viewpairts

DOI:10.1145/2580945

Uzi Vishkin

Viewpoint

Is Multicore Hardware for
General-Purpose Parallel
Processing Broken?

The current generation of general-purpose multicore hardware must be fixed to
support more application domains and to allow cost-effective parallel programming.

N THE RECENT decade, most op-

portunities for performance

growth in mainstream general-

purpose computers have been

tied to their exploitation of the
increasing number of processor cores.
Overall, there is no question that par-
allel computing has made big strides
and is being used on an unprecedent-
ed scale within companies like Google
and Facebook, for supercomputing
applications, and in the form of GPUs.
However, this Viewpoint is not about
these wonderful accomplishments.
A quest for future progress must be-
gin with a critical look at some of the
current shortcomings of parallel com-
puting, which is the aim of this View-
point. This will hopefully stimulate a
constructive discussion on how to best
remedy the shortcomings toward what
could ideally become a parallel com-
puting golden age.

Current-day parallel architectures
allow good speedups on regular pro-
grams, such as dense-matrix type pro-
grams. However, these architecture
are mostly handicapped on other pro-
grams, often called “irregular,” or when
seeking “strong scaling.” Strong scaling
is the ability to translate an increase in
the number of cores to faster runtime
for problems of fixed input size. Good
speedups over the fastest serial algo-
rithm are often feasible only when
an algorithm for the problem at hand

can be mapped to a highly parallel,
rigidly structured program. But, even
for regular parallel programming,
cost-effective programming remains
an issue. The programmer’s effort
for achieving basic speedups is much
higher than for basic serial program-
ming, with some limited exceptions

APRIL 2014

VOL. 57 | NO. 4

for domain-specific languages where
this load is somewhat reduced. It is
also worth noting that during the last
decade innovation in high-end gener-
al-purpose desktop applications has
been minimal, perhaps with the ex-
ception of computer graphics; this is
especially conspicuous in comparison
to mobile and Internet applications.
Moreover, contrasting 2005 predic-
tions by vendors such as Intel® that
mainstream processors will have sev-
eral hundred cores (“paradigm shift to
a many-core era”) by 2013 with the re-
ality of around a handful; perhaps the
reason was that the diminished com-
petition among general-purpose desk-
top vendors in that timeframe did not
contribute to their motivation to take
the risks that such a paradigm shift
entails. But, does this mean the hard-
ware of these computers is broken?

I believe the answer is yes. Many
more application domains could sig-
nificantly benefit from exploiting irreg-
ular parallelism for speedups. A partial
list of such domains follows.

» Bioinformatics. Genomics involves
many graph and other combinatorial
problems that are rarely regular.

» Computervision. Only a fraction of
the OpenCV library is supported well
on graphics processing units (GPUs).
Other OpenCV primitives are typically
irregular.

» Scientific computing. Sparse matri-

COMMUNICATIONS OF THE ACM 35

viewpaints

36 COMMUNICATIONS OF THE ACM

APRIL 2014

ces and problems that require runtime
adaptation such as multiscale meth-
ods for solving linear equations, or for
kinetic modeling of quantum systems.,

» Data compression.

» Sparse sensing and recovery in sig-
nal processing.

» Electronic design automation
(EDA) for both design and simulations.

» Data assimilation; and

» The numerous uses of graph models:

» Data analytics.

» Analysis of social networks.

» Epidemiological networks.
Belief propagation.

» Open-ended problems and program-
ming. This domain is characterized by
the way problems may be posed and
computer programs developed rather
than by a particular application. Many
problems whose initial understand-
ing does not imply clear output, or
sometimes even input, definitions lend
themselves to irregular programming.

Today’s general-purpose multicore
hardware does not provide sufficient
support for any of these domains.
It must be fixed to support more of
them, and to allow cost-effective par-
allel programming. A fix will require
changes both to current hardware,
and to the overall ecological system
comprising them, including pro-
gramming practice and compilers.
The lead questions for such a sys-
tem are: how should programmers
express the parallelism in the algo-
rithms they implement; what will the
responsibility of compilers and hard-
ware/software runtime systems be;
and how will the hardware execute
the eventual ready-to-run parallelism
as efficiently as possible. I believe that
for irregular problems: programmers
are good at seeing parallelism (that
is, understand which operations can
be done concurrently) well beyond
what current and near-future compil-
er technology ean extract from serial
code; much of this parallelism is fine-
grained; and this parallelism can vary
from very scarce (very few operations
that can be executed concurrently)
to plenty (many such operations),
even among steps of the same paral-
lel algorithm. Thus, system designers
must “keep their eye on the ball” by
viewing the parallelism that program-
mers provide as perhaps their most
precious resource. Specifically: encour-

