Chapter 2
Memory Hierarchy
Design

© 2019 Elsevier Inc. All rights reserved.

L2
CPU o
a
M
: o
e Flash
Register Level 1 Level 2 Memory memory
reference Cache Cache reference reference
reference reference
Size: 1000 bytes 64 KB 256 KB 1-2GB 4-64 GB
Speed: 300 ps 1ns 510ns 50-100 ns 25-50us
(A) Memary hierarchy for a personal mobile device
Memory
CPU
Mem: Sto
% -
Flash
memo
Register Level 1 Level2 Level 3 Memory re{erenrcye
reference Cache Cache Cache reference
Laptop Size: 1000 bytes 64 KB 256 KB 4-8 MB 4-16 GB 256 GB-1TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS
Desktop Size: 2000 bytes 64 KB 256 KB B8-32 MB B-64 GB 256 GB-2TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS
(B) Memaory hierarchy for a laptop or a desktop

Disk storage
CPU

L3
(+]
a
(-]
h
L]

Memory
Flash storage
Register Level 1 Level 2 Level 3 Memory
referance Cache Cache Cache reference Disk Flash
i f i memary memary
5 2000 64 KB 256 KB 664 MB 32-256.GB reference reference
ze: bytes 18- - i
Speed: 200ps 1ns 3-10ns 10-20ns 50-100 ns 166418 118 TH

5-10ms 100-200 us
(C) Memory hierarchy for server

Figure 2.1 The levels in a typical memory hierarchy in a personal mobile device (PMD), such as a cell phone or tablet (A), in
a laptop or desktop computer (B), and in a server (C). As we move farther away from the processor, the memory in the level
below becomes slower and larger. Note that the time units change by a factor of 10° from picoseconds to milliseconds in the case of
magnetic disks and that the size units change by a factor of 1019 from thousands of bytes to tens of terabytes. If we were to add
warehouse-sized computers, as opposed to just servers, the capacity scale would increase by three to six orders of magnitude.
Solid-state drives (SSDs) composed of Flash are used exclusively in PMDs, and heavily in both laptops and desktops. In many

desktops, the primary storage system is SSD, and expansion disks are primarily hard disk drives (HDDs). Likewise, many servers
mix SSDs and HDDs.

© 2019 Elsevier Inc. All rights reserved.

100,000

10,000 - -ceeemnemuneeen e e s e e s e PGP

101010 [P o USSP PSPPPPP RSP

0] 0 T TR e P PP PP P PP PP

Performance

10_ .. : b

1980 1985 1990 1995 2000 2005 2010 2015

Year

Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance, measured as the difference in the time
between processor memory requests (for a single processor or core) and the latency of a DRAM access, is plotted over time.
In mid-2017, AMD, Intel and Nvidia all announced chip sets using versions of HBM technology. Note that the vertical axis must
be on a logarithmic scale to record the size of the processor-DRAM performance gap. The memory baseline is 64 KiB DRAM in 1980,
with a 1.07 per year performance improvement in latency (see Figure 2.4 on page 88). The processor line assumes a 1.25
improvement per year until 1986, a 1.52 improvement until 2000, a 1.20 improvement between 2000 and 2005, and only small
improvements in processor performance (on a per-core basis) between 2005 and 2015. As you can see, until 2010 memory access
times in DRAM improved slowly but consistently; since 2010 the improvement in access time has reduced, as compared with the
earlier periods, although there have been continued improvements in bandwidth. See Figure 1.1 in Chapter 1 for more information.

© 2019 Elsevier Inc. All rights reserved.

Bank |
Column |
I

Rd/Wr

A
A 4

Act

¥ N

h 4

|| Pre —

Row

Figure 2.3 Internal organization of a DRAM. Modern DRAMSs are organized in banks, up to 16 for DDR4. Each bank consists of a
series of rows. Sending an ACT (Activate) command opens a bank and a row and loads the row into a row buffer. When the row is in
the buffer, it can be transferred by successive column addresses at whatever the width of the DRAM is (typically 4, 8, or 16 bits in
DDRA4) or by specifying a block transfer and the starting address. The Precharge commend (PRE) closes the bank and row and readies
it for a new access. Each command, as well as block transfers, are synchronized with a clock. See the next section discussing SDRAM.
The row and column signals are sometimes called RAS and CAS, based on the original names of the signals.

