SIAM J. COMPUT. © 1991 Society for Industrial and Applied Mathemaucs
Vol. 20, No. 1, pp. 22-40, February 1991 002

DETERMINISTIC SAMPLING—A NEW TECHNIQUE FOR FAST
PATTERN MATCHING*

UZI VISHKINY

Abstract. Consider the following three-stage strategy for recognizing patterns in larger scenes:

Mimic randomization deterministically. Sample several positions of the pattern.

Search for sample. Find all occurrences of the sample in the scene.

Verify. For each occurrence of the sample, verify occurrence of the full pattern.

This strategy has led to the core of the new idea given in this paper. Consider the string matching
problem. Given the pattern, a sample of its positions is carefully selected whose size is at most logarithmic
(the deterministic sample). Then, the sample is searched for. For nonperiodic patterns, the sample has the
following perhaps surprising property. It is possible to disqualify all occurrences of the sample positions
but one, within each “neighborhood” of locations in the text, without any further comparisons of characters.
This provides sparse verification.

This approach enables the text analysis (stages ‘“‘search for sample” and “verify”’) to be performed in
O(log™* n) time and optimal speedup on a PRAM. This improves on the previous fastest optimal speedup
result. It also leads to a new serial algorithm for string matching that runs in linear time including
preprocessing.

The approach is expected to be applicable for pragmatic pattern recognition problems.

In some sense the algorithms are based on degenerate forms of computation, such as AND and OR of
a large number of bits. However, traditional machine designs do not take advantage of such degeneracies,
and usual complexity measures do not even enable them to be reflected. This leads to the conclusion of the
paper with some speculative thoughts on desirable capabilities that would enhance computing machinery
for some pattern recognition applications.

Key words. string matching, serial algorithms, parallel algorithms, deterministic sampling
AMS(MOS) subject classifications. 68P99, 68Q20, 68T10, 68Q10

1. Introduction. Suppose we are given a string of length n, T[1 - - - n], called the
text, and a shorter string of length m, P[1 - - - m], called the pattern. The string matching
problem is to find all “starting” locations 1=i=n—m+1 in the text, such that the
pattern matches character by character the substring of the text T[i, i+1,---,i+m—1].
As stated in [Ga85b], this is one of the most extensively studied problems in theoretical
computer science.

The naive algorithm for the problem is as follows. Test whether each location
i=1,2,--+,n—m+1 is a starting location by m character-by-character comparisons.
This totals O(nm) operations, or O(1) time using nm processors on a CRCW PRAM.
Nontrivial algorithms for this problem consist of two stages. In the first stage, the
“pattern analysis,” they construct a table based on analysis of the pattern only. In the
second and final stage, the ““text analysis,” the text is analyzed. The table built in the
first stage helps to minimize repeated reading of the same text characters.

There are several serial algorithms for the string matching problem: by Knuth,
Morris, and Pratt [KMP77] (and the heuristic improvement by Boyer and Moore
[BM77]), the randomized algorithm by Karp and Rabin [KR87], the real-time algorithm
using a constant number of registers by Galil and Seiferas [GS83], and a serial

* Received by the editors August 30, 1989; accepted for publication (in revised form) March 23, 1990.
This research was supported by National Science Foundation grants CCR-8615337 and CCR-8906949 and
Office of Naval Research grant N00014-85-K-0046.

T Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742;
and Department of Computer Science, Tel Aviv University, Tel Aviv, Israel.

22

DETERMINISTIC SAMPLING 23

simulation of the parallel algorithm by Vishkin [Vi85]. The first contribution concerning
efficient parallel string matching was by Galil [Ga85a], where a framework benefiting
from periodicity properties in strings was introduced. Similar properties were used in
later parallel string matching algorithms. The algorithm in Galil’s original paper runs
in logarithmic time and is optimal for an alphabet whose size is fixed. Vishkin [Vi85]
proposed a new idea that has led to an optimal speedup algorithm regardless of the
alphabet size. A recent paper by Breslauer and Galil [BG88] added the following
surprising perspective to our work. They observed that the new idea from [Vi85] implies
that the string matching problem is not more difficult, from the parallel algorithmic
point of view, than the problem of finding the maximum among n elements. This made
possible a doubly logarithmic optimal parallel algorithm for the problem. In [KR87],
Karp and Rabin present an optimal logarithmic parallel implementation of their
randomized algorithm. Kendem, Landau, and Palem [KLP89] recently gave another
parallel algorithm. Finally, we refer the reader to a survey on string problems by Galil
[Ga85b].

Our main results include:

(1) A new linear time serial algorithm for the string matching problem.

(2) A new text analysis parallel algorithm that runs in O(log* n) time using an
optimal number of processors.

(3) The text analysis algorithm is based on a pattern analysis stage that takes
O(log” m/log log m) time using an optimal number of processors.

(4) A randomized implementation of the pattern analysis needs O(log m) time,
with high probability, using an optimal number of processors. Using the output of the
randomized implementation, all text analysis results carry through (as deterministic
results).

The deterministic sampling idea. All algorithms in the present paper rely on the
following core idea. Given a nonperiodic pattern, our pattern analysis stage constructs
a small “deterministic sample (denoted DS)” of pattern positions. This sample is an
ordered set of size I=log m—1. Specifically, DS =[ds(1), ds(2), - - -, ds(l)], where
each ds(j), 1=j=1 is a different integer between 1 and m. The main step of our basic
text analysis tests whether each locationi=1,2, - - -, n—m+1 can be a starting location
by | comparisons with the sample pattern positions. Some locations of the text will
pass this test and some will fail, and therefore be disqualified as starting locations. A
perhaps surprising property of DS implies that there is a way for drastically disqualify-
ing at once (i.e., simultaneously, in one parallel round) additional locations in the
text, so that any remaining nondisqualified location is unique in some successive
substring of length m/2.

Theoretically, the deterministic sampling idea can be viewed as getting a “‘sig-
nature” of the pattern by using a small sample of its locations. Concise signatures are
natural for randomized algorithms as shown in the algorithm of [KR87]. We selected
the name deterministic sampling to convey the possibility of getting signatures using
deterministic means. Interestingly, the Karp-Rabin signature concept does not seem
to be less involved since it blends all entries of the pattern rather than samples a few
positions of the pattern. Our randomized parallel version compares favorably with
theirs: The pattern analysis result is logarithmic time and optimal speedup, with high
probability, in both papers. However, while the Karp-Rabin text analysis result is
randomized and logarithmic time (with high probability), ours is deterministic and
O(log* n) time; both results achieve optimal speedup. Randomized algorithmics, as
advocated in Rabin [Ra76], is an appealing concept. Our paper follows [A78], [BR89],

24 UZI VISHKIN

[CV86], [Lu88], and [MNN89] in demonstrating another angle of this concept. The
deterministic sample idea shows how a randomized way of thinking can enrich the
design of deterministic algorithms.

