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Abstract
Enterprise and hyperscale data centers are increasingly being built 
around workloads using Artificial Intelligence (AI) and computationally 
intensive Deep Neural Networks (DNNs) with massive amounts of data. 
The level of computation required is significant and benefits greatly 
from the power of GPUs. They’re massively parallel, optimized for high 
memory bandwidth, and designed for the AI-class matrix multiplication 
and analytics needed for fast data insight. Data centers that support 
GPU servers with dense, high-power racks featuring advanced 
cooling techniques like water cooling and hot aisle containment 
use significantly less floor space. They also provide much higher 
efficiency and performance, as well as lower overall power usage for 
these advanced workloads. This paper describes best practices for 
making a data center ‘GPU-ready’ with a focus on power, cooling, and 
architecture, including rack layout, system and network architecture, 
and storage. Using examples of computationally intensive workloads 
on NVIDIA® DGX-1™ Systems for deep learning and NVIDIA Tesla® V100 
GPU Accelerators, this paper provides a guide to minimizing spend. It 
also provides tips to ensuring that a data center is optimized for NVIDIA 
GPUs to run today’s advanced workloads at scale.
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New Rules for AI Data Centers
Today’s data centers rely mainly on servers with one or two CPU sockets 
running general-purpose workloads. As the drive for faster data insight 
grows, new computing paradigms using AI workloads are becoming 
commonplace. Using computationally intensive DNNs for these 
workloads is only feasible with the massive performance gains from 
new types of servers based on GPU technology. This paper focuses on 
how to design, deploy, manage, and monitor data centers for optimum 
efficiency and performance using GPU-based technologies.

AI/deep learning workloads run in two modes of operation: DNN 
training and inference. GPU-based servers provide many benefits for 
DNN workloads. These include significantly higher performance per 
server and substantially better performance per watt, delivering lower 
overall data center power usage with a fraction of the number of racks.    

A single high-density GPU server can match the performance of dozens 
of CPU-based servers. The charts below show comparable clusters of 
GPU vs. CPU server racks running typical workloads. Chart 1 illustrates 
AI Research workloads, where 27 NVIDIA DGX-1 racks (666 KW) offer 
the same performance as 478 racks (12,054 KW) of CPU-only systems. 
Chart 2 illustrates AI Batch Production, where 34 NVIDIA DGX-1 
racks (656 KW) compare to 1602 CPU-only racks (34,944 KW). Chart 
3 assumes Mixed Workloads, where 30 NVIDIA DGX-1 racks (648 KW) 
compare to 1119 CPU-only servers (24,752 KW). Assuming a similar 
volume of AI/deep learning and HPC workloads, a GPU-ready data 
center needs only 1/40 the footprint and 1/20 the power of a traditional 
CPU-only data center.   

27

478

0

200

300

500

400

Traditional CPU Data CenterGPU-Ready Data Center

100

GPU-Ready Data Center: Training rack: 8 servers | DGX 8 GPU | 3.2KW each; Inference rack: 36 servers | Dual x86 + 1 GPU | 
0.5KW each; HPC rack: 20 servers | Dual x86 + 4 GPU | 1.6KW each
Traditional CPU Data Center: Training rack: 72 servers | Dual x86 | 0.4KW each; Inference rack: 72 servers | Dual x86 | 
0.3KW each; HPC rack: 72 servers | Dual x86 | 0.3KW each

AI Research Data Center: Maximum Performance Training 
with Extended Workloads

To
ta

l D
at

a 
Ce

nt
er

 F
oo

tp
ri

nt
 (#

 R
ac

ks
)

 
 
Chart 1 

Chart 1: Chart 1 shows a GPU-ready AI 
research data center heavily focused on 
AI training and algorithm development 
with dense computational resources.  
This data center provides some 
resources dedicated to data preparation 
and AI inference.

1.	 NVIDIA Performance Lab
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Chart 3 

In addition to efficiency, GPU-based servers provide significant Total 
Cost of Ownership (TCO) savings for a large multi-node system. Table 
1 below shows a deployment of NVIDIA DGX-1 systems in contrast with 
250 CPU-based servers. The scenario reflects the three-year total cost 
of ownership inclusive of the servers, networking (10 Gigabit Ethernet 
and InfiniBand), power, co-location2, and systems administration. The 
dramatic reduction in physical infrastructure enabled by the dense 
computational footprint of the NVIDIA DGX-1 creates a TCO advantage 
over traditional CPU-based systems.