© 2019 Elsevier Inc. All rights reserved.

Best case access time (no precharge) Precharge needed

Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)
2000 256M bit DDRI 21 21 42 63
2002 512M bit DDRI1 15 15 30 45
2004 1G bit DDR2 15 15 30 45
2006 2G bit DDR2 10 10 20 30
2010 4G bit DDR3 13 13 26 39
2016 8G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for a random memory word and

assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged; if the row is not open, then
a precharge is required, and the access time is longer. As the number of banks has increased, the ability to hide the precharge time

has also increased. DDR4 SDRAMSs were initially expected in 2014, but did not begin production until early 2016.

© 2019 Elsevier Inc. All rights reserved.

Standard I/0 clock rate M transfers/s DRAM name MiB/s/DIMM DIMM name

DDR1 133 266 DDR266 2128 PC2100
DDRI1 150 300 DDR300 2400 PC2400
DDRI1 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 1333 2666 DDR4-2666 21,300 PC21300

Figure 2.5 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2016. Note the numerical relationship between the
columns. The third column is twice the second, and the fourth uses the number from the third column in the name of the DRAM chip.
The fifth column is eight times the third column, and a rounded version of this number is used in the name of the DIMM. DDR4 saw
significant first use in 2016.

© 2019 Elsevier Inc. All rights reserved.

600 -

500
=
400 -
E %0 W Read, write, terminate
'.q__J 300 power
g 200 4 @ Activate power
o B Background power

100
NI NN e

Low Typical Fully
power usage active
mode

Figure 2.6 Power consumption for a DDR3 SDRAM operating under three conditions: low-power (shutdown) mode, typical
system mode (DRAM is active 30% of the time for reads and 15% for writes), and fully active mode, where the DRAM is

continuously reading or writing. Reads and writes assume bursts of eight transfers. These data are based on a Micron 1.5V 2GB
DDR3-1066, although similar savings occur in DDR4 SDRAMSs.

© 2019 Elsevier Inc. All rights reserved.

DRAM

% 2

Vertical stacking (3D) Interposer stacking (2.5D)

Figure 2.7 Two forms of die stacking. The 2.5D form is available now. 3D stacking is under development and faces heat
management challenges due to the CPU.

© 2019 Elsevier Inc. All rights reserved.

3.0 __ W 1-way [J 2-way
B 4-way O 8-way

2.5 4

2.04

1.5 1

1.04

Relative access time in microseconds

0.5 4

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Figure 2.8 Relative access times generally increase as cache size and associativity are increased. These data come from the
CACTI model 6.5 by Tarjan et al. (2005). The data assume typical embedded SRAM technology, a single bank, and 64-byte blocks.
The assumptions about cache layout and the complex trade-offs between interconnect delays (that depend on the size of a cache block
being accessed) and the cost of tag checks and multiplexing lead to results that are occasionally surprising, such as the lower access
time for a 64 KiB with two-way set associativity versus direct mapping. Similarly, the results with eight-way set associativity generate
unusual behavior as cache size is increased. Because such observations are highly dependent on technology and detailed design
assumptions, tools such as CACTI serve to reduce the search space. These results are relative; nonetheless, they are likely to shift as
we move to more recent and denser semiconductor technologies.

© 2019 Elsevier Inc. All rights reserved.

M0y ——
W 1-way [2-way

9.0 {| W 4-way [8-way

8.0 4

7.0

6.0 4

5.0 1

4.0 4

3.0

2.0

Relative energy per read in nano joules

1.0 1

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Figure 2.9 Energy consumption per read increases as cache size and associativity are increased. As in the previous figure,
CACTI is used for the modeling with the same technology parameters. The large penalty for eight-way set associative caches is due
to the cost of reading out eight tags and the corresponding data in parallel.

© 2019 Elsevier Inc. All rights reserved.

Block Block Block

Block
address Bank 0 address Bank 1 address Bank?2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.10 Four-way interleaved cache banks using block addressing. Assuming 64 bytes per block, each of these addresses
would be multiplied by 64 to get byte addressing.

