HW4: Shared-Memory Sample Sort

Course: ENEE159V/H, Spring 2009
Title: Shared-Memory Sample Sort
Date Assigned: March 26th, 2009

Date Due: April 15th, 20093:30pm

1 Assignment Goal

The goal of this assignment is to provide a randomized sorting algorithmuhsitefficiently on XMT.
The Sample Sort algorithm follows a "decomposition first" pattern and is widsdgl on multiprocessor
architectures. Being a randomized algorithm, its running time depends ontphe ofia random number
generator. Sample Sort performs well on very large arrays, with higibegility.

In this assignment, we propose implementing a variation of the Sample Sort algaohigth performs
well on shared memory parallel architectures such as XMT.

2 Problem Statement

The Shared Memory Sample Sort algorithm is an implementation of Sample Sehdmed memory
machines. The idea behind Sample Sort is to find a sptof elements from the array, calleglitters
which partition then input elements int@ groupsset0]...sefp — 1]. In particular, every element in
sefi] is smaller than every elementsefi + 1]. The partitioned sets are then sorted independently.

The input is an unsorted array. The output is returned in arragesult Let p be the number of
processors. We will assume, without loss of generality, Mhad divisible by p. An overview of the
Shared Memory Sample Sort algorithm is as follows:

Step 1. In parallel, a se6 of sx p random elements from the original arr&yis collected, where is
the number of TCUs available arsds called the oversampling ratio. Sort the ar@yusing an
algorithm that performs well for the size 8f Select a set op — 1 evenly spaced elements from

itintoS: S={99,929,...,5(p—1) x 5}

These elements are the splitters that are used below to partition the elemArits@p sets (or
partitions) sefi], 0 <i < p. The sets arsef0] = {A[i] | Ali] < S[0]}, sef1] = {Ali] | S[0] <
Ali] < S[1]}, ...,sefp—1] ={A]i] | S[p—1] < Ali]}.

Step 2. Consider the input arraidivided intop subarraysB[0] = A[0,...,N/p—1], B[1] =A[N/p,...,2N/p—

1] etc. Theith TCU iterates through subarrdji] and for each element executes a binary search
on the array of splitterS, for a total ofN/p binary searches per TCU. The following quantities
are computed:

e cli|[]j] - the number of elements froBJi| that belong in partitiosef j|. Thec|i][j] makes up
the matrixC as in figuré11.

0 N/p-1 2N/p-1 {p-1iN/p-1 N-1

) i p-1
Bartition: 0 1 j _i‘_7_"“"’-'-u_,g—_‘17_
teuod | 00 |Po | [Tor [P “o | Py Cop-185,1
& 5 c S, c S c ;]
TCU i io P i0 il P il ij P ij ip-1 Pl p-1
c S c S c o ps . c]
TCU p-1; p-19 Bl [Sp11510 p-1j| Pp-L,j oot PRt
sum, sum; aa sum; v sump,_y
global_psy | global_ps; e global_ps; vEs global_ps, ;| global_ps,

Figure 1: TheC matrix built in Step 2.

e partition[k] - the partition (i.e. thesefi]) in which elementAlk] belongs. Each element is
tagged with such an index.

e seriallk] - the number of elements iBJi] that belong insefpartition[k]] but are located
beforeAK] in Bi].

For example, ifB[] [105101,99,205,75,14] and we haves = [100,150,...] as splitters, we
will have c[0][0] = 3, c[0][1] = 2 etc., partition[0] = 1, partition[2] = O etc. andserial[0] = O,
serial[l] =1, serlaI[S] 2.

Step 3.1 Compute prefix-sumgsi][j] for eachcolumn of the matrixC. For exampleps0][j],pd1][j].- .- .PIP—

1[i] are the prefix-sums af0][j].c[1][i]. . - ¢[p— 1] [j].
Also compute the sum of columnwhich is stored irsunii].

Hint: For convenience, you can use a serial prefix-sum algorithm for@adamn, and start them
all in parallel. Note that the ordering of the prefix-sum values is importait,yan cannot use
the XMT ps() orpsn() instructions.

Step 3.2 Compute the prefix sums of treunjl], ..., sunjp] into global_pd0,...,p— 1] and the to-
tal sum ofsumiji] in global_psp]. This definition ofglobal_psturns out to be a programming
conveninence.

