
© 2019 Elsevier Inc. All rights reserved.

Chapter 5
Thread-Level Parallelism

© 2019 Elsevier Inc. All rights reserved. 2

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.
Multiple processor-cache subsystems share the same physical memory, typically with one level of shared cache on the
multicore, and one or more levels of private per-core cache. The key architectural property is the uniform access time to
all of the memory from all of the processors. In a multichip design, an interconnection network links the processors and
the memory, which may be one or more banks. In a single-chip multicore, the interconnection network is simply the
memory bus.

© 2019 Elsevier Inc. All rights reserved. 3

Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2017 typically consists of a
multicore multiprocessor chip with memory and possibly I/O attached and an interface to an interconnection
network that connects all the nodes. Each processor core shares the entire memory, although the access time to
the local memory attached to the core's chip will be much faster than the access time to remote memories.

© 2019 Elsevier Inc. All rights reserved. 4

Figure 5.3 The cache coherence problem for a single memory location (X), read and written by two processors
(A and B). We initially assume that neither cache contains the variable and that X has the value 1. We also assume a
write-through cache; a write-back cache adds some additional but similar complications. After the value of X has been
written by A, A's cache and the memory both contain the new value, but B's cache does not, and if B reads the value of
X it will receive 1!.

© 2019 Elsevier Inc. All rights reserved. 5

Figure 5.4 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The
processor and memory contents show the value after the processor and bus activity have both completed. A blank
indicates no activity or no copy cached. When the second miss by B occurs, processor A responds with the value
canceling the response from memory. In addition, both the contents of B's cache and the memory contents of X are
updated. This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it is possible
to track the ownership and force the write-back only if the block is replaced. This requires the introduction of an
additional status bit indicating ownership of a block. The ownership bit indicates that a block may be shared for reads,
but only the owning processor can write the block, and that processor is responsible for updating any other processors
and memory when it changes the block or replaces it. If a multicore uses a shared cache (e.g., L3), then all memory is
seen through the shared cache; L3 acts like the memory in this example, and coherency must be handled for the
private L1 and L2 caches for each core. It is this observation that led some designers to opt for a directory protocol
within the multicore. To make this work, the L3 cache must be inclusive; recall from Chapter 2, that a cache is inclusive
if any location in a higher level cache (L1 and L2 in this case) is also in L3. We return to the topic of inclusion on page
423.

© 2019 Elsevier Inc. All rights reserved. 6

Figure 5.5 The cache coherence mechanism receives requests from both the core's processor and the shared
bus and responds to these based on the type of request, whether it hits or misses in the local cache, and the
state of the local cache block specified in the request. The fourth column describes the type of cache action as
normal hit or miss (the same as a uniprocessor cache would see), replacement (a uniprocessor cache replacement
miss), or coherence (required to maintain cache coherence); a normal or replacement action may cause a coherence
action depending on the state of the block in other caches. For read, misses, write misses, or invalidates snooped from
the bus, an action is required only if the read or write addresses match a block in the local cache and the block is valid.

© 2019 Elsevier Inc. All rights reserved. 7

Figure 5.6 A write invalidate, cache coherence protocol for a private write-back cache showing the states and
state transitions for each block in the cache. The cache states are shown in circles, with any access permitted by
the local processor without a state transition shown in parentheses under the name of the state. The stimulus causing
a state change is shown on the transition arcs in regular type, and any bus actions generated as part of the state
transition are shown on the transition arc in bold. The stimulus actions apply to a block in the private cache, not to a
specific address in the cache. Thus a read miss to a block in the shared state is a miss for that cache block but for a
different address. The left side of the diagram shows state transitions based on actions of the processor associated
with this cache; the right side shows transitions based on operations on the bus. A read miss in the exclusive or
shared state and a write miss in the exclusive state occur when the address requested by the processor does not
match the address in the local cache block. Such a miss is a standard cache replacement miss. An attempt to write a
block in the shared state generates an invalidate. Whenever a bus transaction occurs, all private caches that contain
the cache block specified in the bus transaction take the action dictated by the right half of the diagram. The protocol
assumes that memory (or a shared cache) provides data on a read miss for a block that is clean in all local caches.
In actual implementations, these two sets of state diagrams are combined. In practice, there are many subtle
variations on invalidate protocols, including the introduction of the exclusive unmodified state, as to whether a
processor or memory provides data on a miss. In a multicore chip, the shared cache (usually L3, but sometimes L2)
acts as the equivalent of memory, and the bus is the bus between the private caches of each core and the shared
cache, which in turn interfaces to the memory.