Chart 2: Chart 2 shows a production AI 
inference GPU-ready data center that 
is focused mostly on AI Inference in a 
large-scale production environment.  
This data center provides some 
resources dedicated to data preparation 
and AI training.

Chart 3: Chart 3 shows a GPU-ready data 
center designed to run Mixed Workloads 
with a combination of AI batch or 
interactive research and production 
operation using a mix of AI training, 
inference, and computational resource.  

2.	 https://en.wikipedia.org/wiki/Colocation_centre
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NVIDIA® DGX-1™ SYSTEMS   
(1 SERVER)

CPU SERVER ENVIRONMENT    
(250 SERVERS)

Up-Front Capital Expenses
Server (OTP) $149,000 $2,500,000

Network & Cables (OTP) $16,280 $187,600

Recurring Operating Expenses
Power (3 yrs) $7,153 $710,835

Colo (3 yrs) $43,200 $1,774,800

Sys Admin OpEx (3 yrs) $187,500 $750,000

Support and Maintenance (3yrs) $63,698 $1,125,000

TOTAL 3 YR COST $466,831 $7,048,235
 
 
Table 1

The much denser compute capability of NVIDIA GPU-based servers 
provides three-year cost savings described in the table above.  They 
also require 15-32 kW of power and cooling per rack, which is typically 
higher than today’s average data center design point; many of today’s 
cloud data centers have power distribution and cooling infrastructures 
designed to handle only 5-10 kW/racks. Open Compute Project3 (OCP) 
designs, for example, define workload-specific servers and custom rack 
designs.  

The OCP V2 rack has two 6.6 kW power shelves4 that limit power to 13 
kW/rack. This only allows four dense GPU servers per rack, thereby 
losing the advantage of density gains.5 The need for compute has driven 
hyperscale data centers like Facebook Prineville to grow from 10,000 
(2008) to 30,000 (2009) to 60,000 servers today and add 487,000 square 
feet to a 307,000 square-foot facility (13 football fields total). Currently, 
the growth is in linear space versus an increase in density. The growth 
also drove a linear increase in their overall network investment of 
$3.63 billion in 2015, up from $3.02 billion in 2014.6 Increasing compute 
capability with dense servers can greatly reduce floor space and 
network requirements.

The same problems apply to all sizes and types of data centers. 
According to Rick Villars, Vice President, Data Center & Cloud, IDC, 
“Typical enterprise data centers have configured their power systems to 
deliver less than 8 KW per rack, while leading cloud service providers 
with denser designs deliver closer to 12 KW per rack. For their next-
generation data centers, IDC believes these companies are targeting 
around 30 KW per rack as they plan for a dramatic increase in real-time 
analytic and cognitive workloads that require the inclusion of dense 
GPU capacity in their compute pools.”

Thinking Differently About Scaling with GPUs 
Deep Neural Networks (DNNs) are the core of today’s AI applications 
and can have thousands of layers, hundreds of thousands of neurons, 

Table 1: TCO Comparison of NVIDIA DGX-
1 to CPU Servers

Assuming 2RU dual-socket CPU server 
@ $10,000/each, 48-port 10 GBe 
switch, 36-port IB switch; 13 racks total 
footprint of CPU solution; approx. 318 
kW total power with 1.5 data center PUE; 
$0.085/kWh, 25% sys admin per year for 
NVIDIA DGX-1 @ $250k/yr loaded labor 
rate; one (1) sys admin per year for CPU 
environment.

3.	 http://www.opencompute.org/ 
 
4.	 OCP V2 Power Shelf Spec 
 
5.	 http://www.DataCenterdynamics.com/content-
tracks/open-data-center/ocp-summit-facebook-
refreshes-its-servers/97937.article 
 
6.	 http://www.DataCenterknowledge.com/the-
facebook-data-center-faq/ 
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and millions of connections. The impressive performance of today’s 
AI models is achieved by training these large DNNs with Gigabytes or 
Terabytes of data across hundreds of computational iterations to find 
the most accurate set of weights. GPUs drive AI with massively parallel 
compute and optimized high-memory bandwidth, enhanced for AI-class 
matrix multiplication and convolution. While GPU systems provide much 
higher performance per system than typical CPU-only systems, they 
also drive greater density and power requirements.   

