i

Reprinted from INFORMATION AND CONTROL Vol. 67, Nos. 1-3, October/November/December 1985
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Optimal Parallel Pattern Matching in Strings
Uz1 VisgkIN*

. Courant Institute, New York University, and
Department of Computer Science, Tel Aviv University,
Tel Aviv 69 978, Israel

Given a text of length n and a pattern of length m, we present a parallel linear
algorithm for finding all occurrences of the pattern in the text. The algorithm runs
in O(n/p) time using any number of p <nflogm processors on a concurrent-read
concurrent-write parallel random-access-machine. © 1985 Academic Press, Inc.

1. INTRODUCTION

The family of models of computation used in this paper is the parallel
random-access-machines (PRAMs). All members of this family employ p
synchronous processors all having access to a common memory. The
present papers refers to two member of the PRAM family. Our presen-
tation focuses on the concurrent-read concurrent-write (CRCW) PRAM.
This model allows simultaneous reading from the same memory location as
well as simultaneous writing. In the latter case, the smallest serial num-
bered among the processors that attempt to write succeeds. At the end of
the paper we show that a weaker concurrent-read concurrent-write PRAM
model, where several processors may attempt to write at the same memory
location only if they seek to write the same thing, actually suffices for the
strongest results in this paper. There, we also show how to implement some
of the results on a concurrent-read exclusive-write (CREW) PRAM, where
simultaneous reading into the same memory location but not simultaneous
writing is allowed. See Vishkin (1983a) for a recent survey of results con-
cerning the PRAM family.

Let Seq(n) be the fastest known worst-case running time of a sequential
algorithm, where # is the length of the input for the problem being con-
sidered. Obviously, the best upper bound on the parallel time achievable

* This research was supported by DOE Grant DE-AC02-76ER03077, by NSF Grants NSF-
DCR-8413359, NSF-MCS79-21258, and NSF-DCR-8318874, and by ONR Grant N0014-85-
K-0046.

91

0019-9958/85 $3.00

Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

. VLl VIR

using p processors without improving the sequential result is of the form
O(Seq(n)/p). A parallel algorithm that achieves this running time is said to
have optimal speed-up or more simply to be optimal. A goal, in serial com-
putation, is to design linear time algorithms (O(n) time). Analogously, a
goal, in parallel computation, is to design algorithms whose running time is
proportional to n/p, where p is the number of processors used. In this case

we say that a parallel algorithm achieves paralle! linear running time.

There are not too many parallel algorithms which are optimal, in spite of
the interest in them. We mention below a few such algorithms. We also
include in this list a few algorithms which are very close to being optimal.
(It was an arbitrary decision to include only algorithms which are away
from optimal by a factor of O(log n), where »n is the size of the problem
being considered.) See Chin, Lam, and Chen (1981) and Vishkin (1984a)
(among many others) for computation of partial (prefix) “sums” of »
variables, where the word “sum” stands for any associative binary
operation, Shiloach and Vishkin (1981) for finding the maximum among »
elements (Borodin and Hopcroft, 1982; Kruskal, 1982; Shiloach and
Vishkin, 1981) for merging two sorted lists (Akl, 1984; Reischuk, 1981 (a
randomized algorithm) and Vishkin, 1983b) for finding the k smallest out
of n elements (Ajtai, Komlos, and Szemeredi, 1983; Reif and Valiant, 1983
(a randomized algorithm) and Shiloach and Vishkin, 1981) for sorting,
(Paul, Vishkin, and Wagener, 1983) for various operations on 2-3 tree,
(Kruskal, Rudolf, and Snir, 1985; Vishkin, 1984b (a randomized
algorithm), and Vishkin, 1985b) for ranking a linked list, (Galil, 1984) for
string matching (where the symbols are taken from an alphabet whose size
is bounded), (Aggarwal et al, 1985; Nath er al, 1981) for computing con-
vex hulls (Aggarwal er al., 1985, also considers other problems from com-
putational geometry), (Bar-On and Vishkin, 1985) for generation of a com-
putation tree form of an arithmetic expression and for finding matches in a
sequence of parentheses, (Tarjan and Vishkin, 1983; Vishkin, 1983a) for
computing preorder, postorder, lowest common ancestors and other tree
functions, (Awerbuch and Shiloach, 1983; Chin, Lam, and Chen, 1981;
Hirschberg, Chandra, and Sarwate, 1979; Savage and Ja'Ja’, 1981; Shiloach
and Vishkin, 1982a; Vishkin, 1984a; Wyllie, 1979) for computing connected
components and minimal spanning forests of graphs, (Tsin and Chin, 1984;
Tarjan and Vishkin, 1983) for computing biconnected components of
graphs, (Vishkin, 1985a) for finding strongly connected orientation of the
edges in undirected graphs, (Awerbuch er al, 1984; Atallah and Vishkin,
1984) for ‘finding Euler tours in directed and undirected graphs, and
(Shiloach and Vishkin, 1982b) for finding maximum flow in a network. See
(Heller, 1978) for a survey of numerical parallel algorithms.

The string matching problem is defined as follows. Inpur. Two arrays

PATTERN and TEXT whose lengths are m and n, respectively. Output. A

PATTERN MATCHING IN STRINGS 93

Boolean array MATCH of length n. MATCH(i), 1 <i<n, indicates if an
occurrence of PATTERN starts at TEXT(i).

The main contribution of this paper is in presenting an original parallel
linear algorithm for the general case of this problem which runs in
O(log m) time on a CRCW PRAM. The text analysis part of the algorithm
is parallel linear and runs in O(logn) time on a CREW PRAM. The
algorithm can also be implemented as a parallel linear algorithm which
runs in time O(log? n) on a CREW PRAM.

There are two known linear time serial algorithms for this extensively
studied problem, due to (Boyer and Moore, 1977; Knuth, Morris, and
Pratt, 1977). Recall that every parallel linear algorithms is, in particular, a
linear time serial algorithm. The present result is stronger than theirs in the
sense that it gives a parallel linear algorithm while theirs serial algorithms
do not seem to imply satisfactory parallel linear algorithms. Moreover, our
algorithm is not more complicated than theirs. Some parts of it (par-
ticularly, the analysis of the text) are even considerably simpler.

The string matching algorithm of (Galil, 1984) runs in O(logn) time
using n/log n processors but requires the size of the alphabet to be fixed.
However, it needs n processors in order to obtain O(logn) time for the
general case considered here, and simulating it by a single processors takes
O(nlogn) time. Unlike his algorithm, ours does not use the “Four
Russians Trick” (Aho, Hopcroft, and Ullman, 1974). There, O(log n) bits
are packed into a single register and then each instruction concerning this
register is counted as one operation. We use a few ideas from Galil’s paper
but are able to improve his result due to the following:

(1) Novel algorithmic ideas for the string matching problem. We
sketch briefly one such notable idea. A formal presentation of this idea is
given in Section 3. The pattern is preanalyzed and the following table is
constructed. Consider the following proposition: “The suffix starting at
position i of the pattern is a prefix of the pattern.” For each i, 1 <i< m, the
table will either indicate that the proposition is true, or point to a single
character following i that provides a counter example to the proposition.

w
PATTERN] 11
rle&.i
PATTERN [T

h—l+w

iz i
Text [1} 11 1]

Fic. 1. A duel between positions j, and Jr of the text: PATTERN(w)#
PATTERN(j, ~ jo 4+ w); if TEXT(j, — 1 + w) % PATTERN(w) then there is no occurrence of
the pattern at j,; if TEXT(j, ~ 1 4+ w)% PATTERN(/, — j, + w) then there is no occurrence of
the pattern at j,.