© 2019 Elsevier Inc. All rights reserved. 8

Figure 5.7 Cache coherence state diagram with the state transitions induced by the local processor shown in
black and by the bus activities shown in gray. As in Figure 5.6, the activities on a transition are shown in bold.

© 2019 Elsevier Inc. All rights reserved. 9

Figure 5.8 A single-chip multicore with a distributed cache. In current designs, the distributed shared cache is
usually L3, and levels L1 and L2 are private. There are typically multiple memory channels (2–8 in today's designs).
This design is NUCA, since the access time to L3 portions varies with faster access time for the directly attached core.
Because it is NUCA, it is also NUMA.

© 2019 Elsevier Inc. All rights reserved. 10

Figure 5.9 The characteristics of the cache hierarchy of the Alpha 21164 used in this study and the Intel i7.
Although the sizes are larger and the associativity is higher on the i7, the miss penalties are also higher, so the
behavior may differ only slightly. Both systems have a high penalty (125 cycles or more) for a transfer required from a
private cache. A key difference is that L3 is shared in the i7 versus four separate, unshared caches in the Alpha server.

© 2019 Elsevier Inc. All rights reserved. 11

Figure 5.10 The relative performance of the OLTP workload as the size of the L3 cache, which is set as two-
way set associative, grows from 1 to 8 MiB. The idle time also grows as cache size is increased, reducing some of
the performance gains. This growth occurs because, with fewer memory system stalls, more server processes are
needed to cover the I/O latency. The workload could be retuned to increase the computation/communication balance,
holding the idle time in check. The PAL code is a set of sequences of specialized OS-level instructions executed in
privileged mode; an example is the TLB miss handler.

© 2019 Elsevier Inc. All rights reserved. 12

Figure 5.11 The contributing causes of memory access cycle shift as the cache size is increased. The L3 cache
is simulated as two-way set associative.

© 2019 Elsevier Inc. All rights reserved. 13

Figure 5.12 The contribution to memory access cycles increases as processor count increases primarily
because of increased true sharing. The compulsory misses slightly increase because each processor must now
handle more compulsory misses.

© 2019 Elsevier Inc. All rights reserved. 14

Figure 5.13 The number of misses per 1000 instructions drops steadily as the block size of the L3 cache is
increased, making a good case for an L3 block size of at least 128 bytes. The L3 cache is 2 MiB, two-way set
associative.

© 2019 Elsevier Inc. All rights reserved. 15

Figure 5.14 The distribution of execution time in the multiprogrammed parallel “make” workload. The high
fraction of idle time is due to disk latency when only one of the eight processors is active. These data and the
subsequent measurements for this workload were collected with the SimOS system (Rosenblum et al., 1995). The
actual runs and data collection were done by M. Rosenblum, S. Herrod, and E. Bugnion of Stanford University.

© 2019 Elsevier Inc. All rights reserved. 16

Figure 5.15 The data miss rates for the user and kernel components behave differently for increases in the L1
data cache size (on the left) versus increases in the L1 data cache block size (on the right). Increasing the L1
data cache from 32 to 256 KB (with a 32-byte block) causes the user miss rate to decrease proportionately more than
the kernel miss rate: the user-level miss rate drops by almost a factor of 3, whereas the kernel-level miss rate drops by
a factor of only 1.3. At the largest size, the L1 is closer to the size of L2 in a modern multicore processors. Thus the
data indicates that the kernel miss rate will still be significant in an L2 cache. The miss rate for both user and kernel
components drops steadily as the L1 block size is increased (while keeping the L1 cache at 32 KB). In contrast to the
effects of increasing the cache size, increasing the block size improves the kernel miss rate more significantly (just
under a factor of 4 for the kernel references when going from 16-byte to 128-byte blocks versus just under a factor of 3
for the user references).

