HWS3: Merge Sort

Course: ENEE159S

Title: Merge Sort

Date Assigned: April 18th, 2009

Date Due: May 8th, 2009 5:00pm

1 Assignment Goal

The final goal of this assignment is to implement the parallel merge-sort algorithm that is introduced in
the Section 4.2 of the class notes in XMTC and run it on the XMT simulator. Your parallel algorithm
should be as fast as possible.

As the first step of this assignment you will be asked to implement a serial and a parallel solution to
the merging problem. The second step will be implementing the merge-sort algorithm using the merge
subroutines from the first step as the building blocks. Finally, the third step will be fine-tuning your
merge-sort implementation for performance.

2 Description of the Merging Problem

You are given two integer arrays of equal size, X = X(0),...,.X(k—1) and Y =Y(0),...,Y(k—1). The
arrays are monotonically non-decreasing. The objective is to map each of these elements into an array
Z =17(0),...,Z(2k — 1) which is also monotonically non-decreasing. logk is an integer. You are to
implement a serial and a parallel solution to the merging problem based on Section 4.1 of the class
notes. For the parallel solution use the least number of spawn commands possible (see Exercise 9 in the
same section).

Section 4.1 presents two parallel solutions to the merging problem: the “surplus-log” parallel algo-
rithm and the parallel algorithm for ranking. Both algorithms run in O(logn) time on an ideal PRAM.
On the other hand, the “surplus-log” algorithm takes a total of O(nlogn) work as opposed to the O(n)
work of the parallel algorithm. Remember that, the XMT computer is not an ideal PRAM and it features
a limited number of cores (64). This means that work measure will reflect on the total execution time
and you should choose the algorithm that performs best not only with respect to the time measure but
also the work measure.

Note that the description of the problem here is more general than the definition in the class notes.
Specifically, k/logk may not be an integer. Elements of X and Y are still defined to be unique and
pairwise distinct.

3 Description of the Merge-Sort Algorithm

You are given an integer array of n elements A = A(0),...,A(n— 1) where n = 2/ for some integer / > 0.
Elements of A are unique. The objective is to reorder A into an array B=B(0) < B(1) <...<B(n—1)
via the merge-sort algorithm given in Section 4.2 of the class notes.

The merge-sort algorithm is presented recursively in the class notes, however, it can also be imple-
mented non-recursively. In fact, writing parallel recursion with the current XMT compiler is not very
convenient'. An alternative is to use the “balanced binary tree” form in Algorithm 1. In the pseudocode
notation of Algorithm 1, Cy, is a sub-array of an array C, such that C,, = C(x- (y—1)),...,C(x-y—1)
and A < B is a simple pointer swap operation in the C-language”. Pointer swap is used to interchange
the elements of the arrays A and B for the next iteration of the outer loop. Figure 1 visually demon-
strates one iteration of this algorithm for 7 = 2 and i = 1 on an example? that sorts an input array of
A=(3,7,4,5,2,8,1,6).

Algorithm 1 Non-recursive merge-sort algorithm.
1: for h:=1tologn do
2. fori:=1ton/2"do

3: BZ/’,i — MERGE(Azh—lgifl,Azh—]721')
4: end for
5 A+ B
6: end for
7: A— B
1
2
3
1
5
[i}
7
BJ'J 8
N ' 1
' a] 4 ' 2
' 5 ' B
| T | T2z a
| | ;’J
| /\ 1 /\ h=2
I {3 4. I 2 1
/J?" | g 5
_a"- I I
RN A A
2 8 A [i}
i A
R'd
i=1

Figure 1: Example of the merge-sort algorithm, non-recursive form.

There are two potential sources of parallelism in the merge-sort algorithm: the for loop at the line 2
of the algorithm above, which is merging pairs within a level of the binary tree, and the merging itself
(line 3). Even though these types can be applied concurrently, in this assignment you are restricted to
using only one type for each level (i.e. for a fixed value of /). On the other hand, you are free to switch
the type of parallelism you are using for different levels. Consider the first iteration of the outer loop

IRemember that currently the XMT compiler does not support nested spawns or function calls within a parallel section.
Nesting is still possible with the sspawn construct, which you are not allowed to use in this assignment.

ZDepending on the implementation one array copy operation might be required, which can be accomplished in O(n) work
and O(1) time.

3Same example is given in the Figure 10 of the class notes.

1
2
3
4
&
[i}
i
a8

1
2
3
4
5
G
7
8

Parallel
(a) (b)

Figure 2: (a) For h = 1, serial merge operations done in parallel, (b) For & = 2, parallel merge operations
done serially.

(h=1) for the example above, given in Figure 2a. The merge operations (denoted by the dashed boxes)
can be performed in parallel, but then each merge operation has to be done serially. Conversely, for the
second iteration of the outer loop (Figure 2b), parallel-merge can be used to merge the arrays however
the merge operations have to be performed one at a time.

Performance considerations are the reason for switching between the two types of parallism. Closer
to the leaves of the binary tree, the sub-arrays are relatively smaller in size, but there are many of them to
be merged. Therefore it will be more efficient to use a serial merge algorithm and assign each merge to
a parallel thread. On the other hand, towards the root of the binary tree, size of the sub-arrays grows and
the number of nodes to be processed diminishes. In this case, one should consider switching to using
parallel-merge but handle the tree nodes serially. The cross-over point usually depends on factors such
as the parameters of the underlying architecture, how you structure your code, etc. and can be found
empirically through a number of trials. It is a part of your assignment to find the point that gives the best
performance.

4 Assignment

For the first three items below, provide a source file under the src directory. A template file for each item
is already provided at the same location. The last item, performance graph, should be placed under the
root of the assignment package (parent of the src directory).