94 UZI VISHKIN

Let j, > j, be two locations of the texr such that j, — j, <m and the suffix
starting at position j, — j,+ 1 of the pattern is not a prefix of the pattern.
Following the analysis of the pattern, position j, — j, + 1 of the table points
to a counter example, say w. That is, PATTERN[j, —j,+w]#
PATTERN([w]. The duel idea. (See also Fig.1). It is impossible that
occurrences of the pattern start both at location j, and j, of the text.

Moreover, the j, — 1 4+ w position of the text can be either the w position of
the pattern, the j, — j, + w position of the pattern or neither (but not both).
The idea of a duel between j, and j, is to compare this position of the text
with each of these positions of the pattern. Thereby, we can eliminate the
possibility that an occurrence of the pattern starts in at least one of j, or j,.
Now, consider the set of locations of the text such that at time ¢ of an
algorithm the possibility that an occurrence of the pattern starts at each of
them has not (yet) been ruled out. Applying duels between successive pairs
of these locations enable us to decrease by a factor of two a bound on the
cardinality (“density”) of this set.
(2) A careful assignment of processors to their jobs (using Brent’s
theorem).

The text analysis part of the algorithm is described in Section 3 and the
pattern analysis part in Section 4.

I1. PRELIMINARIES

The following notation is used in this paper: Let x be a real number. |x|
is the smallest integer which is > x. [x] is the largest integer which is <x.
Let u be a string; |u| is the number of characters in the string.

Most of this section is devoted to definitions and known facts regarding
periodicity in strings.

Let u, w be two strings. u is a period of w if w is a prefix of «* for some k,
or equivalently if w is a prefix of uw. We call the shortest period of a string
w the period of w. w has period size P if the length of the period of w is P. If
w is at least twice longer than its period we say that w is periodic. We will
use some simple facts about periodicities.

PROPOSITION 1. Let v be a periodic string and let w, |w| < vl/2, be a
period of v. Suppose w itself is periodic and u is a period of w such that

w=u*, k> 1. Then u is a period of v.

. : . s
Proof. v is a prefix of w* for some s> 1. Hence, v is a prefix of u™.

PATTERN MATCHING IN STRINGS 95

ProposiTion 2 (The periodicity Lemma (Lyndon and Schutzenberger,
1962). If w has two periods of size P and Q and |w| > P+ Q, then w has a
period of size gcd(P, Q).

In the rest of this section an occurrence of some pattern ar j will mean
that the pattern is a substring beginning at position j of a given fixed string
z. For proofs of Propositions 3-6 below, see Galil (1984).

PROPOSITION 3. If v occurs at j and j+ P, for any P < |v|/2, then (1) v is
periodic with a period of length P, and (2) v occurs at j+ P, where P is the
period size of v.

In the rest of this section we consider a periodic string v=u*u’, k> 1, u
the period of v, u” a proper prefix of u, and |u| = P.

PROPOSITION 4. If v occurs at j and j+ mP, m<k, then u**"™u' occurs
at j.

PROPOSITION 5. If v occurs at j and j+ A, A< |v| — P, then 4 is a mul-
tiple of P.

We call an occurrence of v at j important if v does not occur at j+ P.

PROPOSITION 6. If there are two important occurrences of v at r and s,
r>s, then r—s>|v|—P.

THEOREM (Brent). Any synchronous parallel algorithm of time t that con-
sists of a total of x elementary operations can be implemented by p
processors within a time of |x/p| + 1.

Proof of Brent’s Theorem. Let x,; denote the number of operations per-
formed by the algorithm in time i (X} x, = x). We now use the P processors
to “simulate” the algorithm. Since all the operations in time i can be
exccuted simultaneously, they can be computed by the P Pprocessors in
|x;/p| units of time. Thus, the whole algorithm can be implemented by p
processors in time of

Y Ix/pl <3 (xilp + 1)< fpl + 1.

Remark. The proof of Brent's theorem poses two implementation
problems. The first is to evaluate x; at the beginning of time i in the
algorithm. The second is to assign the processors to their jobs.

96 UZI VISHKIN
III. ANALYSIS OF THE TEXT

The algorithm has three steps. In the first step an analysis of the pattern
is performed. This analysis is used in the second step to find a sparse set of
“suspicious” indices of the text. By suspicious indices we mean indices of
the text in which occurrences of the pattern may start. The last step applies

a character by character check to find in which of the suspicious indices an
occurrence of the pattern really starts. In this section we describe the last
two steps. The first step is described in the next section.

DEFINITION. Suppose that PATTERN[j, j + .., m] is not a prefix of
PATTERN[1,..., m] for some j, 2< j<m. That is, there exists an integer w,
1<w<m—j+ 1, such that PATTERN(w) # PATTERN((j— 1)+ w). We
say that w is a witness to this mismatch. Observe that w is a witness against
the existence of a period of size j— 1 in PATTERN.

Outpur of Step 1. For each j, 2<j<[m/2]+1, Step 1 determines
whether PATTERN has a period of size j — 1 (WITNESS(/) will be 0) and
computes a witness if not (it assigns such a witness to WITNESS(j)).

Steps 2 and 3. For k>0, the set of k-blocks is {TEXT[L,.., 27,
TEXT[R2* + 1,.., (I+1) 2¥],..}. Steps 2 and 3 depend considerably on
whether the pattern is periodic.

Case 1. The pattern is not periodic.

Step 2. Initialize. For all i, 1 <i<n—m+1 pardo

. MATCH(i) :=T.

Recall that the goal of our algorithm is that MATCH(i) = T if and only if
an occurrence of the pattern starts at i, for any i, 1<i<n—m+ 1L

Let us define the k-sparsity property: For each k-block at most one value
of MATCH is T. Namely, each of MATCHI1L,., 2% }oeens
MATCH[2% + 1,..., (I + 1) 2%],... contains at most one T.

The goal of Step 2 is to satisfy ([logm]— 1)-sparsity. However, at the
end of Step 2 it will still be possible that MATCH(i) is T while there is no
occurrence of PATTERN that starts at TEXT().

LEFT(k, a) contains the entry of the leftmost T in TEXT of k-block
number a, 1 <a < |(n—m+ 1)/2%|, or an indication that there is no such 7.

Let us describe stage k of Step 2. (The input to stage k satisfies (k—1)-
sparsity.)

Stage k, 1 <k <[log m]— 1: Satisfy k-sparsity.

The procedure given below is performed in parallel for all k-blocks. Let a

be an integer satisfying | <a < |(n—m+ 1)/2%]. We describe the procedure
for k-block a; k-block a is the union of two (k — 1)-blocks: 2a and 2a— 1.

