
© 2019 Elsevier Inc. All rights reserved. 

Chapter 3 
Instruction-Level Parallelism 

and Its Exploitation 



© 2019 Elsevier Inc. All rights reserved. 2 

Figure 3.1 The major techniques examined in Appendix C, Chapter 3, and Appendix H are shown together with the component 
of the CPI equation that the technique affects. 



© 2019 Elsevier Inc. All rights reserved. 3 

Figure 3.2 Latencies of FP operations used in this chapter. The last column is the number of intervening clock cycles needed to 
avoid a stall. These numbers are similar to the average latencies we would see on an FP unit. The latency of a floating-point load to a 
store is 0 because the result of the load can be bypassed without stalling the store. We will continue to assume an integer load latency 
of 1 and an integer ALU operation latency of 0 (which includes ALU operation to branch). 



© 2019 Elsevier Inc. All rights reserved. 4 

Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is first, followed by a noncorrelating 2-bit predictor 
with unlimited entries and a 2-bit predictor with 2 bits of global history and a total of 1024 entries. Although these data are for an older 
version of SPEC, data for more recent SPEC benchmarks would show similar differences in accuracy. 



© 2019 Elsevier Inc. All rights reserved. 5 

Figure 3.4 A gshare predictor with 1024 entries, each being a standard 2-bit predictor. 



© 2019 Elsevier Inc. All rights reserved. 6 

Figure 3.5 A tournament predictor using the branch address to index a set of 2-bit selection counters, which choose between 
a local and a global predictor. In this case, the index to the selector table is the current branch address. The two tables are also 2-bit 
predictors that are indexed by the global history and branch address, respectively. The selector acts like a 2-bit predictor, changing the 
preferred predictor for a branch address when two mispredicts occur in a row. The number of bits of the branch address used to index 
the selector table and the local predictor table is equal to the length of the global branch history used to index the global prediction 
table. Note that misprediction is a bit tricky because we need to change both the selector table and either the global or local predictor. 



© 2019 Elsevier Inc. All rights reserved. 7 

Figure 3.6 The misprediction rate for three different predictors on SPEC89 versus the size of the predictor in kilobits. The 
predictors are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of global and local information at each 
point in the graph, and a tournament predictor. Although these data are for an older version of SPEC, data for more recent SPEC 
benchmarks show similar behavior, perhaps converging to the asymptotic limit at slightly larger predictor sizes. 



© 2019 Elsevier Inc. All rights reserved. 8 

Figure 3.7 A five-component tagged hybrid predictor has five separate prediction tables, indexed by a hash of the branch 
address and a segment of recent branch history of length 0–4 labeled “h” in this figure. The hash can be as simple as an 
exclusive-OR, as in gshare. Each predictor is a 2-bit (or possibly 3-bit) predictor. The tags are typically 4–8 bits. The chosen prediction 
is the one with the longest history where the tags also match. 



© 2019 Elsevier Inc. All rights reserved. 9 

Figure 3.8 A comparison of the misprediction rate (measured as mispredicts per 1000 instructions executed) for tagged 
hybrid versus gshare. Both predictors use the same total number of bits, although tagged hybrid uses some of that storage for 
tags, while gshare contains no tags. The benchmarks consist of traces from SPECfp and SPECint, a series of multimedia and server 
benchmarks. The latter two behave more like SPECint. 



© 2019 Elsevier Inc. All rights reserved. 10 

Figure 3.9 The misprediction rate for the integer SPECCPU2006 benchmarks on the Intel Core i7 920 and 6700. The 
misprediction rate is computed as the ratio of completed branches that are mispredicted versus all completed branches. This could 
understate the misprediction rate somewhat because if a branch is mispredicted and led to another mispredicted branch (which should 
not have been executed), it will be counted as only one misprediction. On average, the i7 920 mispredicts branches 1.3 times as often 
as the i7 6700. 