© 2019 Elsevier Inc. All rights reserved. 17

Figure 5.16 The components of the kernel data miss rate change as the L1 data cache size is increased from
32 to 256 KB, when the multiprogramming workload is run on eight processors. The compulsory miss rate
component stays constant because it is unaffected by cache size. The capacity component drops by more than a
factor of 2, whereas the coherence component nearly doubles. The increase in coherence misses occurs because the
probability of a miss being caused by an invalidation increases with cache size, since fewer entries are bumped due to
capacity. As we would expect, the increasing block size of the L1 data cache substantially reduces the compulsory
miss rate in the kernel references. It also has a significant impact on the capacity miss rate, decreasing it by a factor of
2.4 over the range of block sizes. The increased block size has a small reduction in coherence traffic, which appears to
stabilize at 64 bytes, with no change in the coherence miss rate in going to 128-byte lines. Because there are no
significant reductions in the coherence miss rate as the block size increases, the fraction of the miss rate caused by
coherence grows from about 7% to about 15%.

© 2019 Elsevier Inc. All rights reserved. 18

Figure 5.17 The number of bytes needed per data reference grows as block size is increased for both the
kernel and user components. It is interesting to compare this chart with the data on scientific programs shown in
Appendix I.

© 2019 Elsevier Inc. All rights reserved. 19

Figure 5.18 A directory is added to each node to implement cache coherence in a distributed-memory
multiprocessor. In this case, a node is shown as a single multicore chip, and the directory information for the
associated memory may reside either on or off the multicore. Each directory is responsible for tracking the caches that
share the memory addresses of the portion of memory in the node. The coherence mechanism will handle both the
maintenance of the directory information and any coherence actions needed within the multicore node.

© 2019 Elsevier Inc. All rights reserved. 20

Figure 5.19 The possible messages sent among nodes to maintain coherence, along with the source and
destination node, the contents (where P = requesting node number, A = requested address, and D = data
contents), and the function of the message. The first three messages are requests sent by the local node to the
home. The fourth through sixth messages are messages sent to a remote node by the home when the home needs the
data to satisfy a read or write miss request. Data value replies are used to send a value from the home node back to the
requesting node. Data value write-backs occur for two reasons: when a block is replaced in a cache and must be written
back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing back the data
value whenever the block becomes shared simplifies the number of states in the protocol because any dirty block must
be exclusive and any shared block is always available in the home memory.

© 2019 Elsevier Inc. All rights reserved. 21

Figure 5.20 State transition diagram for an individual cache block in a directory-based system. Requests by the
local processor are shown in black, and those from the home directory are shown in gray. The states are
identical to those in the snooping case, and the transactions are very similar, with explicit invalidate and write-back
requests replacing the write misses that were formerly broadcast on the bus. As we did for the snooping controller, we
assume that an attempt to write a shared cache block is treated as a miss; in practice, such a transaction can be
treated as an ownership request or upgrade request and can deliver ownership without requiring that the cache block
be fetched.

© 2019 Elsevier Inc. All rights reserved. 22

Figure 5.21 The state transition diagram for the directory has the same states and structure as the transition
diagram for an individual cache. All actions are in gray because they are all externally caused. Bold indicates the
action taken by the directory in response to the request.

© 2019 Elsevier Inc. All rights reserved. 23

Figure 5.22 Cache coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes
write invalidate coherence. P0 starts with the lock (step 1), and the value of the lock is 1 (i.e., locked); it is
initially exclusive and owned by P0 before step 1 begins. P0 exits and unlocks the lock (step 2). P1 and P2 race to
see which reads the unlocked value during the swap (steps 3–5). P2 wins and enters the critical section (steps 6 and 7),
while P1's attempt fails, so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than
8 clock ticks because acquiring the bus and replying to misses take much longer. Once step 8 is reached, the process
can repeat with P2, eventually getting exclusive access and setting the lock to 0.