Hint: You can also use a serial prefix-sum algorithm here. Since the numbgutfelements
is small (equal with the number of processgpjsit is not worth using a parallel prefix-sum algo-
rithm, such as the one in the class notes.

Step 4. Each TCUi computes: for each elemeftj] in segmen8jil, i % <j<(i+ 1)% -1

pogj] = global_pgpartition[j]] + pdi][partition[j]] 4 seriall j]

CopyResulpogj]] = A[j].

Step 5. TCU i executes a (serial) sorting algorithm on the elemengtif, which are now stored in
Resulfglobal_pgi],...,global_pdi + 1] —1].

At the end of Step 5, the elementsAfre stored in sorted order Result

3 Hints and Remarks
Sorting algorithms The Sample Sort algorithm uses two other sorting algorithms as building blocks:

e Sorting the arrays of sizesx p. Any serial or parallel sorting algorithm can be used. Note
that for the "interesting” values of (i.e. N > p), the size ofSis much smaller than the size
of the original problem. An algorithm with best overall performance is etqukc

e Serially sorting partitions dResultby each TCU. Any serial sorting algorithm can be used.
Remember to follow the restrictions imposed on spawn blocks, such as naingjlmmction
calls, and avoid concurrent reads or writes to memory.

Oversampling ratio The oversampling ratis influences the quality of the partitioning process. When
s is large, the partitioning is more balanced with high probability, and the algorigmnionms
better. However, this means more time is spent in sampling and s&tifige optimum value for
sdepends on the size of the problem. We will use a default valse-a8 for the inputs provided.

Random numbers for sampling Step 1 requires using a random number generator. Such a library
function is not yet implemented on XMT. We have provided you with a preegead sequence
of random numbers as an array in the input. The number of random \aliles sequence is
provided as part of the input. The numbers are positive integers in tige arl,000,000. You
need to normalize these values to the range that you need in your progisera ¢obal index
into this array and increment it (avoiding concurrent reads or writes) gae a random number
is requested, possibly wrapping around if you run out of random ntsnbe

Number of TCUs Although the number of TCUs on a given architecture is fixed (e.g. 1084pr
for the purpose of this assignment we can scale down this number to alldev &ssting and
debugging. The number of available TCUs will be provided as part of {hat iior each dataset.

Testing for correctness For the larger data-sets, it is impractical to test the correctness of yaur alg
rithm by printing all the elements of the result. Instead, you can add a testingtsthe very
end of the implementation which simply iterates through all the elements irethut t array and
tests that they are in increasing order. Make sure to remove or commethiotést before you
submit your program or collect cycle counts, since it will significantly etftee performance of
your program.

Register spills There is currently an issue on XMT which occurs when the body of a sgaeck
exceeds a certain complexity. Please refer to Appendix A for more informatichow to deal
with this problem, if you encounter it while solving this assignment.

4 Assignment

1. Parallel Sort: Write a parallel XMTC program ssort.ptbat implements the Shared Memory
Sample Sort algorithm. This implementation should be as fast as possible.

2. Serial Sort: Write a serial XMTC program ssort.sleat implements a serial sorting algorithm of
your choice. This implementation will be used to for speedup comparisoncafouse one of the
serial sorting algorithms implemented as part of sample sort, or you can wiiitergidt sorting
algorithm. This implementation should be as fast as possible.

4.1 Setting up the environment

The header files and the binary files can be downloaded from the webthsifiollowing commands:

$ wget http://terpconnect.und. edu/ ~j spei ser/ssort.tgz
$ tar xzvf ssort.tgz

This will create the directorgsortwith following folders: data, sr¢ anddoc. Data files are available in
data directory. Put yourfiles tosrc, andtxt files todoc

4.2 Input Format

The input is provided as an array of integérs

#define N The number of elements to sort.

int A[N] The array to sort.

ints The oversampling ratio.

#define NTCU The number of TCUs to be used for sorting.

#define NRAND The number of random values in the RANDOM array.
int RANDOM[NRANDO | An array with pregenerated random integers.

int result[N] To store the result of the sorting.

You can declare any number of global arrays and variables in yogrgmmas needed. The number of
elements in the arraysis declared as a constant in each dataset, and you can use it to deglbagyau
arrays. For example, this is valid XMTC code:

#define N 16384

int tenpl[16384];
int temp2[2*N;
int pointer;

int min() {
...