b4

VOL. 57 | NO. &

age programmers to express all the
parallelism they see (of course, after
facilitating such expression in pro-
gramming languages), and optimize
compiler, runtime systems, and hard-
ware to derive the best performance
possible from whatever amount of
parallelism programmers provide. In
particular, the overheads for translat-
ing any amount of parallelism com-
ing from the program to performance
must be minimized.

Examples for what could be done
include shared (on-chip) caches, low-
overhead control mechanisms, high
bandwidth, low latency interconnec-
tion networks, and flexible data fetch
and store mechanisms. Many would be
justifiably puzzled by this list and ask:
Aren’t we already aware of these mea-
sures? Aren’t they already being imple-
mented? Closer scrutiny would suggest
the incorporation of these measures
has been greatly diluted by compet-
ing considerations (not keeping one’s
eye on the ball), leading to the current
chasm between parallel architectures
and irregular parallel algorithms. Sev-
eral examples of competing objectives
that hurt multicore performance on ir-
regular parallel programs follow.

Competing objective: Improve
throughput. Current multiprocessors
consist of tightly coupled processors
whose coordination and usage are
controlled by a single operating sys-
tem (OS). This has been a common
approach when the objective of the
architecture is to maximize the num-
ber of (possibly small) jobs to be com-
pleted in a given time. (Sometimes this
objective is referred to as optimizing
throughput.) Being a software system,
the OS encounters unnecessarily high
overhead for thread management, in-
cluding: thread initiation, dynamic al-
location of threads to hardware, and
thread termination. However, had the
main objective been low overhead sup-
port for irregular parallel programs,
we would have seen migration of more
of these functions to hardware, espe-
cially for fine-grained programs as many
irregular programs are.

Competing objective: Maximize peak
performance. Designs of GPUs seem
to have been guided by fitting as many
functional units as possible within a
silicon budget in an attempt to maxi-
mize peak performance (for example,

FLOPs). But, effective support of irregu-
lar programs, strong scaling, and bet-
ter sustained (rather than peak) perfor-
mance is a different objective requiring
different choices to be reflected both on
the hardware side and on the program-
mer side. Examples for the hardware
side: the data a functional unit needs to
process cannot be generally assumed to
be available near the functional unit, or
when vector functional units are used,
data needs to be provided to them both
at a high rate and in a structured way,
but this cannot be generally assumed,
as well. Simple parallel programming is
also not compatible with expecting the
programmer to work around such data
feeds. There are quite a few examples of
how GPUs require data to be structured
in a very rigid way by the programmer.

Competing objective: Maximize lo-
cality. The respective roles that caches
have come to play in serial and parallel
architectures help explain at least part
of the problem.

Caches in serial architectures. Serial
computing started with a successful
general-purpose programming model.
As improvement in memory latency
started falling behind improvement
in serial processor speed during the
1980s, caches emerged as the solu-
tion for continued support of the serial
programming model. The observation
that serial programs tend to reuse data
(or nearby addresses of data recently
used), also known as the “principle of
locality,” meant caches could generally
mitigate problems with continued sup-
port of that model. Thus, while locality
has become a major theme for optimiz-
ing serial hardware, it was not allowed
to interfere with the basic program-
ming model of everyday programming;
even when programming for locality
was done, it was by relatively few “per-
formance programmers.”

Local parallel memories. Paral-
lel computing has never enjoyed a
truly successful general-purpose
programming model, so there was
no sufficient motivation to invest in
continued support of one. Parallel
processing architectures have been
driven since their early days by the
coupling of each processor with a
considerable local memory compo-
nent. One key reason, already noted
earlier, was the quest for higher peak
performance counting FLOPs. This

]
A quest for future
progress must begin
with a critical look at
some of the current
shortcomings of
parallel computing.

meant maximizing the number of
functional units and their nearby
memory within a given dollar budget,
silicon-area budget, or power budget.
I also noted that trading off some of
these budgets for improved sustained
performance, perhaps at the expense
of peak performance, appears to have
been a lower priority. Thus, mapping
parallel tasks to these local memories
has become an enormous liability for
the programmer, and one of the main
obstacles for extending the outreach
of parallel processing beyond regular
applications and for making parallel
programming simpler.