© 2019 Elsevier Inc. All rights reserved.

-=- Hit-under-1-miss -4 Hit-under-2-misses - Hit-under-64-misses
100% ; 7 .

90% -
80% !
60% -
50% -
40%

Cache access latency

libquantum
gromacs
cactusADM
calculix
GemsFDTD

%)
@
m
)
=
_‘

SPECFP

Figure 2.11 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a cache miss with 9
SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory system modeled after the Intel i7 consists of a
32 KiB L1 cache with a four-cycle access latency. The L2 cache (shared with instructions) is 256 KiB with a 10-clock cycle access
latency. The L3 is 2 MiB and a 36-cycle access latency. All the caches are eight-way set associative and have a 64-byte block size.
Allowing one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating point. Allowing a
second hit improves these results to 10% and 16%, and allowing 64 results in little additional improvement.

© 2019 Elsevier Inc. All rights reserved.

12

Write address V \ Y Y

100 1 | Mem[100] | © 0 0
108 1 | Mem[108] | 0 0 0
116 1 | Mem[116] | 0 0 0
124 1 | Mem[124] | ¢ 0 0

Write address V \ \ \

100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] [1 | Mem[124]

Figure 2.12 In this illustration of write merging, the write buffer on top does not use write merging while the write buffer on the
bottom does. The four writes are merged into a single buffer entry with write merging; without it, the buffer is full even though three-
fourths of each entry is wasted. The buffer has four entries, and each entry holds four 64-bit words. The address for each entry is on
the left, with a valid bit (V) indicating whether the next sequential 8 bytes in this entry are occupied. (Without write merging, the words
to the right in the upper part of the figure would be used only for instructions that wrote multiple words at the same time.)

© 2019 Elsevier Inc. All rights reserved. 13

¥ 0012 3 45 Y 01 2 3 4 5 20 1
0 0 0
1 1 1
2 2 2
i i k
3 3 3
4 4 4
5 5 5

Figure 2.13 A snapshot of the three arrays x, y, and zwhen N =6 and i = 1. The age of accesses to the array elements is
indicated by shade: white means not yet touched, light means older accesses, and dark means newer accesses. The elements of y
and z are read repeatedly to calculate new elements of x. The variables i, j, and k are shown along the rows or columns used to
access the arrays.

© 2019 Elsevier Inc. All rights reserved. 14

¥ 012 3 45 Y o1 23 45 % 01 2 3 4 5
0 0 0
1 1 1
2 2 2
i i k
3 3 3
4 4 4
5 5 5

Figure 2.14 The age of accesses to the arrays X, y, and z when B = 3. Note that, in contrast to Figure 2.13, a smaller number of
elements is accessed.

© 2019 Elsevier Inc. All rights reserved.

15

2.20

2.00 1.97
z
@ H
g 1.80
3 :
=3 :
£ 160 :
g :
e] 1.49
T 145 :
E : 1.40
g 1.40 :
@ : 1.29 1.32
= :) 1.26 :

H 1.20 1.21
1204 1.16 ;118 I I I I
100'J T E I T T T T T T T T
gap m

cf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPECfp2000

Figure 2.15 Speedup because of hardware prefetching on Intel Pentium 4 with hardware prefetching turned on for 2 of 12
SPECIint2000 benchmarks and 9 of 14 SPECfp2000 benchmarks. Only the programs that benefit the most from prefetching are
shown; prefetching speeds up the missing 15 SPECCPU benchmarks by less than 15% (Boggs et al., 2004).

© 2019 Elsevier Inc. All rights reserved.

125
100188]
& 75]
[
ks
E
@
)]
o
2 50
<
1 W LH-Cache
1 B SRAM-Tags
1 . Alloy cache
25 +
04
mcf_r Ibm_r soplex.r milc_r omnetr bwaves_r gcc_r libgntm_r sphinx_r gems_r
Benchmarks

Figure 2.16 Average hit time latency in clock cycles for the L-H scheme, a currently-impractical scheme using SRAM for the
tags, and the alloy cache organization. In the SRAM case, we assume the SRAM is accessible in the same time as L3 and that it is
checked before L4 is accessed. The average hit latencies are 43 (alloy cache), 67 (SRAM tags), and 107 (L-H). The 10
SPECCPU2006 benchmarks used here are the most memory-intensive ones; each of them would run twice as fast if L3 were perfect.