© 2019 Elsevier Inc. All rights reserved. 24

Figure 5.23 The orderings imposed by various consistency models are shown for both ordinary accesses and
synchronization accesses. The models grow from most restrictive (sequential consistency) to least restrictive (release
consistency), allowing increased flexibility in the implementation. The weaker models rely on fences created by
synchronization operations, as opposed to an implicit fence at every memory operation. SA and SR stand for acquire
and release operations, respectively, and are needed to define release consistency. If we were to use the notation SA
and SR for each S consistently, each ordering with one S would become two orderings (e.g., S → W becomes SA → W,
SR → W), and each S → S would become the four orderings shown in the last line of the bottom-right table entry.

© 2019 Elsevier Inc. All rights reserved. 25

Figure 5.24 These examples of the five consistency models discussed in this section show the reduction in the
number of orders imposed as the models become more relaxed. Only the minimum orders are shown with arrows.
Orders implied by transitivity, such as the write of C before the release of S in the sequential consistency model or the
acquire before the release in weak ordering or release consistency, are not shown.

© 2019 Elsevier Inc. All rights reserved. 26

Figure 5.25 A comparison of SMT and single-thread (ST) performance on the 8-processor IBM eServer p5 575
using SPECfpRate (top half) and SPECintRate (bottom half) as benchmarks. Note that the x-axis starts at a
speedup of 0.9, a performance loss. Only one processor in each Power5 core is active, which should slightly improve
the results from SMT by decreasing destructive interference in the memory system. The SMT results are obtained by
creating 16 user threads, whereas the ST results use only eight threads; with only one thread per processor, the
Power5 is switched to single-threaded mode by the OS. These results were collected by John McCalpin at IBM. As we
can see from the data, the standard deviation of the results for the SPECfpRate is higher than for SPECintRate (0.13
versus 0.07), indicating that the SMT improvement for FP programs is likely to vary widely.

© 2019 Elsevier Inc. All rights reserved. 27

Figure 5.26 Summary of the characteristics of three recent high-end multicore processors (2015–2017
releases) designed for servers. The table shows the range of processor counts, clock rates, and cache sizes within
each processor family. The Power8 L3 is a NUCA (Nonuniform Cache Access) design, and it also supports off-chip L4
of up to 128 MiB using EDRAM. A 32-core Xeon has recently been announced, but no system shipments have
occurred. The Fujitsu SPARC64 is also available as an 8-core design, which is normally configured as a single
processor system. The last row shows the range of configured systems with published performance data (such as
SPECintRate) with both processor chip counts and total core counts. The Xeon systems include multiprocessors that
extend the basic interconnect with additional logic; for example, using the standard Quickpath interconnect limits the
processor count to 8 and the largest system to 8 × 24 = 192 cores, but SGI extends the interconnect (and coherence
mechanisms) with extra logic to offer a 32 processor system using 18-core processor chips for a total size of 576
cores. Newer releases of these processors increased clock rates (significantly in the Power8 case, less so in others)
and core counts (significantly in the case of Xeon).

© 2019 Elsevier Inc. All rights reserved. 28

Figure 5.27 The on-chip organizations of the Power8 and Xeon E7 are shown. The Power8 uses 8 separate
buses between L3 and the CPU cores. Each Power8 also has two sets of links for connecting larger multiprocessors.
The Xeon uses three rings to connect processors and L3 cache banks, as well QPI for interchip links. Software is used
to logically associate half the cores with each memory channel.

© 2019 Elsevier Inc. All rights reserved. 29

Figure 5.28 The system architecture for three multiprocessors built from multicore
chips.

© 2019 Elsevier Inc. All rights reserved. 30

Figure 5.29 The performance scaling on the SPECintRate benchmarks for four multicore processors as the
number of cores is increased to 64. Performance for each processor is plotted relative to the smallest configuration
and assuming that configuration had perfect speedup. Although this chart shows how a given multiprocessor scales
with additional cores, it does not supply any data about performance among processors. There are differences in the
clock rates, even within a given processor family. These are generally swamped by the core scaling effects, except for
the Power8 that shows a clock range spread of 1.5 × from the smallest configuration to the 64 core configuration.