Pattern recognition based on small samples is apparently an intuitive idea. Our
contribution in this respect can be summarized as presenting the first deterministic
string matching algorithms that are guided by this idea, and whose worst-case perform-
ance is provably efficient. The literature records works in this direction in the 1950s.
We mention one and refer the interested reader to references therein. Suppose we are
given i pattern strings and a single target string, each of length m where i< m. The
problem is to find whether one of the pattern strings matches the target string. A simple
observation in [Gi59] is that it is enough to read at most i positions of the target string
in order to disqualify all pattern strings, but one, as possible matches for the target
string. Our work relates also to the heuristic of [BM77]. They used a single “most
notable” character for speeding up the algorithm of [KMP77], however, there was no
guarantee that such a character would always be very helpful. Our construction can
be phrased as picking a set of at most log m —1 notable characters, which is provably
helpful.

Our parallel pattern analysis algorithm is slower than the one in [BG88]. However,
our text analysis algorithm is faster. It is not hard to imagine instances where the
pattern is available in advance and there is no pressure to process it very fast, while
it is important to process the text as fast as possible. Using such justification, [U85]
gave an interesting serial algorithm for an approximate string matching problem whose
text analysis takes linear time, but the pattern analysis might even need exponential
time. Recall that [BG88] showed that the string matching problem is not more difficult
than finding,the maximum among n elements. Since [Va75] showed that n processors
need Q(log log n) time to find the maximum among n elements on a parallel comparison
model of computation, it is interesting to phrase our text analysis result as follows:
assuming some preprocessing of the pattern, the text analysis problem is actually easier
than finding the maximum among n elements.

There is a remarkably small number of problems for which there exist optimal
parallel algorithms that run in sub-doubly-logarithmic time (i.e., o (loglog n) time).
Constant time optimal parallel algorithms include: (a) or and AND of n bits; (b)
finding the minimum among n elements where the input consists of integers in the
domain [1,- -+, n°] (see [FRW88]); (c) log n-coloring of a cycle, [CV86]; (d) some
probabilistic computational geometric problems [St88]. A data-structure that provides
for optimal O(log* n) time and even inverse-Ackermann time parallel algorithms for
some problems on trees and arrays, assuming some preprocessing, is given in [BV89].
Sub-doubly-logarithmic merging algorithms (on a CREW PRAM) were recently given
in [BV90]. In [BV89], Berkman and Vishkin explain why constant-time and optimal
speedup represents an ultimate theoretical goal for designers of parallel algorithms.
Since for almost any interesting problem this goal is (provably) unachievable, any
result that approaches this goal, such as our text analysis algorithm, is somewhat
surprising.

Further applicability. We hope that the deterministic sample idea will find other
applications in the pattern matching area. Our results extend to string matching in
higher dimensions and approximate string matching if some assumptions are made
about the pattern. The main difficulty we had in obtaining more general analytic results
is that the concept of periodicity becomes vague already for two dimensions. The flow
of our algorithms is quite rigid, once the deterministic sample is fixed. This invites

DETERMINISTIC SAMPLING 25

research for extending our algorithms to more specialized computer architectures. In
the last section several alternative implementations of our ideas are considered. One
of them is serial and is likely to need less than linear time in practice. The second
suggests a reasonable assumption about the pattern that makes possible extension to
higher dimensions. The third suggests an assumption about the pattern that makes
possible extension to approximate matches. It might be relevant for some image
processing applications. The fourth item is more speculative, as it suggests reconsidering
some standard complexity measures under some circumstances.

The model of parallel computation that is needed for this paper is the common
concurrent-read concurrent-write (CRCW) parallel random access machine (PRAM). A
PRAM employs p synchronous processors all having access to a common memory.
The common CRCW PRAM allows several processors to write simultaneously into
the same memory location, provided that they try to write the same value. For
convenience, however, we will describe our algorithms for the slightly more powerful
priority CRCW PRAM; in case several processors attempt to write simultaneously into
the same memory location, the one with the smallest index succeeds. Fortunately, all
uses of the priority concurrent-write assumption are in order to solve the same problem.
The next section states the problem and quotes the standard way for solving it on a
common CRCW without asymptotic loss of efficiency. We comment on formulation
of parallel complexity results in the present paper. While a bound of the form T time
using p processors can always be stated as O(T) time and (a total of) O(pT) operations,
the converse will also be true throughout this paper (but not in general). That is, T
time and X operations will mean O(T) time using X/ T processors.

The paper is organized as follows. Section 3 presents the pattern analysis, and § 4
presents two basic text analyses. One runs in constant time and the other uses a linear
number of operations, and thereby provides a linear time serial algorithm. Section 5
combines the two algorithms into an optimal O(log* n) time text analysis, and § 6
concludes the paper.

For fast understanding of the main ideas, we suggest figuring out the definition
of WITNESS in § 2, and the definition of the auxiliary column sample problem, its
computation, and the deterministic sample in § 3. In § 4, understand the basic constant-
time text analysis (including the Ricochet property). Then proceed to the basic optimal
speedup algorithm. Understand how the serialization in advancing through the deter-
ministic sample helps to reduce the total number of operations. In § 5, the main idea
is in Stage 2. Understanding the input (and thereby the output) for each iteration
should suffice.

2. Preliminaries.

Periodicity in strings. The main insight in Galil’s [Ga85a] parallel string matching
algorithm was to use the notion of periods in strings. We refer the reader to that paper
for proofs of the facts stated below. Let u and w be two strings. u is a period of w if
w is a prefix of u* for some integer k, or equivalently if w is a prefix of uw. (This
equivalence of definitions for period is called the equivalence fact.) The shortest period
of a string w is the period of w. w is periodic if the length of its period is at most half
its length; otherwise, it is nonperiodic.

The conflicting occurrences fact. Consider a pattern w whose period is u. Suppose
w occurs at position i of some text string. Then it is impossible to have another
occurrence of w at location j, for i <j <i+|u].

The nonperiodic prefix fact. If the pattern is periodic (let p be the length of the
period), then the prefix of the pattern of length 2p —1 must be nonperiodic.

26 UZI VISHKIN

The fundamental observation regarding periodicity of strings, from which the
above facts can be derived, is called the gcd lemma [LS62]: If w has two periods of
length p and g, where |w|= p + g, then w must have a period of length gcd (p, q).

Array WITNESS. Consider a nonperiodic pattern P[1, - - -, m]. For any index i,
1<i=m/2 consider laying two copies of the pattern one above the other where the
first symbol of the upper copy aligns above the ith symbol of the lower copy, as in
the example below, and the prefix P[1, - -, m—i+1] of the upper copy aligns over
the suffix P[i,---, m] of the lower copy. By the conflicting occurrences fact these
prefix and suffix must be different. This means that for at least one 1=k=m—i+1,
P(k)# P(i—1+k). WITNESS (i) is one such index k (where 1 <i=m/2).

Example. Let the pattern be P[1, - - -, 7] = ababbaa. This is a nonperiodic pattern
and the suffix P[3,4,5,6,7]= abbaa differs from the prefix P[1, 2,3, 4, 5]= ababb in
the last three positions, see as below:

ababbaa
ababbaa

Therefore WITNESS (3) could be either 3 or 4 or 5, representing the ‘““‘columns” in
which the two copies of the pattern differ.

Comment. For the present paper we need only this definition of WITNESS. We
briefly relate this definition to the discussion of the papers by [Vi85] and [BG88] in
the Introduction. The new idea in [Vi85] was to use the information in array WITNESS
for a very powerful mechanism (called duel): Suppose two candidate locations j and
j+i—1 (in the text) whose distance i is small enough (i.e., 1 <i=m/2—1) are given.
The duel mechanism enables us to eliminate at least one of these two candidates based
on the contents of WITNESS (i). The reader is referred to [Vi85] for more information.
Breslauer and Galil [BG88] have observed that application of the duel mechanism (as
part of a string matching algorithm) and elimination of the smaller among two elements
(as part of an algorithm for finding the maximum among n elements) lead to similar
outcomes.