© 2019 Elsevier Inc. All rights reserved. 17

1.5

1.4

1.3

Spedup on SPECRate

1.1

1.2 1

64 MB 128 MB 256 MB 512 MB
L4 cache size

1GB

1 & LH-Cache
1 M SRAM-Tags

Alloy cache

1 & Ideal

Figure 2.17 Performance speedup running the SPECrate benchmark for the LH scheme, an SRAM tag scheme, and an ideal L4

(Ideal); a speedup of 1 indicates no improvement with the L4 cache, and a speedup of 2 would be achievable if L4 were
perfect and took no access time. The 10 memory-intensive benchmarks are used with each benchmark run eight times. The
accompanying miss prediction scheme is used. The Ideal case assumes that only the 64-byte block requested in L4 needs to be
accessed and transferred and that prediction accuracy for L4 is perfect (i.e., all misses are known at zero cost).

© 2019 Elsevier Inc. All rights reserved.

18

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined & banked - + 1 Widely used

caches

Nonblocking caches + 3 Widely used

Critical word first and + 2 Widely used

early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware

Compiler-controlled + + 3 Needs nonblocking cache;

prefetching possible instruction
overhead; in many CPUs

HBM as additional +— - + + 3 Depends on new packaging

level of cache

technology. Effects depend
heavily on hit rate
improvements

Figure 2.18 Summary of 10 advanced cache optimizations showing impact on cache performance, power consumption, and

complexity. Although generally a technique helps only one factor, prefetching can reduce misses if done sufficiently early; if not, it can

reduce miss penalty. + means that the technique improves the factor, — means it hurts that factor, and blank means it has no impact.
The complexity measure is subjective, with 0 being the easiest and 3 being a challenge.

© 2019 Elsevier Inc. All rights reserved.

19

Typical miss penalty

Structure Size Organization (clock cycles)
Instruction MicroTLB 10 entries Fully associative 2
Data MicroTLB 10 entries Fully associative 2
L2 Unified TLB 512 entries 4-way set associative 20
L1 Instruction cache 8-64 KiB 2-way set associative; 64-byte block 13
L1 Data cache 8-64 KiB 2-way set associative; 64-byte block 13
L2 Unified cache 128 KiB to 2 MiB 16-way set associative; LRU 124

Figure 2.19 The memory hierarchy of the Cortex A53 includes multilevel TLBs and caches. A page map cache keeps track of
the location of a physical page for a set of virtual pages; it reduces the L2 TLB miss penalty. The L1 caches are virtually indexed and
physically tagged; both the L1 D cache and L2 use a write-back policy defaulting to allocate on write. Replacement policy is LRU
approximation in all the caches. Miss penalties to L2 are higher if both a MicroTLB and L1 miss occur. The L2 to main memory bus is
64-128 bits wide, and the miss penalty is larger for the narrow bus.

© 2019 Elsevier Inc. All rights reserved.

[Virtual address <32>]

I

l Virtual page number <16> | Page offset <16>]

[L1 cache incex <102] Biock oftset <6=]

TLB tag <16> Real page number <16
To CPU
Instruction TLE
L8 L1 eache tag <18 L1 data <64 bytes>
2 1—-— To CPU
(5 Instruction cache
Physical address <32>]
[[}
To LZ (see part b below)
(A) The instruction access path
I Virtual address <32>]
| Virtual page number <16> [Page offset <16> |
R I
[L1 cache index <105 Block oftset <6=]
i TLB tag <16> Real page number <16>
To CPU
Data TLE
L1 cacha tag <18> | L1 data <64 bytes>
3
To CPU
= Data cache
L Real page number <16> LZ TLBE
3
[Physical addrass <32> |
| L2 tag compare address <16> [l.2 cache index <10> I Block offset <f> |
L2 cache lag =16 L2 data <64 bytes>
)
~ To L1 cache or CPU