PATTERN MATCHING IN STRINGS 97

if LEFT(k— 1, 2a) = "“null”
then LEFT(k, a) :=LEFT(k—1,2a—1)
else if LEFT(k—1,2a—1)="null”
then LEFT(k, a) := LEFT(k -1, 2a)
else see below.

(k —1)-sparsity implies that following stage k—1 there is at most one
index j, in (k — 1)-block 2a and at most one index j, in (k — 1)-block 2a — 1
such that MATCH(/,)=MATCH(/,)=T. The remaining case is where
both indices j; and j, exist. We use the concept of a duel (which was
described informally in the introduction) to eliminate one of these T'—s
using information that exists in WITNESS following Step 1.

Let w be WITNESS(j,—/j,+1). Let x=PATTERN(w), y=
PATTERN(, ~ j, +w) and z=TEXT(j; — | + w). Since j, and j, belong to
the same k-block, j, — j, < 2*. For k < [log m] ~ 1, this implies w # 0. w is
a witness that PATTERN[j, — /> + 1,.., m] is not a prefix of PATTERN.
Namely, x # y:

If an occurrence of PATTERN starts at j, then x=1z.
If an occurrence of PATTERN starts at j, then y=2.

x # y implies that only one of the later two equalities can be satisfied and
therefore at most one of these two occurrences may hold. We use z to
eliminate the possibility of (at least) one of these occurrences:

ifzs#y
then MATCH(,) :=F
if z#x
then MATCH(j,) :=F

Finally,

if MATCH(j,)=T

then LEFT(k, a) = j,

else if MATCH(j,)=T
then LEFT(k, a) := j,
else LEFT(k, a) :=“null”

Complexity. Stage k of Step 2 needs O(n/2*) operations and O(1) time.
Therefore, Step 2 needs a total of O(n) operations and O(log m) time.

Step 3. Foreach o,] Sa<n—m+1, such that MATCH(a) = T check,
character by character, if an occurrence of the pattern starts at a:

forall j, 1 <j<{n—m+1)/2M°e™1~ ! pardo
for all i, 1 < i< m, pardo
(Denote 1(j)= LEFT([logm] — 1, j))

98 UZ1 VISHKIN

if 1) # “null”
then if TEXT(t(j)+7— 1) PATTERN() .
then MATCH(#())) .= F {(simultaneous writes are possible)

This results in MATCH(i)=T (for any i, 1<i<n—m+1) if and only if
an occurrence of the pattern starts at location i of the text as we wanted.

Complexity. O(mnj20°8m1-1) = O(n) operations and O(1) time.

Case 2. The pattern is periodic.

Say that the pattern is u*v, where u is the period of the pattern, |u| = P,
and |v| < P and let Q= v] =m—sP (<P).

Step 2.1. Rerun Step 1 for PATTERN[1,.., 2P] instead of the whole
pattern. (Remark. Actually, there is a way to avoid rerunning Step 1. The
goal of Step 2.1 is to revise the values of WITNESS, such that for every i,
2<ig< P, WITNESS(/)<2P—i Suppose that following the pattern
analysis there is some i, 2 <i< P, for which WITNESS(i{) > 2P — i. Denote
w=WITNESS(/). The fact that the pattern has a period of length P implies
that w— P is also a witness for i and it is right to assign w— P into WIT-
NESS(i). Let ¢>0 be any integer such that w—cP > 0. Similarly, we can
assign w—cP into WITNESS(i). So, we select ¢=|(w—2P+i)/P|, and
assign w— cP into WITNESS(i). This results in WITNESS(/)<2P—i as
desired.)

Step 2.2. Perform [log P] rounds of duels with respect to the text
(similar to Step 2 of Case 1 above). As a result each [log P]-block of the
text will have at most one index, where an occurrence of the period u may
start (to be called a suspicious index, as before). Observe that since the
information in WITNESS is based now only on u?, every index of the text
in which an occurrence of u? starts is suspicious.

Step 3.1. For every suspicious index check, character by character, if
an occurrence of u”v starts at it (similar to Step 3 of Case 1 above).

Steps 2.1, 2.2, and 3.1 result in the foliowing: for every i, | <i<n—2P—
0+ 1, MATCH(i) = T if and only if there is an occurrence of % at i. These
steps need a total of O(n) operations and O(log m) time.

Step 3.2, Our present goal is to find for each such i the maximum k
such that an occurrence of u*v starts at i. Then, if k 3 5 we conclude that an
occurrence of the pattern starts at i. For completeness of the presentation
we bring below the slightly tedious implementation of Step 3.2

We will use a standard balanced binary tree with n— 2P — Q+1 leaves
to guide the computation. Denote f=n—2P—Q + 1. Each node of the
tree is a pair (x, y), where x is the level of the node in the tree and yisits
serial number among other nodes of the same level. The leaves of the tree
are (0, 1),..., (0, 2"2#). A node (x, y) of the tree is the father of two nodes:

PATTERN MATCHING IN STRINGS 99

{x—1,2y—1), its left son, and (x—1, 2y), its right son. For each i
1 €i< B, such that MATCH(/} = T, we compute below into LARGEST(J)
the largest index / such that MATCH(/) =T and PATTERN[,,..., [—1] =
u=F where (I—i)/P is an integer. An addition of two to (/—i)/P will
yield the maxifnum & as required.

Serially, this / can be easily computed in linear time by scanning the text
from right to left. Our parallel implementation uses auxiliary arrays A[i, j]
and B[i, j] whose entries correspond to nodes of the binary tree.

Initialization.
forall i, 1 <i<2"e# pardo

if MATCH(i)= T and MATCH(i+ P)=F

(Comment. In case the if condition is satisfied the maximum / for i is

itself.)

then A(0, 1) :=i

else A(0, i) =0

The computation has 2 [log §| stages. (Remark. The last paragraph of
this section explains why only 2 |log m| stages suffice.) Each of the first
[log B| stages consists of moving one level up the tree, starting from the
leaves and ending at the root. They result in each A(x, y) having the
minimum A(0, {) over its leaf-descendents:

Stage r, r:=1 to |log p|.
for all i, 1 <i<<2""°¢#1~" pardo
A(r, i) :=min(A(r — 1, 2i — 1), A(r — 1, 2i))

Each of the last |log f| stages consists of moving one level down the tree,
starting at the root and ending at the leaves. The goal in these stages is to
compute into B(0,), 1 <i<p, the smallest j for which the if condition
above is satisfied and j> /. It can be readily verified by decreasing induc-
tion on the level r that B{r, i) has the smallest / for which the if condition is
satisfied such that j > 2",

Set, B(jlog f|, 1) := 0.