© 2019 Elsevier Inc. All rights reserved. 11 

Figure 3.10 The basic structure of a RISC-V floating-point unit using Tomasulo's algorithm. Instructions are sent from the 
instruction unit into the instruction queue from which they are issued in first-in, first-out (FIFO) order. The reservation stations include 
the operation and the actual operands, as well as information used for detecting and resolving hazards. Load buffers have three 
functions: (1) hold the components of the effective address until it is computed, (2) track outstanding loads that are waiting on the 
memory, and (3) hold the results of completed loads that are waiting for the CDB. Similarly, store buffers have three functions: (1) hold 
the components of the effective address until it is computed, (2) hold the destination memory addresses of outstanding stores that are 
waiting for the data value to store, and (3) hold the address and value to store until the memory unit is available. All results from either 
the FP units or the load unit are put on the CDB, which goes to the FP register file as well as to the reservation stations and store 
buffers. The FP adders implement addition and subtraction, and the FP multipliers do multiplication and division. 



© 2019 Elsevier Inc. All rights reserved. 12 

Figure 3.11 Reservation stations and register tags shown when all of the instructions have issued but only the first load 
instruction has completed and written its result to the CDB. The second load has completed effective address calculation but is 
waiting on the memory unit. We use the array Regs[ ] to refer to the register file and the array Mem[ ] to refer to the memory. 
Remember that an operand is specified by either a Q field or a V field at any time. Notice that the fadd.d instruction, which has a 
WAR hazard at the WB stage, has issued and could complete before the fdiv.d initiates. 



© 2019 Elsevier Inc. All rights reserved. 13 

Figure 3.12 Multiply and divide are the only instructions not finished. 



© 2019 Elsevier Inc. All rights reserved. 14 

Figure 3.13 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destination, rs and rt 
are the source register numbers, imm is the sign-extended immediate field, and r is the reservation station or buffer that the instruction is 
assigned to. RS is the reservation station data structure. The value returned by an FP unit or by the load unit is called result. 
RegisterStat is the register status data structure (not the register file, which is Regs[]). When an instruction is issued, the destination 
register has its Qi field set to the number of the buffer or reservation station to which the instruction is issued. If the operands are available 
in the registers, they are stored in the V fields. Otherwise, the Q fields are set to indicate the reservation station that will produce the values 
needed as source operands. The instruction waits at the reservation station until both its operands are available, indicated by zero in the Q 
fields. The Q fields are set to zero either when this instruction is issued or when an instruction on which this instruction depends completes 
and does its write back. When an instruction has finished execution and the CDB is available, it can do its write back. All the buffers, 
registers, and reservation stations whose values of Qj or Qk are the same as the completing reservation station update their values from the 
CDB and mark the Q fields to indicate that values have been received. Thus the CDB can broadcast its result to many destinations in a 
single clock cycle, and if the waiting instructions have their operands, they can all begin execution on the next clock cycle. Loads go through 
two steps in execute, and stores perform slightly differently during Write Result, where they may have to wait for the value to store. 
Remember that, to preserve exception behavior, instructions should not be allowed to execute if a branch that is earlier in program order 
has not yet completed. Because no concept of program order is maintained after the issue stage, this restriction is usually implemented by 
preventing any instruction from leaving the issue step if there is a pending branch already in the pipeline. In Section 3.6, we will see how 
speculation support removes this restriction. 



© 2019 Elsevier Inc. All rights reserved. 15 

Figure 3.14 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reservation stations 
indicate that the outstanding loads are the sources. The store reservation stations indicate that the multiply destination is the source 
of the value to store. 



© 2019 Elsevier Inc. All rights reserved. 16 

Figure 3.15 The basic structure of a FP unit using Tomasulo's algorithm and extended to handle speculation. Comparing this 
to Figure 3.10 on page 198, which implemented Tomasulo's algorithm, we can see that the major change is the addition of the ROB 
and the elimination of the store buffer, whose function is integrated into the ROB. This mechanism can be extended to allow multiple 
issues per clock by making the CDB wider to allow for multiple completions per clock. 