(B) The data access path

Figure 2.20 The virtual address, physical and data blocks for the ARM Cortex-A53 caches and TLBs, assuming 32-bit
addresses. The top half (A) shows the instruction access; the bottom half (B) shows the data access, including L2. The TLB
(instruction or data) is fully associative each with 10 entries, using a 64 KiB page in this example. The L1 I-cache is two-way set
associative, with 64-byte blocks and 32 KiB capacity; the L1 D-cache is 32 KiB, four-way set associative, and 64-byte blocks. The L2
TLB is 512 entries and four-way set associative. The L2 cache is 16-way set associative with 64-byte blocks and 128 cKiB to 2 MiB
capacity; a 1 MiB L2 is shown. This figure doesn’t show the valid bits and protection bits for the caches and TLB.

© 2019 Elsevier Inc. All rights reserved. 21

40.0%

M L1 data miss rate
0, el R o e R e o e e e e R S A A A N D A A S S AR S A A IS s e S g s A M e mesi e
20% B L2 data miss rate

1 T o

25.0% [+ mrmrm e

20.0% [----mmm e

15.0% [r--mn o

10.0% [F-=nmm e

I -

0.0%

Figure 2.21 The data miss rate for ARM with a 32 KiB L1 and the global data miss rate for a 1 MiB L2 using the SPECInt2006
benchmarks are significantly affected by the applications. Applications with larger memory footprints tend to have higher miss
rates in both L1 and L2. Note that the L2 rate is the global miss rate that is counting all references, including those that hitin L1. MCF
is known as a cache buster.

© 2019 Elsevier Inc. All rights reserved.

16

B L2 data average memory penalty

1411 m L1 data average memory penatty [T e
R S ———
=
o
L
T ——
@©
©
o
L A e e
Q
=2
B
©
Q
8
S
A e
0_4—_'_—_'___‘_—_'_—_'_. — I : . r
-y
e 2 & & O S N + & &
¢ & & & 24 F & F S
& & & IS S ! S§ \(&\o

Figure 2.22 The average memory access penalty per data memory reference coming from L1 and L2 is shown for the A53
processor when running SPECInt2006. Although the miss rates for L1 are significantly higher, the L2 miss penalty, which is more
than five times higher, means that the L2 misses can contribute significantly.

© 2019 Elsevier Inc. All rights reserved.

Characteristic Instruction TLB Data DLB Second-level TLB

Entries 128 64 1536

Associativity 8-way 4-way 12-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 8 cycles

Miss 9 cycles 9 cycles Hundreds of cycles to access
page table

Figure 2.23 Characteristics of the i7’s TLB structure, which has separate first-level instruction and data TLBs, both backed
by ajoint second-level TLB. The first-level TLBs support the standard 4 KiB page size, as well as having a limited number of entries
of large 2—4 MiIB pages; only 4 KiB pages are supported in the second-level TLB. The i7 has the ability to handle two L2 TLB misses
in parallel. See Section L.3 of online Appendix L for more discussion of multilevel TLBs and support for multiple page sizes.

© 2019 Elsevier Inc. All rights reserved. 24

Characteristic L1 L2 L3

Size 32 KiB I/32 KiB D 256 KiB 2 MiB per core
Associativity both 8-way 4-way 16-way

Access latency 4 cycles, pipelined 12 cycles 44 cycles
Replacement scheme Pseudo-LRU Pseudo-LRU Pseudo-LRU but with an

ordered selection algorithm

Figure 2.24 Characteristics of the three-level cache hierarchy in the i7. All three caches use write back and a block size of 64
bytes. The L1 and L2 caches are separate for each core, whereas the L3 cache is shared among the cores on a chip and is a total of 2
MiB per core. All three caches are nonblocking and allow multiple outstanding writes. A merging write buffer is used for the L1 cache,
which holds data in the event that the line is not present in L1 when it is written. (That is, an L1 write miss does not cause the line to be
allocated.) L3 is inclusive of L1 and L2; we explore this property in further detail when we explain multiprocessor caches. Replacement
is by a variant on pseudo-LRU; in the case of L3, the block replaced is always the lowest numbered way whose access bit is off. This is
not quite random but is easy to compute.