Stage 2 |log B| + 1 — r, r := |log B| downto 1.
forall;, 1 <i<2"8#~" pardo
B(r—1,2i):= B(r, i}
ifA(r—1,2)<w
then B(r—1,2i— 1) 1= A(r — 1, 2i)
else B(r—1,2i—1):= B(r, i)

In order to complete the computation of LARGEST perform:
for all i, 1 <i<n, pardo

if MATCH(i)=T and MATCH(i + P)=F

then LARGEST(i) :=i

else LARGEST(i) := B(0, i)

100 UZI VISHKIN

It is straightforward to see that for every | 1<i<f, such that
MATCH(i)= T, LARGEST(i) has the desired value. Finally,

for all i, 1 <i<f, such that MATCH(i) = T pardo

k := (LARGEST(i)—i)/P +2

if k<s

then MATCH(i) :=F

Complexity. The number of operations required by Step 3.2 is propor-
tional to the number of nodes in the binary tree (O(f)) and the time is

proportional to its height (O(log f)).

(Remark. There is a way to modify Step 3.2 such that the number of
operations will remain O(n) but the time will be reduced to O(log m). The
modified Step 3.2 will find for each i, such that MATCH(i) =T following
Step 3.1, whether there is k, such that k= s and u*v starts at i. Observe,
that now we are not looking for the largest such k. Essentially, the
modified Step 3.2 consists of the first jlogm| stages and the last [log m|
stages given above. In the first |log m| stages we move {log m| stages up the
tree. Since each node of the form [[log m], y] has 2"°¢™ leaf descendents,
it is straightforward to adapt the last |log m| stages (above) to compute for
each i, whether there is k > s such that #*v starts at i.)

So, Steps 2 and 3 of Case 2 also need a total of O(n) operations and
O(log m) time. Apply Brent’s theorem to get a bound of O(logm) time
using n/log m processors for both Cases 1 and 2. The reader is invited to
verify that here and throughout the rest of the algorithm the implemen-
tation problems in the remark following Brent’s theorem can be readily
overcome.

IV. STeP 1-—ANALYSIS OF THE PATTERN

The pattern is the input for Step 1. Step 1 consists of manipulating the
array WITNESS, whose length is m. Recall that in the previous section we
already specified what WITNESS must include following Step 1. It is
initialized as follows:

for all j, 1 <j<m pardo
WITNESS(j) :=0 (Interpretation. PATTERN[j, j+ 1,..,m] is
“suspected” to be a prefix of the pattern.)

In this section, the set of k-blocks refers to the pattern. It is
{PATTERN([1,.., 2*],.., PATTERN[2* + L., (I+1) 2*]...}.

Step 1 consists of [logm]—2 or [logm]—3 iterations (called stages)
and a terminal stage. Later in this section we describe the terminal stage
and how to determine the exact number of iterations to be performed.
Following stage &, the following three properties are satisfied:

PATTERN MATCHING IN STRINGS 101

(1) The k-certainty property. For j, 1<j<2% WITNESS(j)=0 if
and only if an occurrence of PATTERN{,.., 2*! — j+ 1] starts at PAT-
TERN(/). That is, for 1< /<2 WITNESS(j)=0 indicates that we are
certain that there is such an occurrence at j. The k-certainty property can
alternatively be presented as follows:

Imagine that PATTERN[1,..,2¥*'] has the whole pattern. Then,

WITNESS[1,..., 27 has its final values as required by the output definition
of Step 1. Obviously, WITNESS(1) must be always zero.

(2) The k-sparsity property. (In this section it will apply to the pat-
tern.) If WITNESS[2,.., 2¥] does not have any zero then WITNESS of
each k-block has at most one zero. (That is, each of

WITNESS[1,..., 2*],.., WITNESS[2* + 1,.., (1 4+ 1) 2¥*1],. contains at

most one zero.)

(3) The k-lookahead property. WYTNESS(i) <2**! for every index i
of the pattern.

Satisfying the k-certainty and the k-sparsity properties is a fairly intuitive
goal, while satisfying the k-lookahead property may seem counter-intuitive.
Particularly, since satisfying it implied in several places not using available
information which seemed as if it will speed up the algorithm. Therefore,
our presentation focuses on satisfying the first two properties. We prove
later that the k-lookahead property is satisfied as well (in Lemma 1).

We describe now stage k + 1 of Step 1. We follow closely the illustrative
description which is given in Fig. 2. After stage & we must be at either the
arrow leading to Box 2 or at the arrow leading to Box 4. In either case
“k-certainty” is satisfied.

“k-sparsity” is satisfied when we enter Box 2; k-sparsity need not be
satisfied at a periodic mode (ie., if we were at Box 4 in stage k and
proceeded to stage k + 1 at Box 4).

LEFT(k, a) relates in this section to the pattern. It contains the entry of
the leftmost zero in WITNESS of k-block number a, 1 <a < |m/2%|, or an
indication that there is no such zero. If PATTERN[1,.., 2**'] has a
period of size <2*—1 then PERIODICITY (k) contains the period size.

Let us specify the instructions in each of the boxes. The instructions for
boxes 2-5 assume that they are activated in stage k + 1:

Box 1 (Start).
for all j, 1 < j< m pardo

WITNESS(/):=0
if PATTERN(1)# PATTERN(2)
then start stage 1 at Box 2
else start stage 1 at Box 4 (enter a periodic mode)

R

102 UZI1 VISHKIN

Start ﬁ
i =0
PATTERN {11 = PATTERN (2} 2
80X 1
yes no “ \
Pi=i+l i+l
tpdate WITNESS {j)}, where WITNESS .:vuO Satisfy i-certainty
and j-1 is not divisible by P, 2i <jg2i+]
Y
Is the period of m\ y
i ‘ i+
PATTERN],...,21] a period of \3 | 1o parern [i,....2"*]
PATTERN[),...,21*1] 2 o prefix of
PATTERN [1,...,2" *']
] A |
for some 2it1e j ¢ 20 2
Satisty i-ceriainty
BOX 4 BOX 2
| &
Satisfy {i-1)-sparsity Satisty i-sparsity
(in several iterations) BOX 3
1s PaTTERN [j,..., 2" *']a ! C
prefix of PATTERN [1 2] | </
for some 2 1< j g 21
BOX 5 no

Fic. 2. Step L.

Box 2. (Upon entering Box 2, k-sparsity and k-certainty are satisfied.
WITNESS[2,..., 2] has no zeros.) If suspected periodicity has been found

start stage k + 2 at a periodic mode (Box 4). Otherwise, progress to Box 3.
Specifically,

if LEFT(k, 2)# “null” (ie, does WITNESS of k-block number 2 has a
zero? Note that k-sparsity implies that there is at most one such zero)
then (let x = LEFT(k, 2))
for all j, 1 <j<2¥*?—x+1 pardo
if PATTERN(j) # PATTERN(x — 1+ j)
then WITNESS(x) :=j (Note that the if statement condition may hold
for several j’s. This would result in simultaneous writes into WIT-

NESS(x))

if WITNESS(x)=0 (i.e., the condition did not hold for any j)

then PERIODICITY(k + 1) := x — ; Start stage £ +2 at Box 4
Proceed to Box 3 (the situation is that WITNESS[2,.., 25*17 has no

Zeros)