© 2019 Elsevier Inc. All rights reserved. 31

Figure 5.30 The scaling of relative performance for multiprocessor multicore. As before, performance is shown
relative to the smallest available system. The Xeon result at 80 cores is the same L3 effect that showed up for smaller
configurations. All systems larger than 80 cores have between 2.5 and 3.8 MiB of L3 per core, and the 80-core, or
smaller, systems have 6 MiB per core.

© 2019 Elsevier Inc. All rights reserved. 32

Figure 5.31 Scaling of performance on a range of Xeon E7 systems showing performance relative to the
smallest benchmark configuration, and assuming that configuration gets perfect speedup (e.g., the smallest
SPEWCOMP configuration is 30 cores and we assume a performance of 30 for that system). Only relative
performance can be assessed from this data, and comparisons across the benchmarks have no relevance. Note the
difference in the scale of the vertical and horizontal axes.

© 2019 Elsevier Inc. All rights reserved. 33

Figure 5.32 This chart shows the speedup and energy efficiency for two- and four-core executions of the
parallel Java and PARSEC workloads without SMT. These data were collected by Esmaeilzadeh et al. (2011) using
the same setup as described in Chapter 3. Turbo Boost is turned off. The speedup and energy efficiency are
summarized using harmonic mean, implying a workload where the total time spent running each benchmark on 2
cores is equivalent.

© 2019 Elsevier Inc. All rights reserved. 34

Figure 5.33 This chart shows the speedup for two- and four-core executions of the parallel Java and PARSEC
workloads both with and without SMT. Remember that the preceding results vary in the number of threads from two
to eight and reflect both architectural effects and application characteristics. Harmonic mean is used to summarize
results, as discussed in the Figure 5.32 caption.

© 2019 Elsevier Inc. All rights reserved. 35

Figure 5.34 Speedup for three benchmarks on an IBM eServer p5 multiprocessor when configured with 4, 8,
16, 32, and 64 processors. The dashed line shows linear speedup.

© 2019 Elsevier Inc. All rights reserved. 36

Figure 5.35 The performance/cost for IBM eServer p5 multiprocessors with 4–64 processors is shown relative
to the 4-processor configuration. Any measurement above 1.0 indicates that the configuration is more cost-effective
than the 4-processor system. The 8-processor configurations show an advantage for all three benchmarks, whereas
two of the three benchmarks show a cost-performance advantage in the 16- and 32-processor configurations. For
TPC-C, the configurations are those used in the official runs, which means that disk and memory scale nearly linearly
with processor count, and a 64-processor machine is approximately twice as expensive as a 32-processor version. In
contrast, the disk and memory are scaled more slowly (although still faster than necessary to achieve the best
SPECRate at 64 processors). In particular, the disk configurations go from one drive for the 4-processor version to four
drives (140 GB) for the 64-processor version. Memory is scaled from 8 GiB for the 4-processor system to 20 GiB for
the 64-processor system.

© 2019 Elsevier Inc. All rights reserved. 37

Figure 5.36 A comparison of the 22 nm technology of 2016 with a future 11 nm technology, likely to be available
sometime between 2022 and 2024. The characteristics of the 11 nm technology are based on the International
Technology Roadmap for Semiconductors, which has been recently discontinued because of uncertainty about the
continuation of Moore's Law and what scaling characteristics will be seen.

© 2019 Elsevier Inc. All rights reserved. 38

Figure 5.37 Multicore (point-to-point) multiprocessor.

© 2019 Elsevier Inc. All rights reserved. 39

Figure 5.38 Snooping coherence latencies.

© 2019 Elsevier Inc. All rights reserved. 40

Figure 5.39 Multicore multiprocessor with DSM.

© 2019 Elsevier Inc. All rights reserved. 41

Figure 5.40 Percentage of application's A time that can use up to P processors.