Reducing the periodic case to the nonperiodic case.

LeEmMMA 2.1. Suppose we know that the pattern is periodic and can be presented as
u*v, where the string u is the period, k> 1 is an integer, and v is a proper prefix (possibly
empty) of u. Let |u|=p and suppose that all occurrence of the prefix P[1,---,2p—1]
in the text have already been found. Then all occurrences of the original pattern can be
found using O(n) additional operations and O(1) additional time.

Proof. The main substance of the computation below is searching for a pattern
that is all ones.

Step 1. For each occurrence of P[1,---,2p—1], at location i in the text, find
whether it extends to an occurrence of u’v. If yes, mark bit b,:=1 and
otherwise mark b, :=0.

Step 2. We partition the bits b,, - - -, b,_5,_|y+1 into p “strips.” Strip 5, 1 =s=p,
includes all bits whose index is s(mod p) (for instance, strip 1 includes
b, bp+l’ b2p+l’ T).

Consider some location i in the text. The full pattern occurs at i if and only if
the pattern u”v occurs at all locations i, i+ p, - - -, i+ (k—2)p. So, to find all occurrences
of the full pattern, we simply must find every location in every strip whose bit is one
and each of its successive k —2 bits is one. Step 3 shows how to do this for each of
the strips in O(n/p) operations and O(1) time. Consider a strip s of length t=n/p.

Step 3.1. Partition the strip into ¢/(k —2) successive subvectors of k —2 bits each.

DETERMINISTIC SAMPLING 27

Step 3.2. For each subvector find its largest and smallest zero bit in O(k)
operations and O(1) time on a priority CRCW PRAM (which, as shown
below, can be simulated on a common CRCW PRAM without asymptotic
loss of efficiency).

Step 3.3. Given any bit b in the strip, the information (computed in Step 3.2
above) regarding the subvector containing the bit, as well as its successive
subvector, suffices to determine in O(1) operations whether all the k —2
successive bits of b are one.

Complexity. We have shown that any of our text analysis algorithms can be

extended for the periodic case within additional O(n) operations and O(1) time on a
common CRCW PRAM. Lemma 2.1 follows.

Common CRCW PRAM is enough. We describe our algorithms for the priority
CRCW PRAM. In all kinds of instances but one, we can trivially use the common
CRCW PRAM instead. Next, we characterize the one nontrivial kind of instances and
show how to overcome the problem.

Consider the following problem. Input. Vector A of n bits. Question. Find the
leftmost bit in A that is zero. Following [FRW88], we give an algorithm for this problem
that needs O(1) time and n processors on a common CRCW PRAM. (a) Partition A
into v/n subvectors of length ®(vn) each. Using O(n) operations find whether each
of the subvectors has a zero bit. (b) Using O(n) operations and O(1) time, find the
leftmost subvector containing a zero bit. For this, apply the parallel algorithm of [SV81]
for finding the maximum among m(=+/n) elements using m” processors in O(1) time.
(c) Apply the same algorithm for finding the leftmost zero bit in the leftmost subvector.

DEFINITION OF log* n. We denote the function symbol log by log'" and log"” is
defined inductively as loglog"~". Given a real number r> 1, we define log* r to be
the smallest integer i such that log'” r=2. It is well known that the function log* is
extremely slow in increasing and, for instance, log* 264°®° =5,

DEFINITION OF THE PREFIX-SUMs PROBLEM [LF-80]. Input. Array of n numbers
[a,,a,, -+, a,]. Problem. Find all prefix-sums a,+---+a;, 1=i=n. Our parallel
implementation applies parallel prefix-sums routines for the following problem. Input.
Array of n numbers [a,, a,, - - -, a,], where some of the n numbers are “marked” and
the others are ‘“‘unmarked.” The problem is to compact all marked numbers into a
shorter array. A standard technique in parallel computation (that was used in §§ 3 and
4 in [CV86], for instance) reduces this array compaction problem into the prefix-sums
problem. The input for the prefix-sums problem is an array of n bits, where the value
one represents a marked number and the value zero an unmarked number.

3. Pattern analysis. All algorithms in the present paper use the same pattern
analysis stage.

Step 1. Find whether the pattern is periodic, and if yes find the period. Also

compute array WITNESS.

Remark. For convenience, we assume that the pattern is nonperiodic throughout
this presentation of the pattern analysis. However, if the pattern is periodic (let p be
the length of the period), then by the nonperiodic prefix fact of § 2, the prefix of the
pattern of length 2p —1 must be nonperiodic. The computation of array WITNESS
above, as well as the rest of the pattern analysis treats this prefix of length 2p—1 as
if it were the whole pattern.

Implementation and complexity. The pattern analysis of [Vi85] can be used for
parallel computation of Step 1 in O(log m) time and O(m) operations. Using the

28 UZI VISHKIN

pattern analysis from [BG88] the parallel time bound can even be improved to
O(loglog m). We note that array WITNESS is needed only for the pattern analysis
itself (Step 2 below) and can be deleted before proceeding to the text analysis.

The primary objective of the pattern analysis is the construction of a ““deterministic
sample (denoted DS)” of pattern positions. For presentation purposes we give full
specification of the output of the pattern analysis only after Step 3.

We first define an auxiliary problem called column sample. This auxiliary problem
helps us: (1) to define the deterministic sample; (2) to compute the deterministic
sample. Step 2 finds a column sample. In Step 3 we derived the deterministic sample
from the column sample.

Without loss of generality, suppose that m is even. Consider m/2 copies of the
pattern [¢;, ¢;, * * *, €m/2] laid one on top of the other as in Fig. 3.1. The first location
within copy ¢, is at the same column as the second location within copy ¢, and this
correspondence extends to subsequent locations within ¢, and c,. In general, the first
location within copy ¢; belongs to the same column as the ith location within ¢,;, and
this correspondence extends to subsequent locations within ¢; and c;.

Copy Cppz - - _

Copy ¢ — e = e = - -

Copy ¢ : .

Copy ¢ t — — — e = e o=

Column # : 1 3 - m/2 - m m+1 m+2 - m+m/2-1
FiG. 3.1

The column sample problem: select at most log m —1 columns ds(1), - - -, ds(I),
(I<log m), and associate a character car (ds(i)), with each column ds(i), 1=i=1 so
that the following hold.

(1) There is exactly one copy ¢; for which:

(1.1) ¢ intersects all these I columns (formally, j=ds(i)<j+m, for every
1=i=l).

(1.2) for each column ds(i), the character in ¢; equals the character associated
with the column (formally, P(ds(i)—j+1)=car (ds(i)), for every
1=i=l).

(2) For each of the other copies there is at least one column that intersects the
copy and the character in the copy differs from the character associated with
the column. (Formally, for each copy ¢ # ¢;, there is a column ds(i),1=i=1,
such that k=ds(i) < k+m and P(ds(i) — k+1) # car (ds(i))).

