ENEEG41-ENMES08x
Software Project Specification

Due: December 12, 2016

Objective:

Given a directed graph G = (V,E), apply the topological sort algorithm using
DFS, as described in the section 22.4 of the textbook, to find out one topological
order, or report that it contains a cycle. The topological order is not necessarily
unique. If G contains an edge (u,v), then vertex u should appear before v in the
ordering. You need to implement the algorithm in a C program, and analyze
its time requirement. Your program should have both the best time complexity
and the best constant factor (assuming that |[V| = o(| E])).

Input Format:

In each of the input graphs, vertices are numbered from 1 to |V|. Each row
includes a vertex, followed by zero or more other vertices.

For example:

1 4

2

=W

1
2
This input should be interpreted as follows. The directed edges of G are (1,4),
(3,1), (3,2) and (4,2).

Output format:

A:
The output file of your program should include the following:

vertice-numberl vertice-number2 vertice-number3 vertice-number10
vertice-numberll vertice-numberl2 vertice-numberl3 vertice-number 20

..... vertice-number(V-1) vertice-numer(V)

The output format can be understood in the following manner. Appended,
the lines will contain the vertices’ number in topological order. In the example
above the output will be:

3 1 4 2
In case the input graph has a cycle, output a single line:
This graph has a cycle!

B:
Only for the input graph marked as number 1 (“inl.txt”), do the following.

The output file of your program should include the following:

Vertex 1 : total # operations (C commands) charged to Vertex 1 in unary.
Vertex 2 : same for vertex 2.

Vertex n : same for vertex n.
Edge from Vertex number x to Vertex number y: total # operations (C com-
mands) charged to this edge in unary.

Edge from Vertex number z to Vertex number w: same for this edge.

Namely, for each of the n vertices and each edge, print out in unary the total
number of operations that have been charged to that item. The printed out
numbers should match as closely as possible with your asymptotic analysis.

Total number of operations charged to all vertices is : ...
Total number of operations charged to edges is : ...
Total number of operations is : ...

C:
For input graphs number 2,3,...,7 only (“in2.txt” to “in7.txt”)

Total number of operations charged to vertices is : ...
Total number of operations charged to edges is : ...
Total number of operations is : ...

Notes:

There is a total of 7 input graphs for this project. In your report, you only need
to print out results for “inl.txt” (15 vertices) in format A&B. For the rest of
the input graphs, print out the results in format A&C.

Input files are uploaded on the course website, http://www.umiacs.umnd.edu/
~vishkin/TEACHING/enee641f16.

http://www.umiacs.umd.edu/~vishkin/TEACHING/enee641f16
http://www.umiacs.umd.edu/~vishkin/TEACHING/enee641f16

Output:

The following is expected from you:
1. Your code (with documentation) along with a separate overview.

2. Asymptotic analysis of the runtime of your code up to a constant factor,
counting all the C commands in your code.

3. Experimental results for the inputs provided. Report the topological order
as well as the actual runtime of the program, counting all C command
executed. (See Output format for details. The extra code introduced just
for counting of executed commands should be properly marked, and not
included in the counting.)

Deliverables:

Submit the following to the TA by the due date (amir.majlesi.kupaei@gmail.com).

e Source code compatible with glue (allowing us to run your code). Name
your source code "UID.c”, e.g. 7123456789.c”. After compiling your code,
it should be executable in the following format.

“./UID input.txt output.txt”
“input.txt” could be any of the 7 input files provided, and “output.txt” is
the output of your program.

e Report (at most 4 page report) illustrating points [1,2,3] under Output
above.

e The output files for the provided inputs. Name the output files “outl.txt”
to “out7.txt”.

Grading Policy:
The grading will account for issues such as: correctness of code & explana-

tion, complexity of code (use as few C commands as possible; constant factors
matter!), correctness of asymptotic analysis, and correctness of counting.

