
0 0 C
.

C C
, C

0 0 S 0

C C
)

C
)

0

0 11 0 5
— 0

.

O
r

C
t
. 0

c C
t

a
q
s C

.

C
l)

—
l 0
0

—
,
-

Cl
)

IfC,
) C

C
l)

0 CD I
.

0

I

0 C
0 C 0

I

364

tree and graph algorithms, most of which are not very recent. The last two chapters bring

more recent very fast deterministic and randomized parallel algorithms. Our presentation

emphasizes examples where the main contribution of a paper was not principally in the results

it presented, hut rather in a new idea, that provided new tools, and thereby evolutionized

concepts as to what can be done efficiently in parallel. Frequently, this meant identifying and

solving subtle key problems that had been previously unnoticed obstacles blocking further

development in various areas. This distinction of idea-versus-result driven research is not an

easy task, for a standard way of arguing that an idea is powerful is to show that it has many

applications and leads to stronger results.
For over two decades there has been an understanding that fundamental physical limita

tions on processing speed will eventually force high performance computation to be targeted

principally at the exploitation of parallelism. Today, just as the fastest cycle times are ap

proaching these fundamental barriers, a second generation of moderately parallel machines is
emerging, and a technology of processing elements and communication switches is appearing

with sufficient power to accelerate the pace of experimental parallel machine research. At

the same time, there has been a corresponding maturation in our understanding of inter

connection networks and their performance costs, although the substantial evolution in this

area shall doubtlessly continue. In the design of parallel algorithms, progress during the last

decade has redirected the principal research focus from an effort to classify the problems

that can be solved in Q(loglc n) time on processors, where 1 and k are constants (NC

algorithms), to a growing bqdy of research on how to design efficient algorithms exhibiting

good speedup on parallel machines.
The question of how to model parallel computation is subtle, and has significant impact

on both the design of parallel systems and the design of parallel algorithms. This problem

has no single answer; indeed, investigations touched upon two aspects of the design question:

techniques for application-specific design, and general purpose desiqn.
Application specific problems include .methodologies for designing algorithms on special

purpose processing organizations. Their use is primarily justified by the enormous perfor

mance/cost benefits that can be attained for worthy problems that admit such solutions.

At the other end of the spectrum is the question of how to design general purpose parallel

algorithms, which may not be targeted for a specific machine, and which may be too complex

to be suitable for low level design. Our principal model for algorithmic design in this area is

the PRAM (parallel random access machine), which is the focal point for the present report.
At first glance, the PRAM model of computation might not appear to be suitable as

a general model for designing efficient parallel algorithms; indeed, even its original use by

the theory community was not, for the most part, to design efficient algorithms. Yet the
PRAM has now won fairly widespread acceptance in the theoretical community, as a model

for efficient parallel computation.
Loosely speaking, the PRAM model of computation is an idealization that draws its

power from three facts and consequences:

• It strips away levels of algorithmic complexity concerning synclironization reliability,
data locality, machine connectivity, arid communication contention and thereby allows

the algorithm
problem at ha
designed in th
designing such

• Many of the dc.

they have appi
each wire elern

• Recent advanc
interconnect mm
virtual process
for some suflici
ideal i zat ions ti

The following ml
parallel computatiom
model of parallel coi
doomed to he a very
that computer (lesi
statement is being mm

In the rest of th
efficient parallel algo

2 The PRi

We start by reviewr
processors, all havin
for resolving rnemori
(Ell.IAV),
(CReW). An EREV
sor to the same rTiem
access for reads but
reads and writes. (Vv
among the processor
ceeds). rElic survey
Survey papers speci
rticles include [RC
:dlel computational
md [Rei9lj.

For sequential cc
traction of the von-]
randard textbook, s

365

the algorithm designer to focus on the fundamental computational difficulties of the
problem at hand. The result has been a substantial number of efficient algorithms
designed in this model, and a growing number of design paradigms and utilities for
designing such algorithms.

• Many of the design paradigms have turned out to be strikingly robust; as a consequence,
they have applications in models outside the PRAM domain, including VLSI, where
each wire element and gate is carefully accounted in the complexity cost.

• Recent advances have shown PRAM algorithms to be formally emulatable on high
interconnect machines, and formal machine designs that support a large number of
virtual processes can, in fact, give a speedup that approaches the number of processors
for some sufficiently large problems. Some new machine designs are aimed at realizing
idealizations that support pipelined, virtual unit time access PRAMs.