1. Serial merge —merge.s.c: Implement a serial routine for the merge problem.
2. Parallel merge — merge.p.c: Implement a parallel routine for the merge problem.

3. Merge-sort — mergesort.c: Implement the merge-sort algorithm based on the description in
Section 3. Your implementation should choose between the two types of parallelism depending
on the level of the binary tree it is operating on (i.e. the value of & in Algorithm 1) and use the
serial and parallel merge as building blocks.

4. Fine-tuning merge-sort: You should find the optimal cross-over point for your algorithm via ex-
haustive search. Cross-over point is defined as the smallest value of £ (in Algorithm 1) for which

you use the parallel merge subroutine. The objective function for your search is the minimum
execution time. You are supposed to report this value in mergesort.c. For instructions see the
comments in the file.

5. Cross-over performance graph — crossover.pdf: Run mergesort.c over the largest data set
(dms3) for various cross-over values (you can use the make crossover command, see Sec-
tion 4.6). Record the cycle counts reported by the simulator for every run. Plot cross-over value
vs. cycle counts in crossover.pdf. Mark the global minimum on the graph. The graph should
justify your choice of the cross-over value in the previous item. crossover.pdf should be placed
under the root of the assignment package (parent of the src directory).

Note that XMTC compiler does not allow function calls in parallel sections. This means you cannot
call the serial merge sub-routine from inside the merge-sort algorithm. You will have to manually copy-
paste the code instead.

4.1 Setting up the environment

The header files and the binary files are packed in mergesort.tgz. Extract this file using the following
command:

$ tar xzvf mergesort.tgz

This will create the directory mergesort with following folders: data, and src. Data files are available in
the data directory. Edit the c files in src.

4.2 Data format for Serial and Parallel Merge Algorithms

The input and output are defined as arrays of integers, all less than 23! — 1.

#define k The number of elements in X and Y arrays.
#define logk | Logarithm of k in base 2.

int X[k] The first input array.

int Y[k] The second input array.

int R[2k] The output array.

You can declare any number of global arrays and variables in your program as needed. X and Y
are monotonically non-decreasing arrays and logk is an integer. The output should be stored in R. The
values in X and Y need not to be preserved after the execution.

4.3 Data format for Parallel Merge-Sort Algorithm

The input and output are defined as arrays of integers, all less than 2°! — 1. An INF macro is defined in
the mergesort. c file for convenience.

#define n The number of elements in the input and output arrays.
#define logn | Logarithm of » in base 2.

int A[k] The input array.

int R[K] The output array.

You can declare any number of global arrays and variables in your program as needed. logk is an
integer. The output should be stored in R. The values in A need not to be preserved after the execution.

4.4 Data sets for Serial and Parallel Merge Algorithms

You should run your program using the following data sets including the header file with the compiler
option -include. You can also use the #include directive inside the XMTC file, however remove these
directives before submitting your code.

Data Set | k Header File Binary file

dml 128 | data/dm1/merge.h | data/dmsl/merge.xbo
dm?2 2048 | data/dm2/merge.h | data/dms2/merge.xbo
dm3 64K | data/dm3/merge.h | data/dms3/merge.xbo

Each data directory includes a correctout.txt file that contains the correct output for the matching
input.

4.5 Data sets for Parallel Merge-Sort Algorithm

You should run your program using the following data sets including the header file with the compiler
option -include. You can also use the #include directive inside the XMTC file, however remove these
directives before submitting your code.

Data Set | n Header File Binary file

dms1 256 data/dms1/mergesort.h | data/dmsl/mergesort.xbo
dms?2 4096 | data/dms2/mergesort.h | data/dms2/mergesort.xbo
dms3 128K | data/dms3/mergesort.h | data/dms3/mergesort.xbo

Each data directory includes a correctout.txt file that contains the correct output for the matching
input.

4.6 Compiling and executing via the Makefile system

You can use the provided makefile system to compile and run your programs. For the smallest data set
(dms1) merge-sort program is run as follows:

> make run INPUT=mergesort.c DATA=dmsl

This command will compile and run the mergesort.c program with the dms1 data set. For other
programs and data sets, change the name of the input file and the data set. You can use the make check
command to compile and run your program and check the result for correctness (remember that each
data set comes with a matching correct output).

> make check INPUT=mergesort.c DATA=dmsl

As aresult of this command, contents of the output array R will be dumped in a text file, R.txt, which
will be automatically compared against the matching correctout.txt file. If you need to just compile the
input file (no run):

> make compile INPUT=mergesort.c DATA=dmsl

In order to list the simulation clock cycles for different values of the cross-over parameter (from 2
to 18) you can run the following command:

> make crossover

This will run mergesort.c file with the dms3 data set. The results will be reported in cycle.txt file.
You are supposed to graph these values in the crossover.pdf file.
You can get help on available commands with

> make help
Note that, you can still use the xmt cc and xmt sim commands as in the previous assignments.

4.7 Grading Criteria and Submission

In this assignment, you will be graded on the correctness of your programs (merge.s.c, merge.p.c and
mergesort.c) and the performance of your merge-sort implementation in terms of completion time. Per-
formance of your program will be compared against the performance of our reference implementation
with the largest data set (dm3), which runs in 5.9M clock cycles. Don’t forget that you are also supposed
to report the cross-over point in mergesort.c.

Please remove any printf statements that you may have placed for debugging purposes from your
code as they will affect the performance and possibly break the automated grading script. Once you
have the three source files under the src directory you can check the correctness of your programs:

> make testall

check the validity of your submission:
> make submitcheck

and package the assignment into a tgz file for submission:
> make submit

This command will produce a compressed file (mergesort_sln.tgz) in the parent directory of the src
directory.