© 2019 Elsevier Inc. All rights reserved. 17 

Figure 3.16 At the time the fmul.d is ready to commit, only the two fld instructions have committed, although several others 
have completed execution. The fmul.d is at the head of the ROB, and the two fld instructions are there only to ease 
understanding. The fsub.d and fadd.d instructions will not commit until the fmul.d instruction commits, although the results of the 
instructions are available and can be used as sources for other instructions. The fdiv.d is in execution, but has not completed solely 
because of its longer latency than that of fmul.d. The Value column indicates the value being held; the format #X is used to refer to a 
value field of ROB entry X. Reorder buffers 1 and 2 are actually completed but are shown for informational purposes. We do not show 
the entries for the load/store queue, but these entries are kept in order. 



© 2019 Elsevier Inc. All rights reserved. 18 

Figure 3.17 Only the fld and fmul.d  instructions have committed, although all the others have completed execution. Thus 
no reservation stations are busy and none are shown. The remaining instructions will be committed as quickly as possible. The first two 
reorder buffers are empty, but are shown for completeness. 



© 2019 Elsevier Inc. All rights reserved. 19 

Figure 3.18 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destination, rs and rt are 
the sources, r is the reservation station allocated, b is the assigned ROB entry, and h is the head entry of the ROB. RS is the reservation 
station data structure. The value returned by a reservation station is called the result. Register-Stat is the register data structure, 
Regs represents the actual registers, and ROB is the reorder buffer data structure. 



© 2019 Elsevier Inc. All rights reserved. 20 

Figure 3.19 The five primary approaches in use for multiple-issue processors and the primary characteristics that distinguish 
them. This chapter has focused on the hardware-intensive techniques, which are all some form of superscalar. Appendix H focuses on 
compiler-based approaches. The EPIC approach, as embodied in the IA-64 architecture, extends many of the concepts of the early 
VLIW approaches, providing a blend of static and dynamic approaches. 



© 2019 Elsevier Inc. All rights reserved. 21 

Figure 3.20 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9 cycles 
assuming correct branch prediction. The issue rate is 23 operations in 9 clock cycles, or 2.5 operations per cycle. The efficiency, the 
percentage of available slots that contained an operation, is about 60%. To achieve this issue rate requires a larger number of 
registers than RISC-V would normally use in this loop. The preceding VLIW code sequence requires at least eight FP registers, 
whereas the same code sequence for the base RISC-V processor can use as few as two FP registers or as many as five when 
unrolled and scheduled. 



© 2019 Elsevier Inc. All rights reserved. 22 

Figure 3.21 The basic organization of a multiple issue processor with speculation. In this case, the organization could allow a 
FP multiply, FP add, integer, and load/store to all issues simultaneously (assuming one issue per clock per functional unit). Note that 
several datapaths must be widened to support multiple issues: the CDB, the operand buses, and, critically, the instruction issue 
logic, which is not shown in this figure. The last is a difficult problem, as we discuss in the text. 



© 2019 Elsevier Inc. All rights reserved. 23 

Figure 3.22 The issue steps for a pair of dependent instructions (called 1 and 2), where instruction 1 is FP load and instruction 
2 is an FP operation whose first operand is the result of the load instruction; x1 and x2 are the assigned reservation stations 
for the instructions; and b1 and b2 are the assigned reorder buffer entries. For the issuing instructions, rd1 and rd2 are the 
destinations; rs1, rs2, and rt2 are the sources (the load has only one source); x1 and x2 are the reservation stations allocated; and 
b1 and b2 are the assigned ROB entries. RS is the reservation station data structure. RegisterStat is the register data structure, 
Regs represents the actual registers, and ROB is the reorder buffer data structure. Notice that we need to have assigned reorder buffer 
entries for this logic to operate properly, and recall that all these updates happen in a single clock cycle in parallel, not sequentially. 