Example. See Fig. 3.2. A nonperiodic binary pattern of length m =16 is given.
The suggested column sample consists of column 11 with character 1, column 12 with
character 0 and column 18 with character 1. The only copy that matches these three
characters (at these columns) is the seventh copy marked as c,.

Comments. (1) Step 2 shows the existence of a solution to the column sample
problem. (2) The notation ds is used for the following reason. ds emphasizes the strong
relation that exists between the column sample and the deterministic sample—our
target problem. ds suggests that the column sample is not quite the deterministic sample.

DETERMINISTIC SAMPLING 29

ds|ds@) ds(3)
1] =0 -1
001 1101100010 1 0 1
Cx — 0011 101100010 1 0 1
0011101100010 10 1
001110 11000T1O0T10 1
0011101 1000 T10T10 1
001110110001 0T1 0 1
0011101100010 10 1
001110110001 01 0 1
12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23

FiG. 3.2

The deterministic sample. Denote the copy that satisfies property (1) in the column
sample problem by c,. The deterministic sample is simply the column sample with
respect to ¢,. Formally, this sample is an ordered (not necessarily sorted) set DS =
[ds(1), ds(2), - - -, ds(l)], of integers where I=log m—1, and for each 1=j=1 ds(j)
is ds(j)—x+1.

Step 2. Step 2 inductively constructs sets A, A,, - - -, A;, so that: (1) the base of
the induction is the set Ag={c;, 2, "+, Cm/a}; (2) for each 0=i <, the
set A;,; is a nonempty subset of A; and |A;,,|=|A;|/2; (3) |A|=1.

Inductive step. If A; contains exactly one element then we set /, the cardinality of

the column sample, to be i and proceed to Step 3. Otherwise, we
build a nonempty subset A, that contains at most one half of the
elements in A;. Let Gefumost A0d Gighimost D€ the leftmost and rightmost
copies in A;, respectively. Array WITNESS will provide column
ds(i+1) that contains two different characters in copies Cegmost
and Cighimost- (Note that column ds(i+1) intersects every copy in
A;.) For each of these two characters find for how many copies in
A, the character in column ds(i+1) is equal to the character.
Between these two characters, associate with column ds(i+1) the
one with which less characters are equal. (Note that at most |A;|/2
of the |A;| characters of the column will be equal to this character.)
Set A;,, is the subset of A; containing all copies whose character
at column ds(i+1) is equal to the selected character.

Example. Consider the construction of A,. Note that ¢, and c,,,,, respectively,
play the role of Cefimost aNd Crignimost» T€Spectively. ds(1) is selected using
WITNESS (m/2).

Implementation and complexity. Suppose inductively that the copies belonging to
A, arrive in a compacted array (i.e., they have been renumbered from 1 to |A;|). We
use parallel prefix-sums for two purposes: (1) for each of the two characters of copies
Cieftmost ANd Ciighemose iN COlUmMN ds(i+1), finding the number of equal characters in the
column (within the set A;); and (2) to further compact the copies of A,,, into an array
of size |A;44|. Round i+1 takes O(log|A;|/loglog|A;|) time and O(|A;|) operations
using the prefix-sums algorithm of [CV89]. Since |A;| decreases geometrically, Step 2
takes a total of O(log® m/loglog m) parallel time and O(m) operations.

Step 3 (Deriving DS). Let ¢, be the (only) element of A;. The cardinality of DS

is I and DS =[ds(1), - -,ds(D)]==[ds(1)—x+1,---,ds(I)—x+1].

30 UZI VISHKIN

Our text analyses will need the following information that was computed during
the pattern analysis.

Output of the pattern analysis.

(1) The deterministic sample DS =[ds(1), - - -, ds(])].

(2) Each set A;, 1=i=1, in a compacted form. As indicated above, this means
that the copies of A; need to be renumbered from 1 to |A,|.

Remark. Our optimal parallel algorithms use the sets A;. The fact that the series
|Aql, |Ay| - |A)| decreases geometrically is important for the efficiency of these
algorithms.

Complexity of the pattern analysis. Since Step 2 dominates the complexity of the
pattern analysis, we conclude that it needs O(log” m/loglog m) time and O(m)
operations. The pattern analysis is given for the common CRCW PRAM. This model
is used in Step 1 and in the prefix-sums computation of Step 2. A serial implementation
needs O(m) time.

Some practical considerations. The most important step for practical applications
of the text analysis algorithms that follow is the actual set DS that is being constructed
in Step 2. Particularly, we focus on the rate of reduction in the series |A;|. In practice,
it is most likely that the series |A;| may decrease much faster than by a factor of two.
We mention in a nutshell a few common sense considerations in bringing this about.
For instance, if the alphabet is of size o> 2, we can have |A,|/|A¢ =1/0 by letting a
character, that occurs in the pattern at most m/o times, to guide us in the selection
of a column. In general, it might be reasonable to invest more time in the pattern
analysis and get a DS set that will facilitate a more efficient text analysis. For this, we
may want to check all columns relative to each possible character. In each round of
Step 2, we may even consider doing some backtracking (exhaustive search), where
such investment makes sense. Curiously, in quite a few string matching algorithms
(e.g., [Ga85a] or [W73]) the case where the alphabet is small is considered easier. The
above considerations suggests that for our algorithms the opposite is correct.

Remarks. (1) Alon [A89] has constructed an example where the column sample
problem needs (2(log m) columns. It is a nonperiodic binary sequence that is the output
of a maximal linear feedback shift register.

(2) The proof of Theorem 1 in [A78] is remotely related to our deterministic
sample construction. In principle, Adleman deals with a binary matrix. Looking for a
small sample of columns he wants to rule out a match between a row of all zeros and
any row listed in the input matrix. It is important to add that in his setting each row
of the matrix is mostly ones. The crucial difference is that in our setting one of the
input rows plays the role of the all zero row, and the computation needs to find such
a row, since it is not known in advance which row will play this role. This row is
chosen as the last survivor in the elimination process of rows according to residual
minorities in columns. This explains why we feel that the deterministic sampling idea
is new and only remotely related to Adleman construction.

3.1. Randomized pattern analysis. This section is not needed for understanding of
the following sections. We suggest to skip it in a first reading of this manuscript.

We show how to perform the pattern analysis in O(log m) time and O(m)
operations, with high probability, by a randomized algorithm. The result will be a
deterministic sample of size O(log m). A later comment explains why this can be
guaranteed deterministically, and not only with high probability, and why all our text
analysis results carry through. (Since the sample is drawn randomly, it would have
been less confusing in this context to call it a fixed, rather than deterministic, sample.)

DETERMINISTIC SAMPLING 31

All our modifications refer to Step 2 above. We start Step 2, as before. We proceed,
however, only until the size of the set A;, of pattern copies, becomes at most m/log” m.
This requires y = O(log log m) rounds of the algorithm for the column sample problem.

Now, we switch to a randomized part. We outline modifications to the inductive
step of Step 2. Our goal is similar. We construct smaller and smaller sets A;. With high
probability, the size of set A;,; will be a constant fraction of the size of A;. However,
the difference is that we avoid performing prefix-sums, and therefore do not have
compressed arrays or (deterministic) knowledge of their number of elements.

Remark. Avoiding prefix-sums computation is critical since prefix-sums need
Q(log n/log log n) time using a polynomial number of processors. This was shown in
[H86] together with the simulation result of [SV84], or directly in [BH87].