© 2019 Elsevier Inc. All rights reserved. 25

Virtual page Page Instruction Data Data virtual page Page
number <35> offset <12> CPU <128 <B4 number <36> offset -=12:-
PC 1 .
l T Ilrl T J l i ! T] Data in <B4>
 —
1 @ 1
4= o> @-:32;- w2 <4> <> =31 Ty
Prot V Tag Physical address Prot WV Tag Physical address
! [1 T D [[T I
T —=1 || | || T —=| 11 | |
5 [€)) I — [- L — I -
(128 PTEs in 8 banks) (64 PTEs in 4 banks) '
24> . | <128 <g4=1 | <28 |
<d> <1> <20 <24>
Lz Prot WV Tag Fhysical address
<= || | | 7>
11 I |
T L 1 1 1 I |
L
Bl [&ysss pres
in 12 banks) -
| il
g <G> <g <G>
Index Block offset Index _Bdcd{ offset
1 Data |G8) D V D Tag Data
C <128x4> c <> <1 <P <12Bxd>
A | A I 1 -
S | S S - | |
£ 1 £ L1 | I —
—=28 T
tEIZbﬂud&siana'lks]® (512 blocks in 8 banks) .
21 mux]
<30
V D Tag Data
<20= I <10> <> €1> <21> ¢5|2>I
2 |_Tag Index = It
5 €] ——
c I I — [
a ——————TT
: ©F —
(4K blocks in 4 banks)
; J'
M
l vV D Tag Data @ x E Memaory Interface
3 W<17> <13 <ix <13 <17 #12: T
[Tag Index | N O
¢ @ = 5 ® m
A ¥
c - T 1 '
H asey vev
E @%) 1611 mux |
(128K blocks in 16 banks)

Figure 2.25 The Intel i7 memory hierarchy and the steps in both instruction and data access. We show only reads. Writes are
similar, except that misses are handled by simply placing the data in a write buffer, because the L1 cache is not write-allocated.

© 2019 Elsevier Inc. All rights reserved.

45%
W L1 miss rate prefetches and demand reads
B L1 miss rate demand reads only 41%
L e T i
35% 35%;... .
30%. [=-=r~=r==rramsrommmmsmccremnesmesmersamsssscremsrasons e e
@ 2% [
o
s 22%
1) A N —
18%
15% J15%
1% 1%
10% -
7% .
5% 5% 59, 6%
5% w1 qup =

Figure 2.26 The L1 data cache miss rate for the SPECint2006 benchmarks is shown in two ways relative to the demand L1
reads: one including both demand and prefetch accesses and one including only demand accesses. The i7 separates out L1
misses for a block not present in the cache and L1 misses for a block already outstanding that is being prefetched from L2; we treat the
latter group as hits because they would hit in a blocking cache. These data, like the rest in this section, were collected by Professor Lu
Peng and PhD student Qun Liu, both of Louisiana State University, based on earlier studies of the Intel Core Duo and other processors
(see Peng et al., 2008).

© 2019 Elsevier Inc. All rights reserved. 27

5.0 100%

90%

45 1----
= Prefetches/demand accesses

—— Prefetches miss ratio

4.0 == 80%

70%

60%

50%

Prefetch miss rate

40%

30%

Prefetches to LA/AIl L2 demand references

20%

r 10%

- 0%

Figure 2.27 The fraction of L2 requests that are prefetches is shown via the columns and the left axis. The right axis and the line
shows the prefetch hit rate. These data, like the rest in this section, were collected by Professor Lu Peng and PhD student Qun Liu,
both of Louisiana State University, based on earlier studies of the Intel Core Duo and other processors (see Peng et al., 2008).

© 2019 Elsevier Inc. All rights reserved. 28

22%

22%

20% 77| m L2 demand miss rate
| ™ L2 prefetch miss rate

18% 7

16%

14%

12%

10%

L2 miss rate

8%

6% -

Figure 2.28 The L2 demand miss rate and prefetch miss rate, both shown relative to all the references to L1, which also
includes prefetches, speculative loads that do not complete, and program-generated loads and stores (demand references).
These data, like the rest in this section, were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State

University.