}

4.3 Data sets

Run all your programs (serial and parallel) using the data files given ifotlesving table. You can
directly include the header file into your XMTC code witincludeor you can include the header file
with the compile optionrinclude To run the compiled program you will need to specify the binary data
with —data-fileoption.

Dataset| N NTCU | Header File Binary file

di 256 8 data/d1/ssort.h data/d1/ssort.xbo
d2 4096 8 data/d2/ssort.h data/d2/ssort.xbo
d3 128k 64 data/d3/ssort.h data/d3/ssort.xbo

5 Output

The array has to be sortedimcreasingorder. The arrayesult should hold the array of sorted values

for both the serial and parallel solutions

Prepare and fill the following table: Create a text file named table.tixt doc Remove anyprintf
statements from your code while taking these measurement$rintf statements increase the clock
count. Therefore the measurements with printf statements may not reflectubetame and work done.

Dataset

dl

dz2

d3

Parallel sort clock cycles

Serial sort clock cycles

5.1 Submission

NOTE: When performing the archiving, do not include the entire sscettbry, just archive the src and

doc folders. Run the following commands to submit the assignment:

$ tar czvf selection.tgz doc/ src/

A Avoiding register spills in XMTC

The following restriction applies when programming in XMTC at this time.

Currently the only local storage available to threads is in the TCU registéerefore, when pro-
gramming in XMTC, special care has to be taken not to overflow the capddhisstorage. Registers
are used to store local variables and temporary values. The compilea dedgs of optimizations to fit
everything into registers, but in some cases when a parallel section isridrgpaplex, it fails to do so
and additional storage is required.

At the present time, if the compiler detects such a situation, compilation will fail withetinor
message Regi ster spill detected in spawn block. Aborting conpilation.”

The solution is to split the spawn block into shorter, simpler parallel sectiongtfich the registers
provide enough storage. At the present time, if you get an error me$sag the compiler regarding
register spills, you will have to change the code by splitting the spawn segtiamself. There is no
general recipe for this, you will have to use your knowledge of the agijdic to chose how to change
the code.

Here is a simple example. In the code in the left column below, the value x is tifesl lzeginning
and the end of the tread, but not in the middle. However, this usually recairegister to be allocated
to x and reserved throughout the whole parallel section. This incréasesgister pressur@and might
lead to a register spill, if theodel andcode2 sections are complex and require using local registers as
well.

An immediate possible solutionis presented in the righthand column below: the parallel section
is split into two, and x is re-assigned closer to the end, thus reducing tisteragressure and possibly
avoiding a register spill.

Initial code Transformed code

Hi gh register pressure

spawn(l ow, high) {

int i, x=A%;
for (i=0; i<5; i++) {
B[$+i] = x;

[l .. code 1 .. [/
}
for (i=0;i<5;i++) {
[/l .. code 2 .. [/
}
as] = x;

Regi ster pressure is |ower

spawn(l ow, high) {

int i, x=A9%;
for (i=0; i<5; i++) {
B[$+i] = x;
/[l .. code 1 .. [/
}
} Il join

spawn(| ow, hi gh) {
int i, Xx;
for (i=0;i<5;i++) {
[l .. code 2 .. [/
}
x = ALSl;
as] = x;
} Il join

A medium-term solution, which is currently under development, is to use a parallel stack, stored in
shared memory. However, there is a performance issue with this solutioimgsémd retrieving values
from shared memory is much slower than the registers, and can significatiranning time of the
parallel section (for example if the memory access occurs in a loop).

Thelong term ideal solutionwill include the following ingredients:

e increasing the number of registers available

e adding some type of local memory to the TCUs (e.g. cluster buffers or bepatts) and retarget-
ting register spills to them (instead of shared memory)

¢ have the compiler perform spawn block splitting (as showed above) to minirsizg the stack
and generate the optimal code without the programmer’s assistance

e use data prefetching mechanisms to reduce the penalty of a register spill taoynemo

	Assignment Goal
	Problem Statement
	Hints and Remarks
	Assignment
	Setting up the environment
	Input Format
	Data sets

	Output
	Submission

	Avoiding register spills in XMTC