The following informal statement represents my belief on the future of general-purpose
parallel computation: Unless parallel machines are designed to support the PRAM, or a
model of parallel computation which is very close to it, the design of parallel algorithms is
doomed to be a very difficult (or even impossible) task; to avoid misunderstand, it emphasized
that computer designers should aspire to make their machine a virtual PRAM, and no
statement is being macic about the actual design.

In the rest of the paper we take snapshots summarizing some chief characteristics of
efficient parallel algorithms.

2 The PRAM Model

We start by reviewing the basics of the PRAM model. A PRAM employs p synchronous
processors, all having unit time access to a shared memory. There are a variety of rules
for resolving memory access conflicts. The most common are exclusive-read exclusive-write
(EREW), concurrent-read exclusive-write (CREW), and concurrent-read concurrent-write
(CRCW). An EREW PRAM does not allow simultaneous access by more than one proces
sor to the same memory location for read or write purposes, while a CREW allows concurrent
access for reads but not for writes, and a CRCW PRAM allows concurrent access for both
reads and writes. (We shall assume that in a concurrent write model, the smallest numbered,
among the processors attempting to write into a common memory location, actually suc
ceeds). The survey paper [Vis83] elaborates on the raison d’etre of the “PRAM approach”.
Survey papers specializing on the class NC are [Coo8l] and [Coo85]. More recent review
articles include [EC88], [KR88a], and [KRS88], as well as [Ata9Ob], which is devoted to par
allel computational geometry. Books on the topic include [Ak189], [CR88], [JLJ9l], [Par87]
and [Rei9l].

For sequential computation, it has been of considerable advantage to deal with an ab
straction of the von-Neumann machine, namely the RAM or Random Access Machine (see a
standard textbook, such as [AHU74J). Two major advantages of such an abstraction are that

366

it makes the algorithm designer’s task less complex, and it eliminates obstacles to algorithm

portability. A third reason for the success of the RAM model is that its cost complexity

generally provides an accurate approximation of the running time on real sequential ma

chines: by and large, efficient RAM algorithms translate into efficient programs on specific

machines that are properly designed. Similar motivations justify the use of the PRAM model

for parallel computation.
While the PRAM model is demonstrably simple, and provides a clean medium for ex

pressing algorithms, its power depends equally on the wealth of high performance algorithms

that have been inspired by the model.

Given two parallel algorithms for the same problem one is more efficient than the other

if: (1) primarily, its time-processor product is smaller, and (2) secondarily (but important),

its parallel time is smaller. Optimal parallel algorithms are those whose time-processor

product is asymptotically equal to the serial complexity of the problem. They correspond

to optimal (often linear) time sequential algorithms. A fully-parallel algorithm is a parallel

algorithm that runs in constant time using an optimal number of processors. The notion

of fully-parallel algorithm represents an ultimate theoretical goal for designers of parallel

algorithms. Research on lower bounds for parallel computation indicates that this goal is

unachievable for almost any interesting problem. These same results often preclude much

weaker time bounds for the same problems. Consequences of the above discussion are: (1)

the evolving theory of very fast parallel algorithms cannot benefit from the theory of not-

as-fast parallel algorithms; and (2) any result that approaches the fully-parallel performance

goal is somewhat surprising. The quest for fast and processor-efficient parallel algorithms

has also contributed towards establishing a tradition of excellence similar to the one implied

by the quest for fast serial algorithms.
While lower-bound techniques are not the focus of this paper, we mention here several

lower-bound results whose circumvention provided motivation for much of the research in

sections 5 and 6: (1) f2(log n/log log n) time using a polynomial number of processors for

the parity problem [B1187J; (2) for finding the maximum among n elements [Va175), and

merging [B1185] on a parallel comparison model of computation; and (3) for CREW PRAM

computation of the OR function of n bits [CDR86J.