© 2019 Elsevier Inc. All rights reserved. 24 

Figure 3.23 The time of issue, execution, and writing result for a dual-issue version of our pipeline without speculation. 
Note that the ld following the bne cannot start execution earlier because it must wait until the branch outcome is determined. This 
type of program, with data-dependent branches that cannot be resolved earlier, shows the strength of speculation. Separate 
functional units for address calculation, ALU operations, and branch-condition evaluation allow multiple instructions to execute in the 
same cycle. Figure 3.24 shows this example with speculation. 



© 2019 Elsevier Inc. All rights reserved. 25 

Figure 3.24 The time of issue, execution, and writing result for a dual-issue version of our pipeline with speculation. Note that the 
ld following the bne can start execution early because it is speculative. 



© 2019 Elsevier Inc. All rights reserved. 26 

Figure 3.25 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruction addresses 
stored in the first column; these represent the addresses of known branches. If the PC matches one of these entries, then the 
instruction being fetched is a taken branch, and the second field, predicted PC, contains the prediction for the next PC after the 
branch. Fetching begins immediately at that address. The third field, which is optional, may be used for extra prediction state bits. 



© 2019 Elsevier Inc. All rights reserved. 27 

Figure 3.26 The steps involved in handling an instruction with a branch-target buffer. 



© 2019 Elsevier Inc. All rights reserved. 28 

Figure 3.27 Penalties for all possible combinations of whether the branch is in the buffer and what it actually does, 
assuming we store only taken branches in the buffer. There is no branch penalty if everything is correctly predicted and the 
branch is found in the target buffer. If the branch is not correctly predicted, the penalty is equal to 1 clock cycle to update the buffer 
with the correct information (during which an instruction cannot be fetched) and 1 clock cycle, if needed, to restart fetching the next 
correct instruction for the branch. If the branch is not found and taken, a 2-cycle penalty is encountered, during which time the buffer 
is updated. 



© 2019 Elsevier Inc. All rights reserved. 29 

Figure 3.28 Prediction accuracy for a return address buffer operated as a stack on a number of SPEC CPU95 benchmarks. 
The accuracy is the fraction of return addresses predicted correctly. A buffer of 0 entries implies that the standard branch prediction is 
used. Because call depths are typically not large, with some exceptions, a modest buffer works well. These data come from Skadron 
et al. (1999) and use a fix-up mechanism to prevent corruption of the cached return addresses. 



© 2019 Elsevier Inc. All rights reserved. 30 

Figure 3.29 An example of six instructions to be issued in the same clock cycle and what has to happen. The instructions are 
shown in program order: 1–6; they are, however, issued in 1 clock cycle! The notation pi is used to refer to a physical register; the 
contents of that register at any point is determined by the renaming map. For simplicity, we assume that the physical registers holding 
the architectural registers x1, x2, and x3 are initially p1, p2, and p3 (they could be any physical register). The instructions are 
issued with physical register numbers, as shown in column four. The rename map, which appears in the last column, shows how the 
map would change if the instructions were issued sequentially. The difficulty is that all this renaming and replacement of architectural 
registers by physical renaming registers happens effectively in 1 cycle, not sequentially. The issue logic must find all the dependences 
and “rewrite” the instruction in parallel. 



© 2019 Elsevier Inc. All rights reserved. 31 

Figure 3.30 The fraction of instructions that are executed as a result of misspeculation is typically much higher for integer 
programs (the first five) versus FP programs (the last five). 



© 2019 Elsevier Inc. All rights reserved. 32 

Figure 3.31 How four different approaches use the functional unit execution slots of a superscalar processor. The horizontal 
dimension represents the instruction execution capability in each clock cycle. The vertical dimension represents a sequence of clock 
cycles. An empty (white) box indicates that the corresponding execution slot is unused in that clock cycle. The shades of gray and 
black correspond to four different threads in the multithreading processors. Black is also used to indicate the occupied issue slots in 
the case of the superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-grained, 
multithreaded processors, while the Intel Core i7 and IBM Power7 processors use SMT. The T2 has 8 threads, the Power7 has 4, and 
the Intel i7 has 2. In all existing SMTs, instructions issue from only one thread at a time. The difference in SMT is that the subsequent 
decision to execute an instruction is decoupled and could execute the operations coming from several different instructions in the 
same clock cycle. 