© 2019 Elsevier Inc. All rights reserved.

160
140 o N —— D:lucas —#-D:gcc —¥—l:gec |
—4—D:gap —>l:gap —®— I lucas

120 AT
00

Misses per 1000 instructions

T T
16 64 256 1024 4096
Cache size (KB)

Figure 2.29 Instruction and data misses per 1000 instructions as cache size varies from 4 KiB to 4096 KiB. Instruction misses
for gcc are 30,000—-40,000 times larger than for lucas, and, conversely, data misses for lucas are 2—60 times larger than for gcc. The
programs gap, gcc, and lucas are from the SPEC2000 benchmark suite.

© 2019 Elsevier Inc. All rights reserved.

Instruction misses per 1000 references
(4]

0 T T T T T T T T T T T T T T T T T
01 020304050607 0809 1 111213141516 17 1819

Instructions (billions)

Instruction misses per 1000 references

%0 2 4 6 5 1012 14 16 18 20 22 26 26 28 30 32 3 % 3 40 42
Instructions (billions)

Figure 2.30 Instruction misses per 1000 references for five inputs to the perl benchmark in SPEC2000. There is little variation in
misses and little difference between the five inputs for the first 1.9 billion instructions. Running to completion shows how misses vary
over the life of the program and how they depend on the input. The top graph shows the running average misses for the first 1.9 billion
instructions, which starts at about 2.5 and ends at about 4.7 misses per 1000 references for all five inputs. The bottom graph shows the
running average misses to run to completion, which takes 16—41 billion instructions depending on the input. After the first 1.9 billion
instructions, the misses per 1000 references vary from 2.4 to 7.9 depending on the input. The simulations were for the Alpha processor
using separate L1 caches for instructions and data, each being two-way 64 KiB with LRU, and a unified 1 MiB direct-mapped L2 cache.

© 2019 Elsevier Inc. All rights reserved. 31

Problem category

Problem 80x86 instructions

Access sensitive registers without
trapping when running in user mode

Store global descriptor table register (SGDT)
Store local descriptor table register (SLOT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)

Push flags (PUSHF, PUSHFD)

Pop flags (POPF, POPFD)

When accessing virtual memory
mechanisms in user mode,
instructions fail the

80x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LS L)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, ...)
Push segment register (PUSH CS, PUSH SS, ..)
Far call to different privilege level (CALL)

Far return to different privilege level (RET)

Far jump to different privilege level (JMP)
Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

Figure 2.31 Summary of 18 80x86 instructions that cause problems for virtualization (Robin and Irvine, 2000). The first five
instructions of the top group allow a program in user mode to read a control register, such as a descriptor table register without causing
a trap. The pop flags instruction modifies a control register with sensitive information but fails silently when in user mode. The
protection checking of the segmented architecture of the 80x86 is the downfall of the bottom group because each of these instructions
checks the privilege level implicitly as part of instruction execution when reading a control register. The checking assumes that the OS
must be at the highest privilege level, which is not the case for guest VMs. Only the MOVE to segment register tries to modify control

state, and protection checking foils it as well.

© 2019 Elsevier Inc. All rights reserved.

finclude "stdafx.h”

#include <stdio.h>

#include <time.h>

fidefine ARRAY_MIN (1024) /* 1/4 smallest cache */
fidefine ARRAY_MAX (4096*4096) /* 1/4 largest cache */
int x[ARRAY_MAX]: /* array going to stride through */

double get_seconds{) | /* routine to read time in seconds */
Eimegd_t Ttime;
_time6d(<ime):
return (double) Ttime;

|

int label{int 1) (/* generale text labels */
if (1<1e3) printf(°%1d6.",1);
else if (1<1lef) printf(" i]dk "171024);
else if (i<le9) printf('tldﬂ".1f10435?5):
else printf("¥1dG,".1/1073741824);
return 0;

|

int _tmain(int argc, _TCHAR* argv[]) |

int register nextstep, i. index, stride:

int csize:

double steps. tsteps:

double Toadtime, lastsec, secl, secl, sec: /* timing variables */

/* Initialize output */

printf{")

for (stride=1; stride <= ARRAY_MAX/Z; stride=stride*2)
Tabel(stride*sizeof(int)):

printf{*\n");