As explained elsewhere (e.g., [KR88a], [KRS88J or [Vis83}), the PRAM should be viewed

as a virtual design-space for a parallel machine and not as a parallel machine, and improve

ment in the parallel running time of a PRAM algorithm can benefit us in reducing the actual

running time. An important application area, where this is desired, is deadline-driven com

puting. Starting from the applications and trying to design very fast parallel algorithms for

them is a natural approach. 1-lowever, the fact that only few very fast algorithms are known

makes this approach hard to pursue. how can one design a very fast parallel algorithm for

a specific application without having some algorithmic paradigms that can he followed?! A

knowledge-base of deadline-driven parallel algorithms is needed. We suggest the following

first step towards building such a knowledge-base: develop a core of problems that can be

computed very fast, as well as very fast computational paradigms. Another line of additional

justification follows [KRS88J, [Val9Ol and [Vis84aj that advocate slackness in processors. Let

us explain. Suppo
with p processon
algorithm is effici
defined as the rat
fixed, having a Ia
simulation by the

Let us sum r
primary intellectt
lance.

3 PRAM

A considerable b
many of them ar
theory of serial a
list of efficient an
and design tcchni
available parallel
a diversity of are

and comparison
The PRAM

theoretic and al
original instance
PRAM for stud3
time. [ColS2j va
context (he calle
suggested using

Figures 1-3 a
the structure of
to solve some in’
this, a variety of
have been intro(
more involved) a
finer) exists in a
related theories.
the context of his
section, and ihlu
We highlight str
overview of mos
most “target pr
usually, they ar
The other figur

367

us explain. Suppose we are given an efficient PRAM algorithm and a (real) parallel machine
with p’ processors, on which we wish to simulate the algorithm. Suppose that the PRAM
algorithm is efficient for up to P2 PRAM processors. In this case, processor slackness is
defined as the ratio p2/pI. Informally, each of these three papers argues that even if p is
fixed, having a larger p2 (and therefore larger processor slackness) leads to a more efficient
simulation by the real machine.

Let us sum up. Getting the fastest possible time by a processor-efficient algorithm is a
primary intellectual challenge; the techniques developed are likely to have practical impor
tance.

3 PRAM Algorithms

A considerable body of PRAM algorithms has been discovered over the past several years;
many of them are for fundamental problems that have been recognized as classical in the
theory of serial algorithms. The benefit from the PRAM model is not only in the extensive
list of efficient and fast parallel algorithms that have been designed. Fundamental paradigms
and design techniques have emerged, which are of use in many, if not all, models of physically
vailable parallel machines. These techniques have led to efficient fast parallel algorithms in
a diversity of areas, including computational geometry, graph problems, pattern matching,
and comparison problems.

The PRAM was first proposed as a model for parallel computation in a joint complexity
theoretic and algorithmic context in a 1979 thesis [Wy179J and in a paper [FW781; this
original instance concerned the CREW PRAM model. [SchSObJ also advocated using a
PRAM for studying the limits of parallel computation at around the same chronological
time. [Gol82] was the first to propose the CRCW PRAM model in a complexity theoretic
context (he called it a SIMDAG). [Pip79] identified and characterized the class NC. [SV8l]
suggested using the CRCW PRAM in an algorithmic context.

Figures 1-3 are a focal point for this short tutorial paper. The figures illustrate some of
the structure of PRAM algorithrnics. rrhe research itself seems to have been led by a desire
to solve some involved problems; however, these figures reveals that in order to accomplish
this, a variety of techniques, as well as solutions to more fundamental underlying problems,
have been introduced, This structure of problems and techniques (from the basic to the
more involved) adds elegance to parallel algorithmics. Such fine structure (or acLually much
finer) exists in a few classical fields of Mathematics, but is rather unique in combinatorics
related theories. The first observation that such interesting structures are possible was in
the context of list, tree and graph problems; this particular structure is described in the next
section, and illustrated in Figure 1. Most of this work was done between 1980 and 1988.
We highlight structure-related issues of this work, primarily for background; an elaborate
overview of most of this material can be found in [EGS8J and [KRS8a]. The algorithms for
most “target problems” in this figure (these are the more involved and known problems;
usually, they are at the top or slightly below the top of the figure) run in logarithmic time.
The other figures (and sections) are on doubly-logarithmic time, or faster algorithms; this

368

work was done recently; while it was hard to anticipate the structure of Figure 1 beforehand,
searching for a similar structure became one of the research goals for the later work.