The drive for faster and more accurate insight with larger AI models 
also requires performance beyond a single-GPU system. Scaling AI 
and other heavy workloads to multiple servers involves executing an 
application across many servers with minimum bottlenecks to ensure 
high performance. In contrast to scaling with traditional lightweight 
CPU-only servers, the greatest GPU system benefits are seen when 
starting with compute-dense servers designed with many GPUs per 
server before scaling to multiple GPU servers. Dense GPU servers are 
the ideal data center building blocks for multi-server deep learning 
training workloads.  
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Chart 4

Massive computation of AI compute elements also requires strong 
networks between systems to ensure scalable performance. Chart 5 
below shows a comparison of performance versus number of network 
ports per system and large tradeoffs when using different numbers of 
network connections to each system. 

Chart 4: GPU-based systems provide 
significant performance gains for AI and 
HPC workloads over CPU-only systems, 
reducing footprint in data centers and 
increasing performance density of each 
compute rack.  In addition, increased 
density means less systems and 
much better scaling efficiency of large 
workloads.
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Chart 5

Chart 5 features both CNTK for deep learning training (multi-node 
CNTK, ResNet50)8 and HPL for computational science HPC workloads. 
These rely on heavy computation and high-performance communication 
for best performance and both lose multi-system performance when 
using less network ports per system.9 The graph shows that using four 
ports per system provides almost 40% more performance for HPC 
and 10% more performance for CNTK deep learning workloads. 10% 
performance gain may seem small at first. But the cost for this can be 
much less than 10% of the total system costs to implement the correct 
interconnect, reducing bottlenecks and providing more consistent 
performance across the board for both compute and storage access.

New GPU-Ready Data Center Best Practices

POWER AND COOLING
Solving large-scale infrastructure problems means considering 
compute, power, and cooling density together. Several of today’s cooling 
solutions provide improved performance per-watt and performance 
per-dollar and leverage higher densities in the data center. These 
techniques include:

>> Hot or cold aisle containment

>> Rear-door water heat exchangers

>> Component-level water cooling

These advanced cooling techniques provide a significant benefit with 
GPU servers to minimize power and floor space needs and increase 
performance efficiency. Table 2 below shows trade-offs between 
cooling solutions. 8.	 NVIDIA Performance Labs 

 
9.	 NVIDIA Performance Labs

Chart 5: Network interconnect is 
critical when designing with very 
high-performance GPU systems and 
can have a large impact on multi-node 
performance.  Clusters based on DGX-1 
systems that use four InfiniBand links 
per node can provide 20% performance 
gains for DL workloads and 40% 
performance gains for HPC workloads 
over the same systems when using only 
one InfiniBand link per system.
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COOLING SOLUTION COOLING TYPE RACK POWER SOLUTION SIZE

Traditional Air Cooling Air 8kW 52 racks

Hot/Cold aisle containment Air 15 kW 28 racks

Rear Door Heat Exchangers Air+Water 35 kW 12 racks

Direct water cooling Water 60 kW 7 racks
 
 
Table 2

Today’s data centers with AI and data-focused workloads can drive 
different needs for GPU servers, and further optimization can be made 
based on workload type. Table 3 below shows sample GPU server 
configurations focused on DNN, analytics, and HPC workloads with 
corresponding power, rack, and cooling. GPU servers (eight GPUs 
per server in NVIDIA® DGX-1™) for DNN training benefit greatly from 
extremely dense GPU servers and racks. This greatly reduces floor 
space and cabling requirements if an adequate cooling system can be 
configured. 