PATTERN MATCHING IN STRINGS 103

Box 3. (k-sparsity and (k + 1)-certainty are satisfied. For every 2 </ <
2k+1 WITNESS(j)#0.) Satisfy (k+ 1)-sparsity. The procedure given
below is performed in parallel for all (k+ 1)-blocks. Let a be an integer
satisfying 2 < a < [m/2%*!|. We describe the instructions for (k + 1)-block a.
{k + 1)-block a is the union of two k-blocks: 2a and 2a-1:

if LEFT(k, 2a) = "“null”
then LEFT(k + 1, a) := LEFT(k, 2a— 1)
else if LEFT(k, 2a — 1) ="null”
then LEFT(k + 1, a) := LEFT(k, 2a)
else see below.

k-sparsity implics that there is at most one index j in k-block 2a and at
most one index j, in k-block 2a—1 such that WITNESS(/,) =
WITNESS(j,)=0. The remaining case is that indices j, and j, exist.
Here enters again the concept of a duel. We perform a duel between these
indices in which one of these zeros will be eliminated, similar to the pre-
vious section. Let w=WITNESS(j,—j,+1), x=PATTERN(w), y=
PATTERN(/, - j, +w) and z=PATTERN(j, — 1+ w).

(Implementation Remark 1. In the present description, we ignore the
case where j, — 1 + w>m (or when there is reference to an index of the pat-
tern which is >m). The algorithm proceeds as if PATTERN(j, — 1+ w)
matches any possible character. However, the k-lookahead property
prevents this case from affecting the correctness of the algorithm as

explained in the presentation of the terminal stage of Step 1 later.)
We use z to eliminate (at least) one of the zeros at j, and j,.

ifz#y

then WITNESS(j,):

ifz#x
then WITNESS(/,):

Ji—j2tw

i
=

Finally,

if WITNESS(j,)=0

then LEFT(k + 1, a) 1=,

else if WITNESS(/,)=0
then LEFT(k + 1, a) =,
else LEFT(k+ 1, a) := “null”

Box 4. Periodic mode. (Recall that we are presently describing stage
k+1.) (Say that the last transition from Box2 or 5 occurred at stage
ky+1. k-certainty and k,-sparsity are satisfied. Say the period size of
PATTERNI{1,..., 2517 (the suspected periodicity) is P).

We pick indices j of the first (k + 1)-block such that WITNESS(j)=0
and j—1 is not divisible by P. The fact that k-certainty was satisfied upon

104 UZI VISHKIN

entering Box 4, implies that each such j must belong to the second &-block.
For each such index j, we select the index /, such that j—P<i<jand i—1
is divisible by P and perform a “one way” duel between / and j in
which only an assignment into WITNESS(;j) can be performed. Explicitly

i=[(j—1)/P]P+1. As we see below, it is very useful that j—i< P
for all j, 2% < j < 2%*! pardo
if WITNESS(j) =0 and jmod P # 1
then (Let w = WITNESS(j mod P)
if PATTERN(j— 1 + w) # PATTERN(w)
then WITNESS(j) :=w

(Explanation. We prove later (Lemmal) that after stage ¢,
WITNESS(/)<2'*!, for every index [Therefore, if P is the period of
PATTERNI1,..., 227 then for all the j indices that satisfy the first if con-
dition above, the second if condition must be satisfied as well. Hence, this
instruction will result in WITNESS(/) #0.)

Cram 1. Suppose P is not a period of PATTERN[,..., 2X*?]. Then for
at most four indices j that satisfied the first i condition WITNESS(})
remains 0. To show this we need the following.

CLamv 2. WITNESS(i) <208 12 for each 2 <i<P.

Proof. Apply Lemma ! and the fact that all these indices of WITNESS
were updated before we entered Box 4 at stage [log P]1+ 1 when P became
the suspected periodicity. We can conclude from the proof the following.

CoroLLARY 1. ([log P])-sparsity is satisfied. From Claim2 we can
conclude that,

COROLLARY 2. For each index j<25+1 —2U08PI+2 thar satisfied the
first if condition, WITNESS(}) 0.

Proof of Claim 1. By Corollary 2, only indices j, 2k+! — 208 £1+2 o ;¢
2k+1 that satisfied the first if condition may have WITNESS(j) = 0. These
indices may be included in at most four ([log P])-blocks. (Corollary 1

implies, that WITNESS of at most one index in each of these blocks has a
zero.)

Check whether the periodicity continues until index 22 of the pattern.
If yes, start stage k+2 at Box4. (Observe that (k- 1)-certainty is
satisfied.) Suppose the periodicity does not continue until index 2**2. Con-
sider the possibilities that any multiple of P, which is <2**", is a period of
PATTERN[1,.,2¥*?]. The character of the pattern which caused the

assignment into WITNESS(P + 1) is also a counter example to any of
thesc possibilities. Update this into WITNESS. As a result

PATTERN MATCHING IN STRINGS 105

WITNESS[2,..., 27 '] will have at most four zeros whose indices are >2*
(Claim 1). Check, character by character, if any of these zeros represents a
period of PATTERN[1,.,2%*?] and update WITNESS appropriately.
Obviously at most one of this zeros represents a period of

PATTERNI,.., 2**'7 (Proposition 2). Proceed to Box 5. (Observe that
{(k + 1)-certainty is satisfied):

for all j, 2¥+' < < 2%*2 pardo
if PATTERN(/) # PATTERN(, mod P)
then WITNESS(P + 1} := j— P (simultaneous writes are possible and the
lowest j— P will be assigned)
if WITNESS(P+1)=0
(In words: Is P still the suspected periodicity?)
then start stage k + 2 at Box 4
else forall j, 2 < j< (2! — 1)/P pardo
WITNESS(jP + 1) := WITNESS(P+ 1)— (j~ 1) P

{Explanation. Observe that for each of these s, jP+
WITNESS(jP + 1) is the same. As we said before, this means that the same
character of the pattern contradicts periods of sizes jP, for each of these j’s)

for each i, 2 <i<2%*!, such that WITNESS(i)=0 do
(there are at most four such i’s)
forall j, 1</j<2¥*?—i+1 pardo
if PATTERN()# PATTERN(i~ 1 + /)
then WITNESS(/) := j (simultaneous writes are possible)
if WITNESS({) =0 (i.e., the condition did not hold for any j)
then PERIODICITY(k + 1) :=i—1;
proceed to Box 5

Box 5. ((k+ l)-certainty is satisfied. WITNESS[2,..., 2] has no zeros.
k,-sparsity is satisfied.) Satisfy k-sparsity. This is done in k — k, iterations.
In iteration ¢, 1 <1<k —k,, (k,+ t)-sparsity is satisfied. Each iteration is
similar to the way in which (k + 1)-sparsity is satisfied in Box 3. The details
are left to the reader—no new ideas are required. If
WITNESS[2*+1,..,2¥*!] has a zero (PERIODICITY(k + 1)+ “null”)
then start stage k-2 at Box4. Otherwise, proceed to satisfy (k+1)-
sparsity at Box 3.

Next, we give a complexity analysis of the stages described above. Later,
the terminal stage of Step 1 is presented. For reasons of clarity the main
points required for a correctness proof of Step 1 will be combined into the
presentation of the terminal stage.

