
4/13/2011

1

IPDPS Looking Back Panel

Uzi Vishkin, University of Maryland

From 30K feet
• What has gone well? What has gone wrong?

Certain esoteric* developments

• What has gone really wrong?

Lack of exoteric** validation

* Requiring/exhibiting knowledge that is restricted to a small group

** Suitable to be imparted beyond this small group

���� I would like to see (for example) 9th graders in HS, not IPDPS

authors, rank multi-cores for achieving hard speedups

���� Ease-of-programming & speedups will guide them

• What came as a surprise?

The low level of attention to exoteric validation by all:

- Academia,

- Government, and most surprising

- Industry
2

Joint UIUC/UMD Parallel

Algorithms/Programming Course

David Padua, University of Illinois at Urbana-Champaign

Uzi Vishkin, University of Maryland

Jeffrey C. Carver, University of Alabama

Assumption If you want your program to run significantly faster …
you’re going to have to parallelize it, HP, 4th edition, 2007

- you’re going to have to parallelize it .. But what does it mean?

* Identify concurrent operations, or

* Program for locality (decomposition-first)

- faster in what way?

* Asymptotic speeds WRT to serialized version, or

* Hard speedups WRT best serial

- who is you?

* Exoteric versus esoteric: 9th graders in HS, or IPDPS authors

My proposed solution

1. Rank multi-cores for achieving hard speedups

2. Get out of the esoteric bubble. Have the ranking done by the
broadest (most exoteric) circle possible

What has gone wrong 1

The Trouble with Multicore: Chipmakers are busy designing microprocessors
that most programmers can‘t handle —D. Patterson, IEEE Spectrum
7/2010

Only heroic programmers can exploit the vast parallelism in current machines
– The Future of Computing Performance: Game Over or Next Level?,
Report by CSTB, NAE 2011

If the objective is bringing parallel computing to the mainstream CS:

- Too difficult to achieve speedups on all parallel machines to date

- Failed to generate a broad base of application programmers

Serial Abstraction & A Parallel Counterpart
• Rudimentary abstraction that made serial computing simple: that any single

instruction available for execution in a serial program executes immediately –
”Immediate Serial Execution (ISE)”

Abstracts away different execution time for different operations (e.g., memory hierarchy)
Used by programmers to conceptualize serial computing and supported by hardware
and compilers.

• Rudimentary abstraction for making parallel computing simple: that indefinitely
many instructions, which are available for concurrent execution, execute immediately,
dubbed Immediate Concurrent Execution (ICE) # processors not even mentioned.
Falls back on the serial abstraction if 1 instruction/step.

V: Using Simple Abstraction to Reinvent Computing for Parallelism, CACM, Jan 2011

What could I do in parallel at

each step assuming unlimited

hardware

�
#

ops

.. ..

time

#

ops

.. ..

..

.. ..

time

Time = Work Work = total #ops Time << Work

Serial Execution, Based

on Serial Abstraction

Parallel Execution, Based on

Parallel Abstraction

4/13/2011

2

What has gone well

• Parallel PRAM algorithmic theory, second in

magnitude only to the serial algorithmic theory

• Won the “battle of ideas” in the 1980s. Repeatedly

challenged without success, since then �

Robust! Must take it into account in architecture

specs .. but only if want the architecture to succeed

7

Feasible for many-cores

Algorithms

Programming

Programmer’s workflow

Rudimentary yet stable

compiler

PRAM-On-Chip HW Prototypes

64-core, 75MHz FPGA of XMT [SPAA98..CF08]

Toolchain Compiler +

simulator HIPS’11

128-core interconnection network

IBM 90nm: 9mmX5mm,

- 400 MHz [HotI07]

FPGA design�ASIC

• IBM 90nm: 10mmX10mm

• 150 MHz

Architecture scales to 1000+ cores on-chip

Web site: www.umiacs.umd.edu/users/vishkin/XMT/index.shtml

What has gone wrong 2: Why most

programmers can’t handle today’s machines?

1. Mismatch of architectures to algorithms

2. Flawed architecture foundation

- originated with ‘design-first figure-out-how-to-program-later’

- Where are the rewards?

1. Funding for new general-purpose architectures: basically gone

2. Originality-seeking publications culture � mismatch provides rich

opportunities; flawed system legitimate if vendor-backed

3. Easy-to-achieve, strong speedups are almost non-publishable

9

What came as a surprise

A fool may throw a stone into a well which a hundred wise men

cannot pull out

But:

☺ The wise men can write many papers on efforts

☺ Caveat need fresh supply of stones/wells for intellectual merit

☺ Our brilliant solution yet another machine too difficult to program

The surprise

We exceeded the imagination of the greatest philosophers of science on

eccentricity of scientific communities … making Ludwik Fleck blush

Not easy Fleck coined the term ‘thought collectives’ in 1935, 27 years

before Thomas Kuhn’s Structure of Scientific Revolutions

10

What is the solution?

• In the science enterprise: “relatively small esoteric

circles of experts and much bigger exoteric circles of

school teachers and people applying scientific

knowledge in practice”

• “The thought collective can work efficiently only

when it gets suitable encouragement or stimuli

from the exoteric circles of science”

�Enough hiding. Got to broadly rank systems by

‘achieving speedups’
11

Example for evidence on ease of obtaining

speedups
Breadth-first-search (BFS)

• 40+ students in fall 2010 joint UIUC/UMD course

- <1X speedups using OpenMP on 8-processor SMP

- 8x-25x speedups on 64-processor XMT FPGA prototype.

But, what’s the big deal of 64 processors beating 8?

• Silicon area of 64 XMT processors ~= 1-2 SMP processors

12