Finding Cieftmost aNd Crighimost» the leftmost and rightmost copies in A;, can be done
in O(1) time using O(m/log”> m) operations on a priority CRCW PRAM. (Recall also
the trick of [FRW88], as sketched in § 2, for simulation on a common CRCW PRAM.)
Array WITNESS will provide the column ds(i+ 1), as before. The number of operations
so far for each round is O(m/log’ m) since we assign processors to jobs through the
copies in A,,.

In each round, the main effort is for selecting between two characters on column
ds(i+1): either the character at COpPY Cegmost, OF the character at copy Crightmost- W€
wish to select the character that is guaranteed to eliminate a constant fraction among
the copies belonging to A; with high probability. This is done in O(1) time and
O(m/log m) operations. The technique uses an idea from [Se89].

Overview. Let x, (respectively, x,) be the number of copies in A; whose character
at column ds(i+1) is the same as at cOPY CGermos: (respectively, Crightmost)- NOte that
the values of x;and x, are unknown to us and we cannot compute them if we wish to
implement each round in O(1) time. Let B[1, - - -, (log m)/2], be a vector of length
(log m)/2. For each integer j, 1=j=(log m)/2, we assign the value zero to B(j) with
probability x,/(x,+x,), and the value one with probability x,/(x,+ x,). This is done
independently for different values of j, 1 =j = (log m)/2. We select for column ds(i+1)
the character at copy Ciermos: if the total number of zeros in B is less than the total
number of ones, and otherwise select the character at copy Cignimost- This completes
the overview. However, we still need to clarify several things.

(1) How to determine in O(1) time whether the majority of the values in B are
zero or one? For each of the 2°¢ ™2 possible binary vectors of length (log m)/2, we
precompute into a table the majority of zeros or ones using a total of o(m) operations
and O(log log m) time. The size of the table is 2'°2™/? (which is o(m)). Using (log m)/2
operations and O(1) time per entry of the table (which is a binary vector of length
(log m)/2) we determine in each round whether the entry is identical with binary vector
B. Determining whether vector B has more ones than zeros is done by table look-up.

(2) How to get the required probability for assignment of zero or one values to
arandom variable B(j),1=j = (log m)/2? Given a random permutation of the elements
in A; we assign processors to these elements through this permutation. Each processor
standing by a copy of A; whose character at column ds(i+1) is the same as the
character at COPY Cierumose (respectively, Cignimost) Will try to write zero (respectively,
one) at a variable C(j). Since the priority CRCW PRAM is used we achieve the desired
probability. Note that we will need a total of O(log” m) random permutations of the
elements in A; for all rounds.

Comment. If we do not get the random permutations for free we can do the
following. In [RGG89] it is shown how to generate a random permutation of n numbers
in O(log n) time using O(n log n) operations on a CREW PRAM. So, had we taken

32 UZI VISHKIN

A; to be a set of at most m/log’ m elements (instead of m/log’> m), we could have
generated before the algorithm starts O(log” m) random permutations of m/log® m
elements using a total of O(m) operations and O(log m) time and have all other steps
of this randomized pattern analysis carry through within the same efficiency bounds.

(3) Why our selection of the character for column ds(i+ 1) eliminates a constant
fraction among the copies of A; with high probability? For this we use a variant of
Chernoff’s bounds due to [AV79]. Each of the y = (log m)/2 entries of vector B is an
independent Bernoulli trial with probability of p = x,/(x, + x,) to get zero and 1 —p to
get one. We need only analyze cases where either p or 1 — p are smaller than a fraction,
say f=1/10 (since otherwise each of the two selections of a character for column
ds(i+1) eliminates a fraction of at least f copies in A;). Suppose p <f We analyze
the probability for getting a majority of zeros in vector B. Chernoff’s bounds imply
that the probability of getting at least (1+y)yp zeros in B is at most exp(—y’yp/3)
(exponent of the natural logarithm). We are interested in the case y =4 and let us
replace p by f=1/10, which is not smaller. The upper bound on the probability for
getting a majority of zeros will be

exp (—1610g ml l) =exp (_l_og) <o-tegmys L

2 103 4 m'/?

With similar high probability, this process takes O(log m) rounds. Each round
needs O(1) time and O(m/log m) operations, totaling O(log m) time and O(m)
operations.

Observe that we are not yet done, since the text analysis needs to get each set A;
compressed into an array. This is achieved by means of performing a prefix-sums
computation for each A; that was obtained in the randomized part (i.e., i> vy). The
main difference with respect to the deterministic Step 2 is that all these prefix-sums
computations are performed in parallel after the entire deterministic sample and the
series of A; sets were computed. With high probability, we will have O(log m) parallel
prefix-sums computations, performed in parallel. Each such computation needs
O(m/log®> m) operations and O(log m/loglog m) time (since the assignment of pro-
cessors to jobs is still through copies of A,). The total for the prefix-sums is O(m/log m)
operations and O(log m/loglog m) time with high probability.

Complexity. O(log m) time and O(m) operations with high probability.

Comments. (1) The above algorithm is randomized. With high probability it runs
in O(log m) time and O(m) operations. But, what if we failed and got a sample in
which |A; 1| = (1 —f)|A| for some i? (where f is the constant fraction that is guaranteed
with high probability above.) In case this unlikely event happens, we add the following
step to our randomized algorithm: run the deterministic pattern analysis. The time and
number of operations bounds will remain the same, with high probability (because of
the low probability of needing this additional step). An alternative to this additional
step would be: repeat the randomized part until a “failure free”” sample is derived.

So, obtaining a “good” sample is now guaranteed deterministically. Therefore,
all our deterministic text analysis results will carry through.

(2) Yossi Matias suggested an alternative idea. Select to associate with column
ds(i+1) between the character at cOpy Germose and the character at copy Crightmost DY
simple coin tossing. At least one of these choices is guaranteed to eliminate one half
of the copies in A;. We can bound the probability of, say log m, failures (a failure is
when less than half are eliminated) in a sequence of 2log m attempts by Chernoff
bounds. However, what complicates (but does not make infeasible) adapting this simple

DETERMINISTIC SAMPLING 33

idea to our algorithms is that the cardinality of the sets A; cannot be guaranteed to
decrease geometrically at each round separately, with high probability.

4. Basic text analyses. We give two basic algorithms for analyzing the text: a basic
constant-time algorithm and a basic optimal speedup algorithm. As implied by their
names, these algorithms represent two “pure” extremes. The constant-time algorithm
minimizes parallel time. It needs O(1) time and O(n log m) operations. The optimal
speedup algorithm minimizes the total number of operations. It needs O(log m) time
and O(n) operations. The next section shows how to combine ideas from both
algorithms for getting O(log™ n) time and O(n) operations. Unless otherwise stated,
we assume that the pattern is nonperiodic. Section 2 explains how to extend any of
our alternative text analyses to the periodic case. For both algorithms below we partition
the first n — m + 1 locations of the text into successive substrings of exactly m/2 positions
each (and perhaps one substring of fewer positions). Initially, any position in the text
is a candidate for being the start of an occurrence of the pattern. We will assume
throughout that n=3m/2 (so that there is at least one m/2 block of initial candidates).

Basic constant-time text analysis.