Complexity analysis. Stage k. Each of Boxes 2, 3, and 4 is visited at
most once in each stage. Box 2 needs O(2%) operations and O(1) time.
Box 3 needs O(1) operations and O(1) time per each of the <|m/2%|

106 UZI VISHKIN

k-blocks in order to satisfy k-sparsity. Box 4 needs O(2*) operations and
O(1} time. Since k increases from | to < [logm] —2, we have so far O(m)
operations and O(log m) time. Box 5: For each i, we satisfy i-sparsity at
most once during these stages. As in Box 3 satisfying i-sparsity needs
O(m/2') operations and O(1) time, and the same total bound of O(m)
operations and O(logm) time applies. Apply Brent’s theorem to get
O(log m) parallel running time using m/log m processoss.

The terminal stage and correctness of Step 1.

Recall that our goal is to determine WITNESS()), 2</j<[m/2]+ L.
The only problem that may arise in arguing that Step 1 achieves this

goal relates to Implementation Remark 1 in Box 3. There, we describe
a situation where the information in WITNESS implies a comparison
with a character of the pattern whose index is >m. By Implementation
Remark 1 the outcome of such a comparison would not affect the values in
WITNESS. In order to be able to proceed in this discussion we need the
following lemma.

LeMmMa 1 (the k-lookahead property). Following stage k,
WITNESS(/) < 2**! for every index i of the pattern.

Proof. By induction on k. For k=0 (before stage 1) the lemma readily
holds. We assume the lemma holds for k£ and show it holds for £+ 1. Let us
check all instructions of stage k+ 1 in which an assignment into WIT-
NESS(i) can be performed. The order in which boxes are visited in stage
k+1is first Boxes 2 or 4 and then Boxes 5 and 3 (several of the boxes may
not be visited at all during this stage).

Observation. All assignments into WITNESS(/) in Boxes 2 and 4 satisfy
i— 1+ WITNESS({) <2**2 Let us prove this observation. In Box 2 there
is only one instruction in which assignment into WITNESS(i) may be per-
formed. In this assignment, i<2*! and the number assigned is
<2%*?—i+ 1. There are three instructions in Box 4 in which assignments
into WITNESS(i) may be performed. In the first assignment i <2**! and
WITNESS(i) is assigned a value already in WITNESS(}) for some index j,
which was computed in a previous stage. By the inductive hypothesis, this
assignment is <2“*! and therefore, i— 1+ WITNESS(i)<2**2 In the
second and third assignments, i <2**' and the numbers being assigned are
<2¥*?—i+1. This completes the proof of the observation. In each
iteration of Box 5 and in Box 3, there are two assignments into WIT-
NESS(#), where i>2“*". One is of the form j— 1 + WITNESS(/) and the
other is of the form WITNESS(j). In both assignments j<2**+'. The fact
that the ranges of i and j above do not overlap implies that an assignment
into WITNESS(/} in Box 3 or in any iteration of Box 5 cannot be affected
by an assignment into WITNESS(/) in a previous iteration of Box 5 at

PATTERN MATCHING IN STRINGS 107

stage k+ 1. Let us take a closer look at the more potentially problematic
assignment in Boxes 3 and 5. Namely the one of the form Jj=1+
WITNESS(/). We have to show that j— 1 + WITNESS() <2**2 If WIT-
NESS(/) received its value before stage k + 1 then this is implied by the
inductive hypothesis. If WITNESS(/) received its value in Boxes 2 or 4 of
stage k+1 then this is implied by the observation. We conclude: that
following stage k + 1, WITNESS(i) must be <2*2 for every index i.

How does the algorithm determine whether to perform [logm]~—2 or
[log m]—3 stages? Recall that we are interested only in entries of WIT-
NESS, which are <[m/2]+ 1. Let i be an index of the pattern, such that
1<i<[m/2]1+1. Lemma I implies that in the first k stages, there is no
reference to an index of the pattern which is >i+2“*". The idea will be to
run the algorithm as long as there is a (k + 1)-block (which is of size 2¢+)
that can serve as a “buffer” between [m/27+ 1 and the end of the pattern.
Specifically, we will be looking for the maximum k for which there exists a
(k+1)-block such that all its entries are <m and > [m/2]+ 1. The
situation is illustrated in Fig. 3.

Case 1. mz32U8mI=1 Here [20lem1 | 3)lle =17 (e,
{[log m] —1)-block number (3) is the buffer. We can perform [log m] -2
stages with this buffer protecting us from referencing any index >m from
the first four ([log m]— 2)-blocks (which include [m/2]+1).

Case 2. m<320eemi=1 Here [3200emi-=2, |)ilog ™17 (ie,
([log m] —2)-block number (4) is the buffer. We can perform [logm] -3
stages with this buffer protecting us from referencing any index >m from
the first six ([log m] — 3)-blocks (which include [m/2]+1).

Let us describe the terminal stage for Case 1. In a few of the subcases
considered the terminal stage will determine WITNESS(i) for the first four
{[log m]—2)-blocks. In other subcases WITNESS(i) will be determined

NTQN 3_-. u,m—.oo m}-2 2 mToo m| u‘mﬁ_on m|-1
|

N N 1
[

buffer

iog m) -1

Case I. m23.2 . Buffer of size NToa 3._ |_.

N—_co ic. .W. uNToa .inw m—.oc i m u.m—_oo 3._1_
|

[| [|
[——
buffer

_,_oo :;L Toa :,;-N.

Cose 2. m< 32 . Buffer of size 2

FiG. 3. The buffers for the terminal stage of Step 1.

108 UZI VISHKIN

for i<[m/2]+1 only. After stage [logm]—2, ([log m]~— 2)-certainty is
satisfied. (It is easy to prove this by induction on the number of stages
using Lemma 1.) Case | breaks into two subcases.

Case 1.1. PATTERNI1,.., 2t°¢™1=17 does not have a period of size
<20oem1=2_ 1 (That is, if there had been stage [logm]—1, it would

have started at Box 2.) WITNESS[2,..., 20°¢™1=2] does not have any zero.
Each one of ([log m]—2)-blocks 2, 3, and 4 may have at most a single
zero. (Lemma 1 and induction on the number of stages are, again, all that
are required to prove this. This was referred to as ([log m]— 2)-sparsity

earlier).

The terminal stage. For each of these three possible zeros, check in
character by character fashion if they stand for a period of the pattern. If
not, update WITNESS using (possibly) simultaneous writes into the same
memory locations.

Case 1.2. PATTERNI1,.., 2U°¢™3~17 has a period whose size is P <
gllegmi=2__ 1 (That is, if there had been stage [log m]— 1, it would have
started at Box 4.)

