from leaf i in tree v to its root. In the process, compute the 
number of elements whose value is v. When 2 processors “meet” at an internal node of 
the tree one of them proceeds up the tree; the 2nd “sleep-waits” at that node.
The plurality of value v is now available at leaf v of the top (single) binary tree that will 
guide steps 2 and 3 below..
2 Using a similar log n-round process, processors continue to add up these pluralities;
in case 2 processors meet, one proceeds and the other is left to sleep-wait. 
The total number of all pluralities (namely n) is now at the root of the upper tree. Step 3 
computes the prefix-sums of the pluralities of the values into leaves of the top tree.
3 A log n-round “playback” of Step 2 from the root of the top tree its leaves follows. 
[Exercise: figure out how to obtain prefix-sums of the pluralities of values at leaves of 
the top tree.] Only interesting case: internal node where a processor was left sleep-
waiting in Step 2. Idea: wake this processor up, send the waking processor and the just 
awaken one with prefix-sum values in the direction of its original lower tree.
The objective of Step 4 is to compute the prefix-sums of the pluralities of the values at
every leaf of the lower trees that holds an input element-- the leaves active in Step 1(i). 
4 A log n-round “playback” of Step 1, starting in parallel at the roots of the lower trees. 
Each of the processors ends at the original leaf in which it started Step 1. [Exercise: 
Same as Step 3]. Waking processors and computing prefix-sums:  Step 3.

Exercise 13: (i) Show how to complete the above description into a sorting algorithm
that runs in T=O(log n), W=O(n log n) and O(n2) space. (ii) Explain why your
algorithm indeed achieves this complexity result.



Mapping PRAM Algorithms onto XMT
(revisit of this slide)

(1) PRAM parallelism maps into a thread structure

(2) Assembly language threads are not-too-short (to increase 
locality of reference)

(3) the threads satisfy IOS

How (summary):

I. Use work-depth methodology [SV-82] for “thinking in 
parallel”. The rest is skill. 

II. Go through PRAM or not.

III. Produce XMTC program accounting also for: 

(1) Length of sequence of round trips to memory,

(2) QRQW. 

Issue: nesting of spawns.

Compiler roadmap:

� Produce performance-tuned examples� “teach the 
compiler”� Programmer: produce simple XMTC programs



Back-up slides



But coming up with a whole theory of parallel 
algorithms is a complex mental problem

How to address that?

1. Address first the easiest problem(s) you 
don’t know to solve.

Provided a surprising structure, as 
illustrated next.

2. Do what computer scientists do best: 
develop/identify/fit the correct level of 
abstraction to each problem

Has been a key point of this presentation



List Ranking Cluster: Euler tours; pointer jumping; randomized 
and deterministic symmetry breaking

Tree rooting: a “toy problem” that will motivate the presentation. 
Input T(V,E), and some specified vertex r in V . V – vertices. E – undirected edges, 
contains unordered pairs of vertices. 
Tree rooting problem For each edge, select a direction, so that the resulting directed 
graph T’(V,E’) is a (directed) rooted tree whose root is vertex r; e.g., if (u, v) is in E and 
vertex v is closer to the root r than vertex u then u → v is in E.

Euler tour technique: constant-time optimal-work reduction of tree rooting, and other tree 
problems, to the list ranking problem.
This section can be viewed as an extensive top-down description of an algorithm for any
of these tree problems, since the list ranking algorithms that follow are also described in
a top-down manner. Top-down structures of problems and techniques from the involved
to the elementary have become a “trade mark” of the theory of parallel algorithms, as
reviewed in [Vis91]. Such fine structures highlight the elegance of this theory and are
modest, yet noteworthy, of fine structures that exist in some classical fields of Mathe-
matics. However, they are rather unique for Combinatorics-related theories. Figure to
illustrate this structure:





Tree T and its input representation The Euler-tour technique