{* Main loop for each configuration */

for {csize=ARRAY_MIN; csize <= ARRAY_MAX; csize=csize*2) |
label{csize*sizeof(int}); /* print cache size this Toop */
for (stride=1; stride <= csize/2; stride~stride*2) [

/* Lay out path of memory references in array */

for {index=0: index < csize: index=index+stride)
x[index] = index + stride; /* pointer to next */

x[index-stride] = 0: /* loop back to beginning */

/* Wait for timer to roll over */
Jastsec = get_seconds{):
secl = get_seconds{); while (sec0 == lastsec):

{* Walk through path in array for twenty seconds */
{* This gives 5% accuracy with second resolution */
steps = 0.0; /* number of steps taken */
nextstep = 0: /* start at beginning of path */
secd = get_seconds(); /* start timer */
[/* repeat until collect 20 seconds */
(i=stride;i!=0;i=~i-1) | /* keep samples same */
nextstep = 0;
do nextstep = x[nextstep]; /* dependency */
while (nextstep != 0);
I
steps = steps + 1.0; /* count loop iterations */f
secl = get_seconds(): /* end timer */
| while ((secl - secO} < 20.0): /* collect 20 seconds */
sec = secl - secO:

/* Repeat empty Toop to loop subtract overhead */
tsteps = 0.0:; /* used to match no. while iterations */
secl = get_seconds(): /* start timer */
[/= repeat until same no. iterations as above */
(i=stride:i!=0:i=1-1) { /* keep samples same */
index =
do index = index + stride:
while (index < csizel;

|
tsteps = tsteps + 1.0;
secl = get_seconds(); /* - overhead */
| while (tsteps<steps): /* until = no. iterations */
sec = sec - (secl - secO);
Toadtime = {sec*le8)/{steps*csize);
/* write out results in .csv format for Excel */
printf("¥4.1fF,", (loadtime<0.1) ? 0.1 : lcadtime);
}: /% end of inner for loop */
printf("\n"):
I+ /* end of outer for loop */
return 0;

Figure 2.32 C program for evaluating memory system.

© 2019 Elsevier Inc. All rights reserved.

33

1000

<~ 8K
o 16K
- 32K
-0 64K
< 128K
256K
100 S ———— D= i 512K
- 1M
-0 2M
£ 4M
- 8M
-= 16M
- 32M
& 64M

Read (ns)

> 256M
—+ 512M

% 128M |

4B 16B 64B 256B 1K 4K 16K 64K 256K 1M 4aM 16M 64M 256M
Stride

Figure 2.33 Sample results from program in Figure 2.32.

© 2019 Elsevier Inc. All rights reserved.

cMmp/ [ACT | |
ADD [BO,Rx| | :

Data

, BO,Cx . . ; : :
_ 1R(::D iCAS I?tencyi IZ:)ats:t o,_ft E:}ata:l Odt

Figure 2.34 DDR2 SDRAM timing diagram.

© 2019 Elsevier Inc. All rights reserved.

35

Benchmark Native Pure Para

Null call 0.04 0.96 0.50
Null /O 0.27 6.32 291
Stat 1.10 10.69 4.14
Open/close 1.99 20.43 7.71
Install signal handler 0.33 7.34 2.89
Handle signal 1.69 19.26 2.36
Fork 56.00 513.00 164.00
Exec 316.00 2084.00 578.00
Fork +exec sh 1451.00 7790.00 2360.00

Figure 2.35 Early performance of various system calls under native execution, pure virtualization, and paravirtualization.

© 2019 Elsevier Inc. All rights reserved.

Bus

Integer
interface 9

mapper
unit ”

Memory]

(cluster 0)

Integer unit
(cluster 1)
Integer unit

[

Integer
queue

controller

Floating-point units

Data and control buses

Memory controller

=
o
B
=
=
®
£

Instruction
cache

Figure 2.36 Floorplan of the Alpha 21264 [Kessler 1999].

© 2019 Elsevier Inc. All rights reserved.

37

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