The terminal stage:

for all j, 2U°8™1-2 < j < m pardo
(Comment. Check, character by character, if P is the
periodicity of the whole pattern (similar to Box 4).
if PATTERN(j) # PATTERN(j mod p)
then WITNESS(P + 1) := j— P (Recall that we use the convention that if
several processors attempt to write, then the one with the smallest
J succeeds)
if WITNESS(P+1)#£0
(In words: Did we stop considering P to be the suspected periodicity?)
then for all j, 2 < j < (P + WITNESS(P + 1))/P pardo
WITNESS(/P + 1) := WITNESS(P + 1)~ (j— 1) P
(Explanation. As in Box 4, Proposition 1 precludes the possibility
that these multiples of P are sizes of periods of the pattern. It is not
difficult to see that the same character of the pattern (at location
WITNESS(P + 1) + P) witnesses against each of these periods. We
use later the fact that if WITNESS(P+ 1)+ P> [m/2]+ 1, then
these assignments result in WITNESS(/)) T 0 for all i, 2<i<
[m/2]+ 1, of the form jP+1.)
if WITNESS(P+ 1)+ P<[m/2]+1
then satisfy ([logm]—2)-sparsity in [logm]-—2—k, iterations
{sumifar to Box 5. k, + 1 is the stage in which the transition into the
present periodic mode was performed. Unlike Box 5, we operate
here on ([log m] — 2)-block number 2, as well.)

PATTERN MATCHING IN STRINGS 109

Explanation. The last if statement treats the case where P fails to be a
period of PATTERN(1,..,, [m/2] + 1]. The satisfaction of the if condition
implies that the assignments into WITNESS(jP + 1) earlier in the terminal
stage satisfy WITNESS(jP+1)+/jP<[m/2]+ 1. Similar considerations
to the proof of Lemma 1, imply that, as a result of the iterations of the
last instruction, each of WITNESS[20emI=24 1 220cem]-27
WITNESS[2.200emI=2 1 320em1=27 (([log m]—2)-blocks 2 and 3),
and WITNESS[3.2Uemi-2 41 [m/2]+1] has at most one zero.
Finally, check in a character by character fashion whether these zeros
should remain and, if not, update WITNESS.

Next, we deal with the two remaining cases: P is a period of the whole
pattern or P is a period of PATTERNI[1,.., [m/2]+ 1] but not of the
whole pattern:

if WITNESS(P +1)=0 or WITNESS(P + 1)+ P> [m/2] + 1
then for all j, 2U°e™1-2 < ;< [m/27 + 1 pardo
if WITNESS(j)=0and jmod P31 and
PATTERN(WITNESS((j— 1) mod P)) #
PATTERN(j— 1 + WITNESS((/— 1) mod P))
then WITNESS() := WITNESS({(j— 1) mod P)

(Explanation. If P is the period of the whole pattern (WIT-
NESS(P+1)=0) then this instruction would guarantee that if WIT-
NESS(i)=0, 1 <i<[m/2]+ 1, then it is of the form jP+ 1.

If WITNESS(P+1)+P>[m/2]+1, we already argued that WIT-
NESS(i)#0, for all {, 2<i<[m/2]+1, of the form jP+ 1. The last
instruction updates indices i which are not of this form and results in the
following.

CLaM 3. For at most five indices i, 2<i< [mf2]+ 1, WITNESS(i) = 0.
Similar to the proof of Claim1 we use Claim 2. Claim 2 will have the
following corollaries.

CororLary 3. ([log P]})-sparsity is satisfied for the blocks that cover
indices <[m/2]+ 1.

CorOLLARY 4. For all indices i<[mf2}+1—2Ues?1+2 WiT.
NESS(i) #0.

Proof of Claim 3. By Corollary4, only indices i, [m/2]+1—
N:ow PI1*2<i<[m/2] + 1, may have WITNESS(i)=0. These indices may
be included in at most five ([log P])-blocks. (Corollary 3 implies, that
WITNESS of at most one index in each of these blocks has a 2€10.)
Finally, check in a character by character fashion whether these zeros
should remain and, if not, update WITNESS.

110 UZ1 VISHKIN

It is easy to verify that Casel of the terminal stage needs O(m)
operations and Oflog m) time.

Case 2. No new ideas are required to resolve this case within the same
complexity efficiencies.
Complexity of Step 1. Step 1 requires O(m/p) time using p<mflogm

processors.

How Important is the Model of Parallel Computation?

The strongest concurrent-write model of parallel computation considered

in this paper uses the following convention. Suppose that several processors
attempt to write simultaneously at the same memory location. Then the
lowest serial numbered among the trying processors succeeds. In a weaker
concurrent-write model of parallel computation several processors may
attempt to write at the same memory location only if they are seeking to
write the same value. This results in this value being written into the
memory location. Observe that we use the stronger model only in Step 1.
We need the following problem for our discussion.

Input. A vector of p bits. Find the minimal index of the vector whose
bit is 1 using p processors. Fich, Ragde, and Wigderson (1983) proposed
the following O(1) time algorithm for the problem in the weaker con-
current-write model of computation: Partition the input vector into m/\mu_
successive sub-vectors each of length m/\mu (or _/\m:. For each such sub-

vector, find, in O(1) time using QT\M& processors, if it has a one. Apply
the O(1) time algorithm of (Shiloach and Vishkin, 1981) for finding the
minimum among these m/\mu sub-vectors using p processors in the weaker
model of computation. Reapply this algorithm for finding the index of
minimum one in this sub-vector. Using this algorithm we can simulate the
string matching algorithm, which was given in the stronger concurrent-
write model, by the weaker concurrent-write model within the same
bounds for time and number of processors.

Consider another problem. Input. A vector of [bits. Compute the OR of
these bits in a concurrent-read exclusive-write PRAM. We use a balanced
binary tree with / leaves to guide the computation. The number of
operations of this trivial algorithm is proportional to the number of nodes
in the tree and its time is proportional to its height. That is, O(J)
operations and O(log /) time. Apply Brent’s theorem to get the O({/p) time
using any number of p < //log / processors. Using this algorithm we can run

our algorithm on a concurrent-read exclusive-write PRAM in time O(n/p)
using any number of p < n/log? n processors. Using this algorithm we can
run the text analysis part of our algorithm on a concurrent-read exclusive-
write PRAM in time O(n/p) using any number of p < n/log n processors.

PATTERN MATCHING IN STRINGS 11
CONCLUSION

We presented a new linear time serial algorithm for the string matching
problem in which the analysis of the text is particularly simple. The
algorithm is parallel linear for a very wide range for the number of
processors. The exact range depends on the model of computation being
used.

A natural extension of the string matching problem allows erroneous
input. That is, a few characters may be omitted, a few may be replaced by
others and a few superfluous characters may be added. Sankoff and
Kruskal (1983) describes several applications in which we are required to
solve this problem rather than our exact string matching problem. Landau
and Vishkin (1985) proposed recently efficient serial algorithms for such
problems. It will be interesting to try and design efficient parallel
algorithms for this purpose. Baker (1978) gave a serial algorithm for two-
dimensional string matching. It will also be interesting if an efficient
parallel algorithm can be designed for this problem.

ACKNOWLEDGMENT

I am grateful to Zvi Galil for encouraging me to continue improving the results in this
paper and for quite a few insights through both discussions and his paper. Helpful comments
by Amir Ben-Amram, Gadi Landau, Baruch Schieber, and Dennis Shasha are also gratefully
acknowledged.

