IPDPS Looking Back Panel

Uzi Vishkin, University of Maryland

N wRSIp b
NS
ACS °e E
niversity of Maryland Institute for Advanced Computer Studies / 56
ARy

A. JAMES CLARK SCHOOL ¢f ENGINEERING

4/13/2011

From 30K feet

* What has gone well? What has gone wrong?
Certain esoteric* developments
¢ What has gone really wrong?
Lack of exoteric** validation
* Requiring/exhibiting knowledge that is restricted to a small group
** Suitable to be imparted beyond this small group

=» | would like to see (for example) 9t" graders in HS, not IPDPS
authors, rank multi-cores for achieving hard speedups

=» Ease-of-programming & speedups will guide them
¢ What came as a surprise?
The low level of attention to exoteric validation by all:
- Academia,
- Government, and most surprising
- Industry

Joint UIUC/UMD Parallel
Algorithms/Programming Course

David Padua, University of lllinois at Urbana-Champaign
Uzi Vishkin, University of Maryland
Jeffrey C. Carver, University of Alabama

QERSI o)
\
N\
ACS °
= - - - - 18 56
niversity of Maryland Institute for Advanced Computer Studies /
4 R YL P’é
A. JAMES CLARK SCHOOL ¢f ENGINEERING

Assumption If you want your program to run significantly faster ...
you’re going to have to parallelize it, HP, 4t edition, 2007

- you're going to have to parallelize it .. But what does it mean?
* |dentify concurrent operations, or
* Program for locality (decomposition-first)
- faster in what way?
* Asymptotic speeds WRT to serialized version, or
* Hard speedups WRT best serial
- who is you?
* Exoteric versus esoteric: 9t graders in HS, or IPDPS authors

My proposed solution
1. Rank multi-cores for achieving hard speedups

2. Get out of the esoteric bubble. Have the ranking done by the
broadest (most exoteric) circle possible

What has gone wrong 1

The Trouble with Multicore: Chipmakers are busy designing microprocessors
that most programmers can‘t handle —D. Patterson, IEEE Spectrum
7/2010

Only heroic programmers can exploit the vast parallelism in current machines
— The Future of Computing Performance: Game Over or Next Level?,
Report by CSTB, NAE 2011

If the objective is bringing parallel computing to the mainstream CS:
- Too difficult to achieve speedups on all parallel machines to date
- Failed to generate a broad base of application programmers

Serial Abstraction & A Parallel Counterpart

* Rudimentary abstraction that made serial computing simple: that any single
instruction available for execution in a serial program executes immediately —
”Immediate Serial Execution (ISE)”

Serial Execution, Based What could I doin parallel at Pparallel Execution, Based on
on Serial Abstraction each step assuming unlimited parallel Abstraction
hardware

time time
Time = Work Work = total #ops Time << Work
Abstracts away different execution time for different operations (e.g., memory hierarchy)
Used by pi to ualize serial computing and supported by hardware

and compilers.

* Rudimentary abstraction for making parallel computing 5|mgl that mdefmtely
many instructions, which are available for concurrent
dubbed Immediate Concurrent Execution (ICE) # processors not even mentioned.
Falls back on the serial abstraction if 1 instruction/step.

V: Using Simple Abstraction to Reinvent Computing for Parallelism, CACM, Jan 2011

What has gone well

* Parallel PRAM algorithmic theory, second in
magnitude only to the serial algorithmic theory

* Won the “battle of ideas” in the 1980s. Repeatedly
challenged without success, since then =

Robust! Must take it into account in architecture
specs .. but only if want the architecture to succeed

4/13/2011

Feasible for many-cores

Algorithms PRAM-On-Chip HW Prototypes
64-core, 75MHz FPGA of XMT [SPAA98..CF08]
=&& Toolchain Compiler +
4 simulator HIPS'11

Programming

Programmer’s workflow *
128-core interconnection network

== rp=—— .
Rudimentary yet stable | 1BM 90nm: SmmX5mm,
400 MHz [Hot107]

|
g —S—g—t—y—

FPGA design=>ASIC

IBM 90nm: 10mmX10mm
150 MHz

Architecture scales to 1000+ cores on-chip

compiler

Web site: www.umiacs.umd.edu/users/vishkin/XMT/index.shtml

What has gone wrong 2: Why most
programmers can’t handle today’s machines?

1. Mismatch of architectures to algorithms
2. Flawed architecture foundation
- originated with ‘design-first figure-out-how-to-program-later’

- Where are the rewards?
1. Funding for new general-purpose architectures: basically gone

2. Originality-seeking publications culture =» mismatch provides rich
opportunities; flawed system legitimate if vendor-backed

3. Easy-to-achieve, strong speedups are almost non-publishable

What came as a surprise

A fool may throw a stone into a well which a hundred wise men
cannot pull out

But:

© The wise men can write many papers on efforts

© Caveat need fresh supply of stones/wells for intellectual merit

® Qur brilliant solution yet another machine too difficult to program

The surprise
We exceeded the imagination of the greatest philosophers of science on
eccentricity of scientific communities ... making Ludwik Fleck blush

Not easy Fleck coined the term ‘thought collectives’ in 1935, 27 years
before Thomas Kuhn's Structure of Scientific Revolutions

What is the solution?

* In the science enterprise: “relatively small esoteric
circles of experts and much bigger exoteric circles of
school teachers and people applying scientific
knowledge in practice”

* “The thought collective can work efficiently only
when it gets suitable encouragement or stimuli
from the exoteric circles of science”

=>»Enough hiding. Got to broadly rank systems by
‘achieving speedups’

Example tor evidence on ease ot obtaining
speedups
Breadth-first-search (BFS)
¢ 40+ students in fall 2010 joint UIUC/UMD course
- <1X speedups using OpenMP on 8-processor SMP
- 8x-25x speedups on 64-processor XMT FPGA prototype.

But, what’s the big deal of 64 processors beating 8?
« Silicon area of 64 XMT processors ~= 1-2 SMP processors