COMPUTE RACKS DNN TRAINING/BATCH 
INFERENCE

DNN REAL-TIME 
VIDEO INFERENCE DATA ANALYTICS HPC

Sample Server Model 3u 8 GPU system 
- NVIDIA DGX-1  

1/2u 1 GPU system 4u 8 GPU system 1u 4 GPU system

Compute CPU: 2 high-end 2 low-to-mid 2 high-end 2 high-end

GPU: 8x NVIDIA Tesla V100 1x NVIDIA Tesla 
V100/low-power

8x NVIDIA  
Tesla V100

4x NVIDIA  
Tesla V100

System Memory 512-1024 GB 128-256 GB 512-1024 GB 256-512 GB

Network Internal: NVIDIA NVLink™ PCIe NVLink PCIe

Multi-node: 100 GB InfiniBand 10 GB Ethernet 25 GB Ethernet 100 GB Ethernet

Servers/ Rack 4 to 8 36 to 72 4 to 10 10 to 20

Power/ Server (W) 3,200 500 2,400 1,500

Power/ Rack (KW) 32 18 32 15-30

Less Dense Racks 4 servers 
12.8 KW 

1,340 CFM

36 servers 
18.0 KW 

1,320 CFM

4 servers 
9.6 KW 

1,000 CFM

12 servers 
18 KW 

1,890 CFM

-Cooling Solutions Air - Partition 
Water RDHX

Air - open aisle Air - Partitions 
Water - RDHX 
Direct water

Air - open aisle

Dense Rack 8 servers 
25.6 KW 

2,630 CFM

72 servers 
36 KW 

2,650 CFM

8 servers 
19.2 KW 

2,050 CFM

24 servers 
36 KW 

3,800 CFM

-Cooling Solutions Air - Partition 
Water RDHX 
Direct water

Air - Partitions 
Water - RDHX

Air - Partitions 
Water - RDHX 
Direct water

Air - Partition 
Water RDHX

 
 
Table 3

From Table 3, some items are important to note about GPU servers 
versus traditional CPU data centers.

>> GPU-based servers require much higher air flow per server to 
maintain the highest performance. It’s critical to ensure that air flow 
in and through the racks properly accounts for the higher volume 
of air and temperature difference. Gaps between equipment must 
be blocked, and airflow within the data center must be carefully 
designed to ensure that hot air returns to the chillers and does not 
stay in the data center, raising intake temperatures.  

Table 3: Sample GPU-Ready Server 
Configurations  

Table 2: Sample GPU-Ready Server 
Configurations  
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>> High-power density racks need special care to ensure that power 
and cooling are properly balanced across the server, as well as the 
rack. Characterizing peak power loads in your racks is important to 
ensure overload scenarios during peak power consumption don’t 
cause issues. Power should be properly load-balanced across nodes 
and servers so unexpected power surges don't cause nodes to fail. 
Higher-density power racks—from 32 kW up to 50-60 kW—using 
multiple 208V/3-phase/60 A or 415 V/240 V/3-phase/30 A power 
circuits per rack are ideal. In addition, higher voltages are more 
stable and efficient, providing lower power-operating expense.  

>> Also consider rear-door cooling, component-level liquid cooling, 
and immersion. Liquid-cooled systems can be used to conduct up to 
3,500 times more heat10 than air-cooled systems. Component-level 
liquid cooling can also capture between 60-80% of server heat and 
reduce costs by 50%, which allows for a 2-5X increase in density.  
Even when using water-based, rack-level heat-exchanging cooling 
systems, it’s still important to guarantee that the hot air is removed 
from the rack and doesn’t continue to circulate into the front of the 
servers.

>> A “rule-of-thumb” metric of 100 cfm/kW of server load with a 5% 
overhead for air leakage and short cycling was used to calculate 
server air-flow requirements. The total Cubic Feet Per Minute (cfm) 
used was 105 cfm/kW of server load for heat rejection.  

HGX SERVER REFERENCE ARCHITECTURE FOR 
GPU SERVERS
With the rapid pace of innovation in GPU technology, server architecture 
becomes increasingly important. The NVIDIA HGX-1 hyperscale GPU 
accelerator architecture11 has been widely deployed in the world’s 
largest cloud service providers, and elements of that design are found 
in many enterprise-class GPU servers, including the NVIDIA DGX-1. 
These platforms are optimized to deliver industry-leading performance 
for AI and data analytics workloads. Items considered in the HGX 
Reference Architecture include:

>> PCIe and NVLink topologies for GPU, CPU, network, and storage 
interconnects

>> CPU-to-GPU ratios

>> System memory capacity

>> Local storage, including SSD and NVME

Because NVIDIA DGX-1 is NVIDIA’s first platform to deliver deep 
learning software performance optimization, customers are 
assured that such platforms will always provide the highest levels of 
performance. NVIDIA software libraries like NCCL (NVIDIA Common 

10.	http://www.pge.com/includes/docs/
pdfs/mybusiness/energysavingsrebates/
incentivesbyindustry/DataCenters_BestPractices.pdf  
 
11.	https://www.nvidia.com/en-us/data-center/
hgx-1/
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Collectives Library) are optimized for the PCI and NVIDIA NV Link 
topologies of the HGX Reference Architecture. 