Competing objective: Prioritize
highly parallel applications. Current
designs seem to expect a very high
amount of parallelism to come from
applications. I believe that, in general,
this view is too optimistic. One les-
son of serial computer architecture
has been the need to put any general-
purpose hardware platform through
nontrivial benchmarking stress tests.
Downscaling of parallelism on cur-
rent parallel machines is often a
problem for irregular algorithms and
problems. For example, in breadth-
first search on graphs, some problem
instances may provide a large amount
of parallelism (for example, random
graphs) while other instances do not
(for example, high-diameter graphs).
Some algorithms operate such that
the parallelism in different steps of
the algorithm is drastically differ-
ent. For example, standard max-flow
algorithms provide a useful stress
test. These max-flow algorithms iter-
ate breadth-first search on graphs of
increasing diameter, and therefore
their parallelism decreases as the al-
gorithm progresses, failing architec-

APRIL 2014

VOL. 5T | NO. 4

viewpoints

tures that can handle well only a high
level of parallelism.

Competing objective: Prioritize ener-
£y saving over programmer’s productivi-
ty. Approaching the end of the so-called
Dennard scaling and the decreasing
improvement in power consumption
of computers it implies are important
concerns.® Power consumption is also
easier to quantify than programmer’s
productivity and is closer to the com-
fort zone of hardware designers. This
may explain the often heard sentiment
that parallel programmers must take
on themselves programming for reduc-
ing energy consumption, which found
its way into some design decisions. I
see two problems with this trend, one
israther concrete and the other is more
principled. The concrete problem is
that irregular problems make it much
more difficult, if not impossible, for
programmers to conform with these
design decisions. The general prob-
lem is that the basic sentiment seems
to “go against history.” Much of the
progress attributed to the Industrial
Revolution is due to using more power
for reducing human effort. Can future
progress in computing performance
be based on reversing this trend?

The reader needs to be aware that
this approach of questioning vendors’
hardware presented here is far from
unanimous. In fact, many authors
have sought conformity with such
hardware, modeling limitations for
meeting them in algorithm design.
Bulk-synchronous parallelism (BSP),”
and more recently quite a few commu-
nication-avoiding algorithms, such as
Ballard et al.,! are notable examples
for considerable accomplishments re-
garding regular algorithms. However,
the state of the art remains that unless
problem instances can be mapped to
dense matrix structure, they cannot
be solved efficiently, and after many
years of parallel algorithms research
I do not believe such a fundamental
change in reality is feasible.

Interestingly, the chasm between
this communication-avoiding school
of thought and the position of this
Viewpoint is not as large as it may ap-
pear. Before explaining why, I point out
that historically government invest-
ment in parallel computing has been
mostly tied to the bleeding edge of large
high-performance computers, driven

COMMUNICATIONS OF THE ACM 37

viewpaints

N\

ACM
Transactions on
Reconfigurable
Technology and

A Transactions on
Reconfigurable Technology
and Systems

*oee e
This quarterly publication is a peer-
reviewed and archival journal that
covers reconfigurable technology,
systems, and applications on recon-
figurable computers. Topics include
all levels of reconfigurable system
abstractions and all aspects of recon-
figurable technology including plat-
forms, programming environments
and application successes.

L 2R 8 2R A 2

www.acm.org/trets
www.acm.org/subscribe

Association for
Computing Machinery

38 COMMUNICATIONS OF THE ACM

APRIL 2014 |

by large scientific applications. Here,
I advocate the advancement of paral-
lel computing in smaller-scale systems
for improved runtime, ease and flex-
ibility of programming, and general-
purpose applications. If successful,
such a small-scale system could also,
in turn, provide a better building block
(for example, node) for the larger com-
puters. For example, the recent paper
by Edwards and Vishkin® suggests that
such organization of larger computers
could double the effective bandwidth
between every pair of their nodes,
while still using the same intercon-
nection hardware. Many larger com-
puters operate by sending messages
from one node to another. For better
utilization of bandwidth, the sending
node applies a data compression algo-
rithm prior to sending a message, and
the receiving node applies a matching
decompression algorithm. Using XMT-
type computers (see a later reference)
at nodes could generally half the size
of the compressed message without
incurring greater delays for running
compression and decompression. This
direction offers an interesting middle
ground with respect to the communi-
cation avoidance school-of-thought.
Namely, use a high-bandwidth easy-to-
program parallel computing paradigm
within the nodes of a large machine
and a communication avoidance para-
digm among nodes.