© 2019 Elsevier Inc. All rights reserved. 33 

Figure 3.32 The parallel benchmarks used here to examine multithreading, as well as in Chapter 5 to examine 
multiprocessing with an i7. The top half of the chart consists of PARSEC benchmarks collected by Bienia et al. (2008). The 
PARSEC benchmarks are meant to be indicative of compute-intensive, parallel applications that would be appropriate for multicore 
processors. The lower half consists of multithreaded Java benchmarks from the DaCapo collection (see Blackburn et al., 2006) and 
pjbb2005 from SPEC. All of these benchmarks contain some parallelism; other Java benchmarks in the DaCapo and SPEC Java 
workloads use multiple threads but have little or no true parallelism and, hence, are not used here. See Esmaeilzadeh et al. (2011) for 
additional information on the characteristics of these benchmarks, relative to the measurements here and in Chapter 5. 



© 2019 Elsevier Inc. All rights reserved. 34 

Figure 3.33 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java benchmarks 
and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which implies a workload where the total time 
spent executing each benchmark in the single-threaded base set was the same). The energy efficiency averages 0.99 and 1.07, 
respectively (using the harmonic mean). Recall that anything above 1.0 for energy efficiency indicates that the feature reduces 
execution time by more than it increases average power. Two of the Java benchmarks experience little speedup and have significant 
negative energy efficiency because of this issue. Turbo Boost is off in all cases. These data were collected and analyzed by 
Esmaeilzadeh et al. (2011) using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native 
compiler. 



© 2019 Elsevier Inc. All rights reserved. 35 

Figure 3.34 The basic structure of the A53 integer pipeline is 8 stages: F1 and F2 fetch the instruction, D1 and D2 do the basic 
decoding, and D3 decodes some more complex instructions and is overlapped with the first stage of the execution pipeline 
(ISS). After ISS, the Ex1, EX2, and WB stages complete the integer pipeline. Branches use four different predictors, depending on the 
type. The floating-point execution pipeline is 5 cycles deep, in addition to the 5 cycles needed for fetch and decode, yielding 10 stages 
in total. 



© 2019 Elsevier Inc. All rights reserved. 36 

Figure 3.35 Misprediction rate of the A53 branch predictor for SPECint2006. 



© 2019 Elsevier Inc. All rights reserved. 37 

Figure 3.36 Wasted work due to branch misprediction on the A53. Because the A53 is an in-order machine, the amount of wasted 
work depends on a variety of factors, including data dependences and cache misses, both of which will cause a stall. 



© 2019 Elsevier Inc. All rights reserved. 38 

Figure 3.37 The estimated composition of the CPI on the ARM A53 shows that pipeline stalls are significant but are 
outweighed by cache misses in the poorest performing programs. This estimate is obtained by using the L1 and L2 miss rates 
and penalties to compute the L1 and L2 generated stalls per instruction. These are subtracted from the CPI measured by a detailed 
simulator to obtain the pipeline stalls. Pipeline stalls include all three hazards. 



© 2019 Elsevier Inc. All rights reserved. 39 

Figure 3.38 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14 
stages, with branch mispredictions typically costing 17 cycles, with the extra few cycles likely due to the time to reset the branch 
predictor. The six independent functional units can each begin execution of a ready micro-op in the same cycle. Up to four micro-ops 
can be processed in the register renaming table. 



© 2019 Elsevier Inc. All rights reserved. 40 

Figure 3.39 The buffers and queues in the first generation i7 and the latest generation i7. Nehalem used a reservation station 
plus reorder buffer organization. In later microarchitectures, the reservation stations serve as scheduling resources, and register 
renaming is used rather than the reorder buffer; the reorder buffer in the Skylake microarchitecture serves only to buffer control 
information. The choices of the size of various buffers and renaming registers, while appearing sometimes arbitrary, are likely based on 
extensive simulation. 