Maximizing GPU density within a server provides the highest level of 
performance for GPU-accelerated applications, including deep learning 
training, data analytics, databases, and high-performance computing. 
Most GPU-accelerated applications scale well to eight GPUs per server 
with properly configured CPU, memory, networking, and local storage. 
Deep learning frameworks, including MXNet, TensorFlow, Caffe2, and 
Microsoft’s Cognitive Toolkit, all scale well to eight GPUs. Some HPC 
applications have not been optimized to scale beyond two or four GPUs, 
so fewer than eight GPUs may be optimal if your workload is dominated 
by HPC applications.

Balanced performance of the NVIDIA HGX Reference Design is  
ensured with:

>> Sufficiently powerful CPUs, typically two high-end x86 CPUs to 
match eight-GPU performance.

>> System memory configured to be at least 2x GPU memory with 4x 
being optimal for deep learning training. GPU-accelerated data 
analytics and databases generally benefit from as much system 
memory as can be configured in the server. 

>> For distributed or multi-node deep learning training, use a 
minimum of one 100 GB network interface card (NICs) supporting 
RDMA configured for every two GPUs. These NICs should be located 
on the same PCIe switch as the GPUs. 

>> Network topology that supports GPUDirect Peer 2 Peer transfers 
from GPU to GPU inside a system across NVIDIA NVLink and 
GPUDirect RDMA between GPUs in multiple systems across 
InfiniBand.

>> SSD and NVME local storage configured on the same PCIe switch, or 
as close as possible, to the GPUs.  

COMPUTE NETWORK RECOMMENDATIONS
Scaling beyond individual servers requires communication networks 
that provide high bandwidth, low latency, and high efficiency. When 
building your data center, consider using 100 GB Ethernet, EDR (100 GB) 
or HDR (200 GB) InfiniBand12 for these compute networks.

Ethernet networks can approach InfiniBand performance and efficiency 
in many cases. Think about the following:

>> To minimize the load of the Ethernet adapter on your CPU, consider 
using adapters that support TCP offload.  

12.	http://www.mellanox.com/pdf/whitepapers/
IB_Intro_WP_190.pdf
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>> The Ethernet switch architecture should support cut-through 
communications.

>> Use network adapters that support Remote Direct Access Memory 
(RDMA) for the highest performance and most efficient transfers.

>> Create layer-two networks using a spine-leaf topology, large 
uplinks, and fewer switches to minimize bottlenecks due to link 
congestion. Networks designed using a spine-leaf13 topology 
provide a cost-effective way to build networks with high-bisection 
bandwidth—a key characteristic for efficient scaling of distributed 
applications.

>> Use the fewest number of layer-three networks to minimize 
bottlenecks due to routing.

>> Consider designs that localize traffic for systems intended for 
running scalable applications. 

For the highest multi-server GPU performance, InfiniBand is specifically 
architected to support high-compute, multi-server applications. This 
is an industry standard that provides high-bandwidth and low-latency 
communications for scaling applications across nodes. It’s ubiquitous in 
the HPC community as the technology used to connect both small (less 
than 20 nodes) to extremely large (thousands of nodes) clusters. Consider 
the following options when designing your InfiniBand network:

>> Use full fat-tree networks to maximize the total cluster bandwidth 
of the network.

>> Use multiple InfiniBand connections per node for dense GPU nodes 
to maximize performance. 

To achieve multi-server scaling performance, it’s critical to balance the 
bandwidth of traffic between GPUs inside a node with traffic between 
multiple servers. Table 4 below compares two multiple-server systems.