I teach upper-division computer en-
gineering majors after they have taken
nearly all required programming, data
structures, and algorithms courses,
many of whom also have some software
development and application experi-
ence through internships and research.
It was interesting for me to hear them
out, as they already know a great deal,
but have not yet been under much pres-
sure to conform, for example, from em-
ployers. They find it difficult to come to
terms with the state of the art of parallel
programming. As students are present-
ed with the contrast between regular
and irregular programs, they point out
thatavast majority of the programs they
have encountered have been irregular.
Understandably, they resent not being
able to pursue a similarly flexible style
for parallel programming. To them, the
“get-your-hands-dirty” approach to prob-
lem solving, as cultivated by the stan-
dard CS curriculum and CS practice, is

VOL. 57 | NO. 4

being diminished by the type of parallel
programming mandated by today’s par-
allel hardware. This connects to the pre-
vious discussion of open-ended prob-
lems and programming. Development
of programs for an “ill-defined” prob-
lem may be significantly different from
one programmer to the other, as well
as the program each contributes. Such
aspects of individuality and creativity
reflect the “soul” of computer science
no less than well-understood applica-
tions; in particular, these aspects have
been instrumental in attracting talent
to the CS profession. However, since it
is problematic to reflect this mode of
open-ended programming in applica-
tion benchmarks, such programs and
their development tend to be underrep-
resented, if not missing altogether, in
stress tests for new parallel processors.
This reality has made it too easy to side-
step this domain in traditional, bench-
mark-driven hardware design.

The challenge for hardware ven-
dors is big. Any paradigm shift, such
as that required by the transition to
parallelism, is inherently risky. The
fact that vendors cannot expect much
feedback from application developers
before making such hardware avail-
able is also not helpful for mitigat-
ing the risk. Application software is
typically developed for new hardware
only after this hardware is available,
creating a chicken-egg-problem for
vendors. I already noted the dimin-
ished competition among desktop
and laptop vendors during the last de-
cade has also not added to their mo-
tivation. However, the ongoing con-
fluence of mobile and wall-plugged
computing is bringing about fierce
competition and with it the need to
take risks in order to stay competitive.
This is good news for the field.

Other good news is the continuing
increase in silicon area budgets and the

-
Any paradigm shift,
such as that required
by the transition to
parallelism, is risky.

advent of 3D-VLSI technology, along
with its potential accommodation of
greater heterogeneity in hardware, may
allow vendors to add new components
without removing support for current
programming models.

A reviewer of an earlier version of
this Viewpoint challenged its basic
thrust with the following interesting
argument. Since the sole point of par-
allel computing is performance, every
parallel programmer is by definition a
performance programmer. Thus, the
effort of parallel programming should
be judged by the standards of perfor-
mance (serial) programming, which
is also considerably more demanding
than just standard serial program-
ming. My answer is that getting good
(though not the best) serial perfor-
mance, as students enrolled in CS
courses often manage to get and with-
out the need to retune their code for
new machine generations, should be
the proper effort standard for getting
significant (though not the best) paral-
lel speedups. In other words:

» Performance in serial program-
ming often comes through the optimi-
zations made available by compilers,
freeing the programmer from much of
the burden of fine-tuning the code for
performance. Such optimizations al-
low keeping more of the programmer’s
focus on getting performance by bet-
tering the algorithm, which is not the
case in parallel programming.

» The programmer can only do so
much when the hardware stands in
his or her way. Current computer ar-
chitectures are geared toward mul-
tiple streams of serial codes (threads).
For performance, a programmer is re-
quired to come up with threads that are
large enough, which is something not
readily available in irregular programs.

Still, this reviewer's comment and
my answer suggest this Viewpoint must
also demonstrate I am not dreaming,
and a multicore system allowing good
speedups on irregular problems and
algorithms with limited effort is in-
deed feasible. For this reason the cur-
rent version cites the XMT® many-core
computer platform described in Vish-

a XMT stands for explicit multithreading and
should not be confused with the generation
of the Tera computer project, which is called
Cray XMT.

