
ENEE651/CMSC751 : TA’s feedback on HW2

Exercise 6: A few students wrote that the parallel binary search during the partitioning stage takes O(n
x )

time instead of O(log n).

Exercise 8: The best bounds are obtained by choosing the number of partitions to be n/ log n and m/ logm
from arrays sized n and m respectively. The resulting time complexity remains the same with O(logmn),
while the work complexity is O(n + m + n logm

logn + m logn
logm ).

Some students got better bounds of O(n + m) work by choosing the number of partitions as m+n
logm+logn .

If n > m, this quantity is not necessarily less than m, leaving the entire array B as a single partition. In
step 2 of the algorithm, this could lead us to have the entire array B being ranked serially, thus worsening
the asymptotic time bound.

Exercise 9: Many students reported the minimum number of spawn commands that should be used to be
equal to 2, while 1 spawn block is sufficient to code both of the steps. Careful study of steps 2(a) and 2(b)
of the algorithm tells that for each of the 2n/ log n threads, only the starting index of a partition and its
rank with respect to the other array need to be known to initiate the serial ranking algorithm. Hence, the
thread which ranks the head of a partition can continue with the serial ranking of step 2, until it reaches an
array index which belongs to the next ranking problem.

Exercise 10:

• A few students used ‘merge sort’ to sort the sub-arrays after the first iteration, when the text meant
to use the same sorting algorithm (i.e., choosing the median of each sub-array always) by “. . . continue
by sorting separately the elements larger than the median and the ones smaller than the median”.

• A few students used only algorithm 1 of complete algorithm, whose asymptotic time complexity is
O(log2 n). This gave inferior time bound.

• Quite a few students failed to prove conclusively that the proposed algorithm can indeed be used to
sort an array. One should always use an induction (on an invariant or otherwise) to prove why an
algorithm works. Here, it could be proved using the following loop invariant:

After round i, 2i − 1 elements are placed in the index specified by the completely sorted array.

It could also be proved by using induction on the array size n:

Prove the algorithm stands true for n = 1. Assume it holds for n = k, and prove it holds for n = k + 1.

Exercise 11: A few students wrote that cardinality(v) =
∑n/r

i=1 ps(v, i), while it is in fact equal to∑n/r
i=1 number(v, i) = ps(v, n/r).

1

vishkin
Sticky Note
Can you give an example where the B array will appear as a sigle partition AND this will wrosen asymptotic time?
BTW: Is it possible that one problem with what students is that they did not specify how the partition is to be done on each side? 