EXAMPLE 
8 SERVER 
SYSTEM

SERVER NETWORK 
TECHNOLOGY

BANDWIDTH IN/OUT 
OF EACH SERVER

TOTAL MULTI-
SERVER 

BANDWIDTH14 

(8 SERVERS)

RELATIVE 
APPLICATION 

PERFORMANCE 
BETWEEN 

SOLUTIONS15 

NVIDIA DGX-1 8 GPU 
servers, 160 GB/s 

internal GPU-to-GPU 
bandwidth

10 GB Ethernet 
(1 port per system) 2 GB/s per system 16 GB/s total 1X

100 GB EDR InfiniBand 
(4 ports per system) 47 GB/s per system 376 GB/s total 2X

 
 
Table 4

In Table 4, because the internal bandwidth between GPUs in each 
system is 160 GB/s, it’s critical to maintain balance between 
communications within the node and off node. The EDR solution 
provides 47 GB/s of off-node bandwidth that’s 20X the performance of 
the 10 GB Ethernet-based solution. Plus, it’s a much better balance 
for high-computational workloads, resulting in 2X real multi-server 
application performance. 

Table 4: Relative Multi-Node 
Computational Code Performance with 
Different High-Speed Interconnects

13.	http://www.cisco.com/c/en/us/products/
collateral/switches/nexus-7000-series-switches/
white-paper-c11-737022.html  
 
14.	Bisection bandwidth is the total bandwidth 
available between two halves of a networked 
cluster system.  It is determined by splitting the 
system network down the center and adding the 
bandwidth of all the links that were split. 
 
15.	Comparison based on average performance 
gains between several computation codes when 
run using each type of network.
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STORAGE ARCHITECTURE
As an organization scales out their GPU-enabled data center, there are 
many shared storage technologies that pair well with GPU applications. 
Because the performance of a GPU-enabled server is so much greater 
than a tradition CPU server, special care needs to be taken to ensure 
that the performance of a storage system isn’t a bottleneck to advanced 
workloads.

Workload properties need to be considered because they can drive 
different access patterns and data types. Running parallel HPC 
applications may require the storage technology to support multiple 
processes accessing the same files simultaneously. Accelerated 
analytics require storage technologies with support for many threads 
and quick access to small pieces of data. Vision-based deep learning 
that accesses images and video used in classification, object detection, 
or segmentation is dominated by reads and requires high streaming 
bandwidth, fast random access, or fast memory mapped (mmap) 
performance. Other deep learning techniques like recurrent networks 
working with text or speech can require any combination of fast 
bandwidth with random and small files. 

For deep learning, the ability to cache previously read data is 
paramount for maximizing training performance. Deep learning training 
maximizes accuracy by iterating over the data multiple times. It’s not 
uncommon for a training exercise to consist of at least 100 iterations. If 
data is cached locally, then shared storage doesn’t need to be accessed 
for each iteration. The local memory and local disk can be used to cache 
data depending on the file system technology. It’s best to match the 
capacity and performance needs of the local cache with the needs of 
your deep learning applications.

Table 5 below shows general guidelines of the storage architecture for 
different GPU-enabled workloads. As always, it’s best to understand your 
own applications’ requirements to design the optimal storage system.

USE CASE ADEQUATE 
READ CACHE?

NETWORK TYPE 
RECOMMENDED

NETWORK FILE SYSTEM OPTIONS

Data Analytics N/A 10 GBe Object-storage, NFS, or other system with good multi-
threaded read and small file performance

HPC N/A 10/40/100 GBe, 
InfiniBand

NFS or HPC targeted file system with support for large 
numbers of clients and fast single-node performance, 
support multi-threaded writes

Deep learning, 
256x256 images

Yes 10 GBe NFS or storage with good small file support

Deep learning, 
1080p images

Yes 10/40 GBe, 
InfiniBand

High-end NFS, HPC file system or storage with fast 
streaming performance

Deep learning, 4K 
images

Yes 40 GBe, 
InfiniBand

HPC Filesystem, high-end NFS or storage with fast 
streaming performance capable of 3+ GB/s per node

Deep learning, 
uncompressed 
Images 

Yes InfiniBand, 
40/100 GBe

HPC Filesystem, high-end NFS or storage with fast 
streaming performance capable of 3+ GB/s per node

Deep learning, 
datasets that are 
not cached

No InfiniBand, 
10/40/100 GBe 

Same as above, aggregate storage performance must 
scale to meet the all applications simultaneously

Table 5: Storage Architectures
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Table 5 

Lastly, this discussion has only discussed performance needs. 
Reliability, resiliency, and manageability are as important as the 
performance characteristics. When choosing between different 
solutions that meet your performance needs, make sure that you’ve 
considered all aspects of running a storage system and the needs of 
your organization to select the solution that will provide the maximum 
overall value.