Step 1. For each position 1=i=n-—m+1 in the text, check whether the following
1=|DS| equalities hold: T(i—1+ds(j))= P(ds(j)) for every ds(j)e DS.
If any of these equalities does not hold, we eliminate location i as
candidate.

Step 1 needs at most log m checks per any of the n —(m — 1) candidates, or a total
of O(nlog m) checks.

Next, we make a detour and present a key property of the deterministic sample.
Let x be the same as in Step 3 of the pattern analysis (i.e., copy ¢, is the only shift of
the pattern that matches the column sample).

The Ricochet property. Let i be a candidate location in the text following Step 1.
Then, based only on the candidacy of location i, we can eliminate any remaining
candidate in the x — 1 locations preceding i, as well as the m/2 — x locations succeeding
i (that is, location i —x+1 through i—1 and i+1 through i+m/2—x).

The word “‘ricochet” is meant to convey the following. A candidate location is
determined using matches with the deterministic sample (that consists of at most log m
locations). Still this direct match of at most log m locations allows for indirect “ricochet-
like” hit (or elimination of candidacy) of many (up to m/2 in number) locations.

Step 2. For each successive substring of length m/2, find its leftmost and rightmost

candidates on a priority CRCW PRAM (which, in turn, can be simulated
on a common CRCW PRAM without asymptotic loss of efficiency). Based
on the Ricochet property, disqualify all candidates that are neither leftmost
nor rightmost in their substring.

Step 2 results in having at most two candidates per any successive substring of
size m/2. So finally, we have Step 3.

Step 3. Apply a character-by-character check to each candidate location.

Complexity of the basic constant time text analysis. O(1) time using n log m pro-
cessors on the common CRCW PRAM.

Basic optimal speedup (and linear serial) text analysis.

Outline. Our goal is to reduce the total number of operations from O(n log m)
to O(n). A first attempt at this problem is to perform Step 1 of the basic constant-time
algorithm in [/ =|DS| rounds, as follows. The input for round « is all text positions
(candidates) that matched the first « —1 positions of the deterministic sample (i.e.,

34 UZI VISHKIN

positions ds(1), - - -, ds(a —1) of the pattern). In round «, check each candidate against
the ath position, ds(a), of the deterministic sample. Unfortunately, this attempt does
not lead to a bound smaller than O(n log m) on the number of operations. We overcome
this problem, as follows. Each round will also include ‘““Ricochetlike” diqualification
of candidates, in the spirit of Step 2 above. This will lead to O(n/2%) candidates
following round «, hence a total of O(n) operations.

Step 1. For each position 1 =i=n—m+1, in the text, check whether the following

equality holds: T(i—1+ds(1)) = P(ds(1)).

In Step 2 below, we focus on a single (successive) substring of length m/2. All
such substrings are treated similarly, and simultaneously in parallel.

Step 2.1. Find the leftmost candidate a, and rightmost candidate b in the substring.
(Formally, a is the smallest index in the substring for which T(a—1+
ds(1))=P(ds(1)), and b is the largest such index.) Location lg=
a—1+ds(1) inthe textis called a left guide and location rg = b — 1+ ds(1)
is called a right guide.

Consider the set of pattern positions (or shifts) A, =[c,,, ¢15, " " ", ¢ a,] that was
obtained in the pattern analysis. We will construct two sets of text positions T;; and
T,,- Guiding location lg induces set T, using set A,. T,, will simply be the set of |A,|
text locations that align under positions of set A,, when we align location ds(1) (this
is the first location in the column sample of the pattern analysis) at the same column
as Ig in T. Fig. 4.1 illustrates four things: (1) the diamond-shaped structure at the top
is similar to Fig. 3.1; (2) column ds(1) in the column sample and location Ig in T align
at the same column; (3) members of set A, in the pattern align at the same columns
as members of the set T, ; (4) location a in T is a member of T,. (Location a in T
and column c, , must align at the same column, for some ¢, , that is a member of set
Ay

Similarly, guiding location rg induces set T,, using set A,. T,, is the set of text
locations that are aligned with set A, when location ds(1) in the diamond shape is
aligned at the same column as location rg in T.

The key correctness observation. Consider a location in the substring of the text.
If it is neither in set T, nor in set T,,, then it cannot be a start of an occurrence.

Proof. The observation follows from the following facts: (1) b—a<m/2. (2)
Occurrence of the pattern can be in one of the x —1 text locations preceding b, only
if the text location is in T,,. (3) Occurrence can be in one of the m/2 — x text locations
succeeding a, only if the text location is in Tj,. (4) There is no occurrence in locations
of the substring that precede a or succeed b (by the selection of a and b).

Throughout the algorithm we mark as noncandidates locations of the text for
which our computation indicates that occurrence is impossible (e.g., in Step 1 above).
A possibly confusing fact is that sets T,, and T,, themselves may include locations
that are already noncandidates. To straighten out our terminology we refer to text
locations in the T;, and T,, lists that are noncandidates as straw candidates.

Step 2.2. Using set A, construct the set of text positions T, (respectively, T,.)
that can co-exist with selecting the first entry of the column sample ds(1)
aligned at the same column as location Ig in T (respectively, location
rg in T).

Implementation remark. Assignment of processors to jobs is always a concern in
designing parallel algorithms. This concern is even more acute for algorithms whose
target running time prohibit application of prefix-sums, as here: we implement each
round below in constant time while prefix-sums need Q(log n/loglog n) time using a

DETERMINISTIC SAMPLING 35

ds) Py
Cm / / / yau

"
1/
Copies of)

pattern

\ﬁ
4
I S A

o /i

(%)
A
=
o
S
5
O

“Clal

- — — — i e ———

Text

Sl
>y

m .
- rval
thea

FiG. 4.1

polynomial number of processors (see references in an earlier remark). A later comment
explains why it led us to include straw candidates in the T, and T,, lists.

Following the above first round, Steps 1 and 2 are iterated in I —1 more rounds.

In each round below, we focus on a single substring of length m/2. Other substrings
are treated similarly, simultaneously in parallel. Here is an outline of round «a, for
2=sa=l

Step 1'. Consider every nonstraw candidate i in list T, or T,, of round « — 1. For

each such candidate, check whether the following equality holds: T(i —1+
ds(o))= P(ds(a)).

Step 2'.1. Find the leftmost remaining candidate, a in T, and rightmost remaining
candidate, b in T, in the substring. (Formally, a is the smallest index
in the substring of a candidate for which T(a —1+ds(a))= P(ds(a)),
and b is the largest such index.) Location Ig =a—1+ds(a) in the text
is called a left guide and location rg = b — 1+ ds(a) is called a right guide.

Step 2'.2. Using set A, construct the set of text positions T, (respectively, T,,)
that can co-exist with selecting the ath entry of the column sample,
that is column ds(a), aligned at the same column as location Ig in T
(respectively, rg in T).

Complexity of Step 2. Since m/2°*" is a bound on the number of elements in each

Ty, or T, list, the bound on the total number of operations decreases by a factor of

36 UZI VISHKIN

at least two in each round. Therefore, the total number of operations is O(n) and the
time is O(log m). The only nontrivial detail in an exact parallel implementation of
this algorithm is the issue of assignment of processors to elements of any T, and T,,
list in any round «.