© 2019 Elsevier Inc. All rights reserved. 41 

Figure 3.40 The CPI for the SPECCPUint2006 benchmarks on the i7 6700 and the i7 920. The data in this section were collected 
by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University. 



© 2019 Elsevier Inc. All rights reserved. 42 

Figure 3.41 An analysis of the five integer benchmarks with the largest performance gap between the i7 6700 and 920. These 
five benchmarks show an improvement in the branch prediction rate and a reduction in the L1 demand miss rate. 



© 2019 Elsevier Inc. All rights reserved. 43 

Figure 3.42 An overview of the four-core Intel i7 920, an example of a typical ARM A8 processor chip (with a 256 MiB L2, 32 
KiB L1s, and no floating point), and the Intel ARM 230, clearly showing the difference in design philosophy between a 
processor intended for the PMD (in the case of ARM) or netbook space (in the case of Atom) and a processor for use in 
servers and high-end desktops. Remember, the i7 includes four cores, each of which is higher in performance than the one-core 
A8 or Atom. All these processors are implemented in a comparable 45 nm technology. 



© 2019 Elsevier Inc. All rights reserved. 44 

Figure 3.43 The relative performance and energy efficiency for a set of single-threaded benchmarks shows the i7 920 is 4 to 
over 10 times faster than the Atom 230 but that it is about 2 times less power-efficient on average! Performance is shown in 
the columns as i7 relative to Atom, which is execution time (i7)/execution time (Atom). Energy is shown with the line as Energy 
(Atom)/Energy (i7). The i7 never beats the Atom in energy efficiency, although it is essentially as good on four benchmarks, three of 
which are floating point. The data shown here were collected by Esmaeilzadeh et al. (2011). The SPEC benchmarks were compiled 
with optimization using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core 
is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7, which increases its performance 
advantage but slightly decreases its relative energy efficiency. 



© 2019 Elsevier Inc. All rights reserved. 45 

Figure 3.44 Three different Intel processors vary widely. Although the Itanium processor has two cores and the i7 four, only one 
core is used in the benchmarks; the Power column is the thermal design power with estimates for only one core active in the multicore 
cases. 



© 2019 Elsevier Inc. All rights reserved. 46 

Figure 3.45 The amount of parallelism available versus the window size for a variety of integer and floating-point programs 
with up to 64 arbitrary instruction issues per clock. Although there are fewer renaming registers than the window size, the fact that 
all operations have 1-cycle latency and that the number of renaming registers equals the issue width allows the processor to exploit 
parallelism within the entire window. 



© 2019 Elsevier Inc. All rights reserved. 47 

Figure 3.46 Characteristics of five generations of IBM Power processors. All except the Power6, which is static and in-order, 
were dynamically scheduled; all the processors support two load/store pipelines. The Power6 has the same functional units as the 
Power5 except for a decimal unit. Power7 and Power8 use embedded DRAM for the L3 cache. Power9 has been described briefly; 
it further expands the caches and supports off-chip HBM. 



© 2019 Elsevier Inc. All rights reserved. 48 

Figure 3.47 Code and latencies for Exercises 3.1 through 3.6. 



© 2019 Elsevier Inc. All rights reserved. 49 

Figure 3.48 Sample code for register renaming practice. 



© 2019 Elsevier Inc. All rights reserved. 50 

Figure 3.49 Expected output of register renaming. 



© 2019 Elsevier Inc. All rights reserved. 51 

Figure 3.50 Sample code for superscalar register renaming. 



© 2019 Elsevier Inc. All rights reserved. 52 

Figure 3.51 Initial state of the register renaming table. 



© 2019 Elsevier Inc. All rights reserved. 53 

Figure 3.52 Sample VLIW code with two adds, two loads, and two stalls. 



© 2019 Elsevier Inc. All rights reserved. 54 

Figure 3.53 Code loop for Exercise 3.11. 



© 2019 Elsevier Inc. All rights reserved. 55 

Figure 3.54 Microarchitecture for Exercise 3.12. 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55