SYSTEM RUNTIME MONITORING AND 
MANAGEMENT
It's important that your system monitoring and management tools 
are GPU-aware. Systems must be able to monitor the temperature, 
clock rate, GPU memory usage, and other key GPU parameters. If your 
existing management tools lack GPU monitoring capabilities, or for 
additional GPU specific monitoring, you should use the NVIDIA Data 
Center GPU Manager (DCGM)16.

DCGM is a complete suite of enterprise-grade tools for managing the 
accelerated data center. IT managers can implement system policies, 
monitor GPU health, diagnose system events, and maximize data center 
throughput. There's a number of tools that have already integrated 
DCGM, including Bright Cluster Manager, Altair’s PBSWorks, IBM 
Spectrum LSF, Adaptive Computing, SchedMD, and Univa.

DCGM provides monitoring of GPU operation to minimize impact 
on overall performance, performance variability, and node health. 
Monitoring GPU temperatures prevents power throttling due to thermal 
extremes. Integrating DCGM into your scheduling software will provide 
accurate measurements of GPU utilization and throughput on a per-
job instance. Running periodic GPU health and diagnostic checks using 
DCGM will also help to proactively identify components requiring 
service—allowing you to maximize uptime.

Other important system metrics to monitor in dense GPU nodes include 
fan speed, chassis and component temperature, system error logs (in 
particular logs associated with the PCIe bus), power supply state, and 
power consumption for each power supply. The Intelligent Platform 
Management Interface (IPMI) has long been a standard way of providing 
management and monitoring capabilities of these server components. 
It provides a wealth of information about the health of your servers. The 
IPMI sensors will give you an insight to the health of your server and 
often tell you when your servers are starting to fail. 

16.	http://www.nvidia.com/object/data-center-gpu-
manager.html
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Summary
Enterprise and hyperscale data centers are increasingly being built 
around data focused workloads using Artificial Intelligence (AI) with 
computationally-intensive Deep Neural Networks (DNNs) and massive 
amounts of data. The level of computation required is significant and 
benefits greatly from the power of GPUs, which are massively parallel, 
optimized for high-memory bandwidth, and designed for the AI-class 
matrix multiplication, convolution, and analytics needed for fast data 
insight.

GPU systems provide much higher performance per system than typical 
CPU-only systems. When deployed in large scale data centers, they 
offer higher performance, better performance per watt, and faster 
time-to-solution, with a fraction of the compute racks. To realize these 
savings in a GPU-ready data center requires a more advanced approach 
to design and operation in these key areas:

>> Design Data Centers to support much higher power densities. For 
highest efficiency, consider racks hosting 30 KW to 50 KW per rack 
and controlled temperature airflow into the systems. Also, consider 
liquid cooling at either the rack level or the component level to 
improve cooling efficiency ongoing costs. Review compute, power, 
and cooling density together. For example, component-level cooling 
allows higher densities in the data center and provides improved 
performance per watt and performance per dollar.

>> Build System Architectures in your data center for data and AI-
focused workloads that support large computation and high I/O 
throughputs. With the performance increases realized by GPUs, it’s 
necessary to re-evaluate all system subcomponents to minimize 
bottlenecks including networking and storage.

>> Use Data Center Network and Storage Architectures that provide 
high bandwidth, low-latency, and high efficiency to avoid bottlenecks 
for high-performance AI deep learning, accelerated analytics, and 
HPC workloads. These multisystem GPU workloads drive large data 
transfers and require robust, low-contention networks to achieve 
good scaling.

>> Boost System Monitoring and Management of critical components 
to meet the demands of dense GPU systems and applications that 
efficiently scale across multiple nodes. Multi-system workloads are 
gated by the slowest system in the job, so consistent performance of 
all systems is key or fast systems will be waiting for slower ones to 
complete.

The principles of GPU-ready data center design laid out in this 
white paper are key to removing bottlenecks, reaching maximum 
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performance and efficiency, and achieving the true capabilities of 
NVIDIA GPU systems.
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