Assignment of processors. We assign processors to the element of the T); and T,
lists through the indices of the set A,. (That is, we get every index of T,, by means of
adding Ig to every index of A,.) The trick is that these indices were computed in the
pattern analysis (using prefix-sums). Observe that a processor will also be assigned to
each straw candidate of each T, and T, list in each round. Such processor simply
remains idle during the round.

The following comments shed some more light on the rounds of Step 2.

Comment 1. The key correctness observation holds also following each Step 2'.1
of each round. Specifically, each candidate at the substring of length m/2 must lie
either in Tj, or T,,.

Comment 2. Again, the T, and T,, lists may include straw candidates. Straw
candidates may come from three sources: (i) They were not in the T;, or T,, list for
any guiding location of round « —1. (ii) They were already straw candidates in the
T, or T, list for some guiding location of round a — 1. (iii) They were candidates in
the T, or T, list for some guiding location of round a —1 but they failed the check
of Step 1’ in round a.

At this stage, we remain with at most 2[(n—m+1)/(m/2)]= O(n/m) candidates.

Step 3. Compare the whole pattern relative to each candidate, in a naive character-

by-character manner.

Complexity of the basic optimal speedup text analysis. O(log m) time using an
optimal number of processors on the common CRCW PRAM.

5. Optimal O(log* n) time text analysis. We show how to perform the text analysis
in O(log* n) time and O(n) operations. The algorithm will have three stages. The
main part (Stages 1 and 2) applies the accelerating cascades design principle, as
discussed in [CV86].

Stage 1. Run Steps 1 and 2 of the optimal speedup basic text analysis for
2loglog* n+2 rounds. For this, we use the first §:=2loglog*n+2
positions of DS, the deterministic sample. The variable 6 will keep track
of the number of positions of DS that have already been “‘used” in Step
2 as well. The total number of elements (candidates and straw candidates)
in the resulting T,, and T,, lists will be at most n/(log* n)>.

Complexity. O(n) operations and O(log log* n) (which is o(log* n)) time.

Stage 2 has log* n iterations, each limited to constant time. The input for each
iteration is a set of candidates (in T,, and T,, lists). As iterations proceed, the number
of candidates decreases and we can apply an increasing number of tests, per each
candidate at hand, in order to accelerate the candidate disqualification rate. Interest-
ingly, while the overall serialization of events in Stages 1 and 2 together is motivated
by the basic optimal speedup text analysis, each iteration of Stage 2 resembles
Step 1 of the basic constant-time text analysis, where several positions from DS are
checked at once. Stage 3 is the same as Step 3 in the basic optimal speedup text
analysis.

Stage 2.

for count :=log® n downto 1 do
(Input for present iteration: Total of at most n/(log‘°>*™ n log* n) (straw
and nonstraw) candidates in the T, and T,, lists.)

DETERMINISTIC SAMPLING 37

For each (nonstraw) candidate i, check the next log“**™ n positions
in the sample DS =[ds(1), - -, ds(])].

Specifically, check whether the following min {I— 8, log*"™ n}
equalities hold:

T(i—1+ds(6+1)) = P(ds(8+1)),

T(i—1+ds(6+2))=P(ds(6+2)),

T(i—1+ds(min {1, 8 +1og‘*"n)) = P(ds(min {, 6 +1og°>"" n)).
For each substring of length m/2, find its leftmost (nonstraw) candidate
and its rightmost (nonstraw) candidate. Get from them the guiding
locations and the lists T;; and T,,.

Since this procedure exhausts the sample DS, we end up with just one candidate
in each T,, and T,, list.

Complexity. In iteration count we perform at most O(log‘®*™ n) operations per
each of the iteration’s input candidates in O(1) time. Since the number of such input
candidates is bounded by n/(log">*™ n log* n), we get O(n/log* n) operations and
O(1) time per iteration, or a total of O(n) operations and O(log* n) time.

Stage 3. Compare the whole pattern relative to each candidate, in a naive charac-

ter-by-character manner.

Comment. Actual computation of log* n. All functions used in this paper can be
computed within the complexity bounds claimed here. We refer the reader to [BV89]
that shows how to compute the function log* n, for instance, in constant time using n
processors.

6. Further research and speculation.

(1) A possibly sublinear serial implementation. Rivest [Ri77] showed that, under
some assumptions about the string matching algorithm, sublinear time cannot be
achieved in the worst case, if the pattern is considerably shorter than the text. On the
other hand, there were a few works whose concern was to show that some string
matching algorithms need sublinear time under some assumptions about the source
of the input. The difficulty about these works is that they make assumptions on what
a typical input looks like. We did not find satisfactory ways for making assumptions
of this kind. To demonstrate our difficulty, we show why the common probabilistic
assumption that each character of the test is equally likely and that all positions are
probabilistically independent does not make sense, in general. This assumption implies
that if the length of the pattern is not very small relative to the length of the text, the
probability of having an occurrence of the pattern is extremely small. However, in
many string matching problems we have no doubt that occurrences exist and only
need to find them!

Consider a serial implementation of the basic optimal speedup text analysis
algorithm. We already mentioned that it runs in linear time. Still, we provide some
practical ideas for enhancing its performance. Observe that if we find a match between
a text character and a pattern character in Step 1 (or Step 1') then we can immediately
use it for reducing the number of candidates near this location of the text. This may
save some additional comparisons between characters of the text and the pattern in
the present round. In addition, recall the remark on practical considerations in § 3.
The above discussion explains why, unfortunately, we do not see how to explore these
ideas in a theoretically sound manner.

(2) Extension to two or higher dimensions. Suppose our pattern is a two-
dimensional m-by-m array. We are not familiar with successful attempts to extend the

38 UZI VISHKIN

concept of periodicity in strings to higher dimensions. The following conflicting occurren-
ces assumption resembles the case of nonperiodic patterns in strings. Consider any two
positions in the text (i, j) and (i;, j;) that are close enough. Formally, we require that
li—i)=m/2 and |j —j;| = m/2. Consider laying one copy of the pattern to start at (i, j)
and another copy to start at (i;,j,). The intersection of these two copies contains
(possibly several) arrays of size m/2 by m/2. The assumption about the pattern array
concerns each of these m/2-by-m/2 arrays. The assumption is that the m/2-by-m/2
array must contain a position in which the two copies of the pattern have two different
characters. (This resembles the information in WITNESS.) Such an assumption make
it possible for our algorithmic approach to carry through efficiently.

(3) Extension to approximate matches. Consider again the two-dimensional case,
where the pattern and text consist of arrays of pixels, where each pixel is characterized
by its grayness (or intensity). Suppose that there are several levels of grayness. A
natural concept of approximate, rather than exact, match is where only “very different”
levels of grayness are defined to mismatch. (The problem is that a small difference
between two levels of grayness is insufficient evidence for a mismatch.) A possible
conflicting occurrences assumption will be similar to the above-suggested assumption
for extensions to higher dimensions. Such an assumption would make it possible for
our algorithmic approach to carry through efficiently.

(4) Speculations on complexity measures. Machine vision is one of the most
frustrating application fields for any algorithm designer, for our performance as humans
analyzing scenes is vastly superior to any algorithm presently imaginable for even the
most powerful machines. Our algorithm may shed some light in attempting to explain
this phenomenon. Power of computing machinery is often measured by number of
arithmetic operations per second and other traditional computational intensity
measures. Advances in computer architecture are geared to optimize such measurements
and indeed computers greatly outperform humans for computationally intense tasks.
On the other hand, human vision is supposedly very effective in a few very simple
tasks, such as sampling a point of reference (e.g., “pick a red car in an aerial photo
of a huge parking lot”) and large fan-in AND (e.g., “‘are all cars in the parking lot
red?”’) or ORr.

