
HW3: Randomized Selection

Course: ENEE159V/H, Spring 2009
Title: Randomized selection
Date Assigned: March 12th, 2009
Date Due: March 26th, 20093:30pm

1 Problem

The objective of this homework is to use the XMT paradigm in order to program a parallel variant of
the serial randomized algorithm for selection in expected linear time. The serial algorithm appears in
chapter 9.2 of the bookIntroduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and
Stein.

The project requires writing both a serial and a parallel version, run both on the XMT simulator and
compare running times. Before starting programming derive an iterative variant of the serial algorithm
in a text form. Both serial and parallel algorithms must beITERATIVE, notRECURSIVE.

For the parallel algorithm:

• The expected number of iterations should beO(logn)

• The expected amount of work should be linear.

• The expected parallel time should beO(log2n)

Hint: For the parallel implementation, you can use a similar method as in the “Array Compaction”
assignment to count the number of elements smaller/larger than a specific value, in parallel. You can use
theps() instruction and severalpsBaseReg values to hold the various counters.

2 Assignment

Your program will take a constant value as a#definestatement in the header file (see Input section), and
identify the element ranked at that position.POSITION=0means the minimum element,POSITION=10
means 11th smallest element etc.

The program must not destroy the initial data array, therefore you may want to start by copying the
initial array to a temporary location. If you need to do this in your implementation, you can use a
parallel section to copy the array for the parallel solution, but you must dothe copying serially for the
serial solution.

1. Parallel implementation

(a) Describe the parallel algorithm in file algorithm.p.txt

1



(b) Provide a brief work and time complexity analysis of this algorithm. Append this analysis
to the file algorithm.p.txt

(c) Write an XMTC program (XMTPAR) that executes this algorithm. Name your code file
selection.p.c

(d) Run this program using the data sets given in the Input section

(e) Collect the number of clock cycles for each run into file table.txt(see Output section)

2. Serial implementation

(a) Describe the serial algorithm in file algorithm.s.txt

(b) Provide a brief time complexity analysis of this algorithm. Append this analysisto the file
algorithm.s.txt

(c) Write an XMTC program (XMTSER) that executes this algorithm. Name your code file
selection.s.c

(d) Run this program using the data sets given in the Input section

(e) Collect the number of clock cycles for each run into file table.txt(see Output section)

2.1 Setting up the environment

The project files can be downloaded from the web using the following commands:

$ wget http://terpconnect.umd.edu/~jspeiser/selection.tgz
$ tar xzvf selection.tgz

This will create the directoryselectionwith following folders:data, src, anddoc. Data files are available
in data directory. Put yourc files tosrc, andtxt files todoc.

2.2 Input format

Obtaining random numbers: We do not have a library random number generator at this time. Instead,
we have provided a list of pre-generated random numbers in the Input data. The numbers are positive
integers in the range 0..1,000,000. You need to normalize these values to the range that you need in
your program.

You should use the random values in the order they are in the array, keeping track of the last used
one by using a global variable. In case you need more values than provided, re-use them in a round-
robin fashion. The total number of random values available is stored in therandom_numbers_dim0_size
variable in the input data.

#define N The number of elements in the data array
int random_numbers[500] This array contains 500 random numbers that you can use instead of

a random number generator
int array[N] This array contains N integers for you to work on. You will apply

"randomized selection" to this array
#define POSITION 0 The position in the array that you are searching for. (Zero-based counting)

#define POSITION 0 means "search for minimum"
#define POSITION 4 means "search for the fifth smallest element"
#define POSITION 255 means "search for the 256th smallest element".
In N=256 dataset, this means "search for the maximum".

2



Temporary and auxiliary arrays: You can declare any number of global arrays and variables in your
program as needed. The number of elements in the arrays (n) is declared as a constant in each dataset,
and you can use it to declare auxiliary arrays. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];
int temp2[2*N];
int pointer;

int main() {
//...
}

2.3 Data sets

Run all your programs (serial and parallel) using the data files given in thefollowing table. You can
directly include the header file into your XMTC code with#includeor you can include the header file
with the compile option-include.
The X-Small data set is provided for easier tracing/debugging. It will notbe included in grading.

Data Set N Header File Binary File POSITION
(logN)∗ (logN)−9
log is based 2
zero-based counting

X-Small N=16 data/xsmall/selection.h data/xsmall/selection.xbo 6
Small N=256 data/small/selection.h data/small/selection.xbo 54
Medium N=65536 data/medium/selection.hdata/medium/selection.xbo246
Large N=1048576 data/large/selection.h data/large/selection.xbo 390

2.4 Testing the program

Some results are provided for each dataset.

Data Set N POSITION and corresponding result
X-Small N=16 POSITION=10 : 56
Small N=256 POSITION=100 : 348877
Medium N=65536 POSITION=100 : 1545
Large N=1048576 POSITION=1000 : 942

2.5 Output

Prepare and fill the following table: Create a text file named table.txtin docand put the these tables
in it.

3



Remove anyprintf statements from your code while taking these measurements.Printf statements
increase the clock count. Therefore the measurements with printf statements may not reflect the actual
time and work done.

XMTPAR Clock Cycles
Input size Small Medium Large
Position=0
Position=N-1
Position=(log n)*(log n)-9

XMTSER Clock Cycles
Input size Small Medium Large
Position=0
Position=N-1
Position=(log n)*(log n)-9

Hint: You can override the POSITION constant by inserting#define POSITION xin your XMTC file.
This will allow you to take the different measurments required for the output section without changing
the input dataset files.

2.6 Submission

For this project, all work should be contained within the selection directory. Upon completing the project
use the following command:

$ tar czvf selection.tgz selection

4


	Problem
	Assignment
	Setting up the environment
	Input format
	Data sets
	Testing the program
	Output
	Submission