REeCEIVED October 2, 1984; acceptep July 24, 1985

REFERENCES

AGGARWAL, A., CHAZELLE, B., GuiBas, L., O’DunLaNG, C., AND Yap, C. (1985), Parallel
computational geometry, in “Proc. 26th Annual IEEE Symposium on Foundations of
Computer Science.”

AHO, A. V., HoPCroFT, . E.,, aND ULLMAN, . D. (1974), “The Design and Analysis of Com-
puter Algorithms,” Addison-Wesley, Reading, Mass.

AWERBUCH, B., ISRAELI, A., AND SHILOACH, Y. (1984), Finding Euler circuits in logarithmic
parallel time, in “Proc. 16th ACM Sympos. on Theory of Computing,” pp. 249-257.

AL, S. G. (1984), An optimal algorithm for parallel selection, Inform. Process. Letr. 19
No. 1, 47-50. ,

AItal, M., KomLos, J., AND SzEMEREDI, E. (1983), An O(nlogn) sorting network, Com-
binatorica 3, No. 1, 1-19.

AWERBUCH, B., Anp SHiLOacH, Y. (1983), New connectivity and MSF algorithms for
Ultracomputer and PRAM, in “Proc. 1983 International Conf. on Parallel Processing.”
ATALLAH, M. J., AND VisHKIN, U. (1984), Finding Euler tours in parallel, J. Comput. System

Sci. 29, No. 3, 330-337.

112 UZI VISHKIN

Baxes, T. P. (1978), A technique for extending rapid exact-match string matching to arrays of
more than one dimension, SI4M J. Compur. 7, No. 4, 533-54L

BoropiN, A., anp Hopcrort, J. E. (1982}, Routing, merging and sorting on parallel model of
computation, in “Proc. 14th ACM Symp. on Theory of Computing,” pp. 338-344.

BovER, R. S., AND MOORE, J. 8. (1977), A fast string searching algorithm, Comm. ACM 20,

762-772.
BAR-ON, L, AND VisHKIN, U. (1985), Optimal parallel generation of a computation tree form,

ACM Trans. Programm. Lang. Systems 7, No. 2, 348-357.
Cuin, F. Y., LaM, J., aND CHEN, L. (1981), Optimal parallel algorithms for the nosuwﬂoa
component problems, in “Proc. 1981 Internat. Conf. on Parallel Processing,” pp. 170-175.

FicH, F. E., Racpg, R. L., AND WIGDERSON, A. (1983), Relations between concurrent-write
models of parallel computation, preprint, Div. of Computer Science, Univ. of Calif,

Berkeley.

CALILy &, (1984), Optimal parallel algorithms for string matching, in “Proc. 16th ACM Symp.
on A. heory of Computing,” pp. 240-248.

HIRSCHBERG, D. S., CHANDRA, A. K., AND SARWATE, D. V. (1979), Computing connected
components on parallel computers, Comm. ACM 22, No. 8, 461-464.

HELLER, D. (1978), A survey of parallel algorithms in numerical linear algebra, SIAM Rev. 20,
No. 4, 740-777.

KnutH, D. E., Morris, J. H., anDp PratT, V. R. (1977), Fast pattern matching in strings,
SIAM J. Comput. 6, 322-350.

Kruskar, C. P. (1982), “Searching, Merging and Sorting on Parallel Models of Com-
putation,” Dept. of Computer Science, Univ. of Iilinois, Urbana, Illinois.

KruskaL, C. P, RuborLpH, L., AND SNIR, M. preprint, 1985,

LYNDON, R. C., AND SCHUTZENBERGER, M. P. (1962), The equation a =5"c* in a free group,
Michigan Math. J. 9, 289-298.

LANDAU, G. M., aND VisHKIN, U. (1985), Efficient string matching in the presence of errors,
in “Proc. 26th Annual IEEE Symposium on Foundations of Computer Science.”

NAaTH, D., MAHESHWARI, S. N., aND BHATT, P. C. P. {1981), Parallel algorithms for the con-
vex hull problem in two dimensions, in “Proc. CONPAR 81,” Lecture Notes in Computer
Science Vol. 111, pp. 358-372, Springer-Verlag, Berlin/New York.

PauL, W, ViSHKIN, U., AND WAGENER, H. (1983), Parallel dictionaries on 2-3 trees, in “Proc.
10th Internat. Colloq. Automata. Lang. and Program.” Lecture Notes in Computer
Science Vol. 154, pp. 597-609, Springer-Verlag, Berlin/New York.

REISCHUK, R. (1982), A fast probabilistic parallel sorting algorithm, in “Proc. 22th Annual
IEEE Symposium on Foundations of Computer Science,” pp. 212-219.

REF, J. H., AND VaLIaNT, L. G. (1983), A logarithmic time sort for linear size networks, in
“Proc. 15th Annual ACM Symp. on Theory of Computing,” pp. 10-16.

SAvVAGE, C., AND JA’JA’, J. (1981), Fast, efficient parallel algorithms for some graph problems,
SIAM J. Comput. 10, No. 4, 682-691.

SaNkoFF, D., anp Kruskar, J. B. (Eds.) (1983), “Time Warps, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison,” Addison-Wesley,
Reading, Mass.

SHILOACH, Y., AND VisHKIN, U. (1981), Finding the maximum merging, and sorting in a
parallel computation model, J. Algorithms 2, 88-102.

SHILOACH, Y., aND VisHKIN, U. (1982a), An O(logn) parallel connectivity algorithm, J.

Algorithms 3, No. 1, §7-67.

SuiLoacH, Y., aND VisHkiN, U. (1982b), An O(n*logn) parallel max-flow algorithm, J.
Algorithms 3, No. 2, 128-146

Tsiv, Y. H., axp Cuix, F. Y. (1984), Efficient parallel algorithms for a class of graph
theoretic problems, SIAM J. Comput. 13, 580-599.

PATTERN MATCHING IN STRINGS 113

TariaN, R. E., aND VisuxiN, U. (1983), “An Efficient Parallel Biconnectivity Algorithm,”
TR 69, Dept. of Computer Science, Courant Institute, NYU; SIAM J. Comput., to appear.

VISHKIN, U. (1983a), “Synchronous Parallel Computation—A Survey,” TR 71, Dept. of Com-
puter Science, Courant Institute, NYU.

VisukiN, U. (1983b), An optimal parallel algorithm for selection, preprint.

VisHkiN, U. (1984a), An optimal parallel connectivity algorithm, Discrete Appl. \§§ 9,

197-207.

VisHkIN, U. (1984b), Randomized speed-ups in parallel computation, in “Proc. 16th Annual
ACM Sympos. on Theory of Computing,” pp. 230-239.

VisukiN, U. (1985a), On efficient parallel strong orientation, Inform. Process. Lett. 20,
235-240.

VisHkin, U. (1985b), A deterministic parallel symmetry breaking technique with applications
to list ranking, preprint.

WyLLIE, J, C. (1979), “The Complexity of Parallel Computation,” TR-79-387, Dept. of Com-

puter Science, Cornell Univ., Ithaca, New York.

?.::2_ by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