-
The world has yet

to see a commercial
parallel machine

that can handle
general-purpose
programming

and applications
effectively.

kin,” which provides a useful demon-
stration. For example:

» Students in the graduate parallel
algorithms theory class I teach at the
University of Maryland are required to
complete five or six nontrivial parallel
programming assignments, and near-
ly all manage to get significant speed-
ups over their best serial version, in
every assignment.

» Nearly 300 high school students,
mostly from the Thomas Jefferson High
School for Science and Technology in Al-
exandria, VA, have already programmed
XMT achieving significant speedups.

» The XMT home page® also cites
success on par, or nearly on par, with
serial computing with students in mid-
dle school, an inner-city high school,
and college freshmen and other under-
graduate students.

» As the max-flow problem was men-
tioned, the XMT home page also cites a
publication demonstrating speedups of
over 100X over the best serial algorithm
counting cycles, while speedups on any
commercial system do not exceed 2.5X.

» Publications demonstrating simi-
lar XMT speedups for some of the other
advanced parallel algorithms in the lit-
erature are also cited.

» XMT also demonstrates there is no
conflict with backward compatibility
on serial code.

The world has yet to see a commer-
cial parallel machine that can handle
general-purpose programming and ap-
plications effectively. It is up to the re-
search community to vertically develop
an integrated computing stack, and

b The XMT home page is http://www.umiacs.
umd.edu/” vishkin/XMT/.

APRIL 2014 |

VOL. 57 | NO. 4

viewpoints

prototype and validate it with signifi-
cant applications and easier parallel
programming, trailblazing the way for
vendors to follow. Due to its high level
of risk, prototype development fits best
within the research community. On the
other hand, exploiting parallelism for
today’s commercial systems is of direct
interest to industry. If indeed applica-
tion development for current commer-
cial systems will be funded by industry,
more of today’s scarce research fund-
ing could shift toward prototype devel-
opment where it is needed most.
Ludwik Fleck, a Polish-Israeli found-
er of the field of sociology of science,
observed the discourse of research
communities is not without problems,
pointing out that even the most basic
consensus of such a community (for
example, what constitutes a fact) mer-
its questioning.* In particular, through
feedback external to the community
reaching consensus. This Viewpoint
seeks to provide such feedback for gen-
eral-purpose multicore parallelism. Its
ideal impact would be driving the field
toward seeking enablement of systemic
advancement that will get the field out
of its “rabbit hole” of limited-potential
well-worn paths and ad hoc solutions,
as significant and successful as these
paths and solutions have been.

References

1 Ballard, G. et al. Communication efficient Gaussian
elimination with partial pivoting using a shape morphing
data layout. In Proceedings of the 25 ACM Syrmposiurm
on Parallelism in Algorithms and Architectures (SPAA),
(Montreal, Canada, 2013), 232-240.

2. Borkar, 5.Y. et al. Platform 2015: Intel processor and
platform evolution for the next decade. White Paper,
Intel Corporation, 2005,

3. Edwards, JA. and Vishkin, U. Parallel algorithms for
Burrows-Wheeler compression and decompression.
Theoretical Cormputer Science, to appear in 2014, see
http://dx.doi.org/10.1016/).tcs.2013.10.009.

4. Fleck. L. The Genesis and Development of a Scientific
Fact, (edited by T.J. Trenn and RK. Merton, foreword
by Thomas Kuhn). University of Chicago Press, 1979,
English translation of Entstehung und Entwicklung
einer wissenschaftlichen Tatsache. Linflihrung in die
Lehre vorn Denkstil und Denkkollektiv Schwabe und
Co., Verlagsbuchhandlung, Basel, 1935,

5. Fuller, S.H. and Millet, LI, Eds. The Future of
Computing Performance: Gaome Over or Next Level,
National Research Council of the National Academies,
The National Academies Press, 2011

6. Valiant, L.G. A bridging model for parallel computation.
Commun. ACM 33, 8 (Aug. 1990), 103-111.

7. Vishkin, U. Using simple abstraction to reinvent
computing for parallelism. Cornrmun. ACM 54, 1 (Jan.
2011), 75-85.

Uzi Vishkin (vishkin@urmd.edu) is a professor in the
Department of Electrical and Computer Engineering at The
University of Maryland, College Park. and at the University
of Maryland Institute for Advanced Computer Studies.

Partially supported by awards CNS5-1161857 CCF
0811504 from the National Science Foundation.

Copyright held by Author/Owner(s).

COMMUNICATIONS OF THE ACM 39