We review our basic constant time text analysis. We show that it uses very
degenerate computations and barely performs any “real” computation. Rather it can
be implemented using only the simple tasks that humans seem to perform well. Step
1 compares characters and then takes the AND of | DS| bits. (An even more “humanlike”
approach would be to “associatively identify” the deterministic sample. By this we
mean that given a small pattern it might be interesting to consider hypothetical
computers that can retrieve, by means of a unit-cost operation, occurrences of the
pattern.) Step 2 selects a leftmost (and rightmost) bit whose value is one out of each
substring of m/2 bits. (Again, such leftmost bit can be associatively identified.) This
already makes possible occurrence of the pattern very sparse. Finally, Step 3 takes the
AND of m bits to verify occurrences.

This may suggest that for pattern recognition tasks, it might be less
appropriate to restrict attention to conservative computational intensity measures
only, but rather articulate new measures as yardsticks for novel and potent computer
architectures.

Acknowledgments. Helpful discussions with Noga Alon, Amihood Amir, Gary
Benson, Omer Berkman, Joseph Ja’Ja’, Rao Kosaraju, Gadi Landau, Yossi Matias,
Azriel Rosenfeld, and Ramakrishna Thurimella are gratefully acknowledged.

[A78]
[A89]
[AV79]

[BG88]

[BHS87]

[BR89]

[BV89]

[BV90]
[BM77]

[CV86]

[CV89]
[FRWS8]

[Ga85a]
[Ga85b]

[Gi59]
[GS83]

[H86]

[KLP89]

[KMP77]
[KR87]
[LF80]
[LS62]

[Lu88]

[MNNZ89]

DETERMINISTIC SAMPLING 39

REFERENCES

L. ADLEMAN, Two theorems on random polynomial time, in Proc. 19th Annual IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1978,
pp. 75-83.

N. ALON, personal communication.

D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and
matching, J. Comput. Systems Sci., 18 (1979), pp. 155-193.

D. BRESLAUER AND Z. GALIL, An optimal O(log log n) time parallel string matching algorithm,
preprint, 1988. Also appeared as a chapter in O. Berkman, D. Breslauer, Z. Galil, B.
Schieber, and U. Vishkin, Highly-Parallelizable Problems, in Proc. 21st Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1989, pp. 309-319.

P. BEAME AND J. HASTAD, Optimal bounds for decision problems on the CRCW PRAM, in
Proc. 19th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1987, pp. 83-93.

B. BERGER AND J. ROMPEL, Simulating (log” n)-wise independence in NC, in Proc. 30th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1989, pp. 2-7.

O. BERKMAN AND U. VISHKIN, Recursive *-tree parallel data-structure, in Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1989, pp. 196-203.

, On parallel integer merging, Tech. Report UMIACS-90-15, Institute for Advanced
Computer Studies, University of Maryland, College Park, MD, January 1990.

R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. ACM, 20 (1977),
pp. 762-772.

R. COLE AND U. VISHKIN, Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms, in Proc. 18th Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1986,
pp. 206-219.

, Faster optimal prefix sums and list ranking, Inform. and Comput., 81 (1989), pp. 334-352.

F. E. FicH, R. L. RAGDE, AND A. WIGDERSON, Relations between concurrent-write models
of parallel computation, SIAM J. Comput., 17 (1988), pp. 606-627.

Z. GALIL, Optimal parallel algorithms for string matching, Inform. and Control, 67 (1985),
pp. 144-157.

, Open problems in stringology, in Combinatorial Algorithms on Words, A. Apostolico
and Z. Galil, eds., Springer-Verlag, Berlin, New York, 1985, pp. 1-8.

A. GILL, Minimum-scan pattern recognition, IRE Trans. Inform. Theory, 5 (1959), pp. 52-58.

Z. GALIL AND J. 1. SEIFERAS, Time-space-optimal string matching, J. Comput. System Sci.,
26 (1983), pp. 280-294.

J. HASTAD, Almost optimal lower bounds for small depth circuits, in Proc. 18th Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1986, pp. 6-20.

Z. M. KEDEM, G. M. LANDAU, AND K. V. PALEM, Optimal parallel suffix-prefix matching
algorithms and applications, in Proc. 1st ACM Symposium on Parallel Algorithms and
Architectures, Association for Computing Machinery, New York, 1989, pp. 388-398.

D. E. KNUTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings, SIAM 1J.
Comput., 6 (1977), pp. 322-350.

R. M. KARP AND M. O. RABIN, Efficient randomized pattern-matching algorithms, IBM J. Res.
Develop., 31 (1987), pp. 249-260.

R. E. LADNER AND M. J. FISCHER, Parallel prefix computations, J. Assoc. Comput. Mach.,
27 (1980), pp. 831-838.

R. C. LYNDON AND M. P. SCHUTZENBERGER, The equation a™ =b™c? in a free group,
Michigan Math J., 9 (1962), pp. 289-298.

M. LuBY, Removing randomness in parallel computation without a processor penalty, in Proc.
29th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC, 1988, pp. 162-173.

R. MOTWANI, J. NAOR, AND M. NAOR, The probabilistic method yields deterministic parallel
algorithms, in Proc. 30th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Washington, DC, 1989, pp. 8-13.

40

[Ra76]
[RGG89]
[Ri77]

[Se89]
[St88]

[svs1]
[SV84]
[U8s]

[Va75]
[Vi85]

[W73]

UZI VISHKIN

M. O. RABIN, Probabilistic algorithms, in Algorithms and Complexity, J. F. Traub, ed.,
Academic Press, New York, 1976, pp. 21-39.

V. RaJAN, R. K. GHOSH, AND P. GUPTA, An efficient parallel algorithm for random sampling,
Inform. Process. Lett., 30 (1989), pp. 265-268.

R. L. RIVEST, On the worst-case behavior of string-searching algorithms, SIAM J. Comput.,
6 (1977), pp. 669-674.

S. SEN, Finding an approximate-median with high-probability in constant time, manuscript, 1989.

Q. StouTt, Constant-time geometry on PRAMs, in Proc. Internat. Conference on Parallel
Processing, Chicago, IL, 1988.

Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging and sorting in a parallel model
of computation, J. Algorithms, 2 (1981), pp. 88-102.

L.J. STOCKMEYER AND U. VISHKIN, Simulation of parallel random access machines by circuits,
SIAM J. Comput., 13 (1984), pp. 409-422.

E. UKKONEN, Finding approximate patterns in strings, J. Algorithms, 6 (1985), pp. 132-137.

L. G. VALIANT, Parallelism in comparisons models, SIAM J. Comput., 4 (1975), pp. 348-355.

U. VISHKIN, Optimal parallel pattern matching in strings, Inform. and Control, 67 (1985),
pp.91-113.

P. WEINER, Linear pattern matching algorithm, in Proc. 14th Annual IEEE Symposium on
Switching and Automata Theory, IEEE Computer Society, Washington, DC, 1973,
pp. 1-11.