4 List, Tree and Graph Algorithms
A basic routine that is used most often in parallel algorithms is undoubtedly that for the
prefix sums problem [LF8O]. The fact that the prefix-sums problem appears at the bottom
of Figure 1 is meant to convey the basic role of this problem. A faster CRCW algorithm for
prefix-sums also exists [CV89]. A generalization of this problem to pointer structures, the list
ranking problem, was identified in [Wy179]; list ranking has proven to be a key subroutine in
parallel algorithms. In fact, obtaining optimal algorithms for list ranking and (undirected)
graph connectivity proved to be central to obtaining optimal algorithms for a considerable
number of list, tree and graph problems. First randomized, and later deterministic, opti
inal parallel algorithms for list ranking were given [Vis84b], [CV86b1, [CV86a], [AM88] and
[CV89J. The deterministic algorithms are based on a deterministic arbitration technique,
dubbed deterministic coin tossing [CV86b]. Extensions of this technique for sparse graphs
and other applications were given [GPS87], [CZ9OI, and [FICD87}.

Key techniques for parallel algorithms on trees are reviewed next: (1) The Euler tour
technique [TV85] reduces the computation of many tree problems to list ranking. (2) The
tree contraction technique [MR85] led to a number of optimal randomized logarithmic-time
algorithms for tree problems, including expression tree evaluation; optimal deterministic ver
sions were also given [GR86], [CV88], [ADKP87] and 11KD88i. Implicit use of tree contraction
in a non-standard parallel algorithmic setting appeared in [[3re74j. (3) Centroid decomposi
tion of a tree, as implicitly used in [Win75] for O(log2 n) time computations. Accelerating
centroid decomposition was the motivation for the tree contraction version of [CV88J.

Two logarithmic time connectivity algorithms were given: (1) a deterministic one which is
optimal on all except very sparse graphs [CV86aJ; (2) a randomized optimal one [Gaz86]. For
Figure 1, the deterministic algorithms builds on a restricted union find problem, a scheduling
problem, dubbed duration unknown task scheduling, and the Euler tour technique, as well as
ideas from two previous connectivity algorithms [11CS79] and [SV82aJ. It should be pointed
out that the logarithmic time version of the deterministic connectivity algorithm requires
the use of expander graphs and thus is highly impractical at present; however, a slightly less
parallel version involves much smaller constants.

The graph connectivity problem turned out to be the main obstacle to deriving optimal
logarithmic time algorithms for several graph problems, including: biconnectivity [TV851,
finding Euler tour in a graph [AVS4], [A1S841 and orienting the edges of an undirected graph
to get a strongly connected digraph (“strong orientation)” [VisS5a]. We also note some recent
parallel algorithms for k (edge and vertex) connectivity problems [KS89] and [CT91].

The problem of achieving optimal speedups on sparse graphs for the strong orientation
and biconnectivity problems turned out to depend on an efficient solution for yet another
fundamental problem: preprocessing of a rooted tree so that a query requesting the lowest
common ancestor (LCA) of any pair of nodes can be processed in 0(1) operations. Parallel

algorithms for this p

k-edge/Vertex

onneCtvitY

Depth first scarc
for designing sequer
how to implement £
(EDS) was suggeste
algorithms [MSVS6]
in parallel in a fast I
for biconnectivity an
st-numbering of a gr
and [RV88]. An st-i

369

he

or

1st
in
d)
)le
ti
rid

hs

ur
he
Tie

on
si
ng

is
‘or

rig
as

ed
es
ss

Depth first search (DFS) is perceived by many as the most useful technique known
for designing sequential algorithms for graph problems. Unfortunately, it is not known
how to implement DFS efficiently in parallel. A technique called ear decomposition search
(EDS) was suggested as a replacement for DFS in the context of efficient and fast parallel
algorithms [MSV86J and [MR86], after an earlier suggestion in [Lov85] for computing EDS
in parallel in a fast but inefficient manner. The EDS method implies alternative algorithms
for biconnectivity and strong orientation. More powerful applications were for finding an
st-numbering of a graph, again in [MSV8GJ, as well as for triconnectivity algorithms [MRS7J
and [RV88]. An st-numbering is used in the planarity testing algorithm of [KR88b], The

algorithms for this problem [SV88] and [BV891 use the Euler tour technique.

FIGURE 1: List, tree and graph algorithms

al

ph
nt

370

most recent algorithms for triconnectivity [FRT89] and planarity testing [RR89bJ, are verynice examples of reaching target problems by building an even higher level in the structureof Figure 1, and using effectively many of the previous techniques.

5 Deterministic Fast Algorithms
Structure that was found in optimal doubly-logarithmic time (or faster), parallel algorithmsis highlighted. Figure 2.1 discusses works that can he viewed as using the doubly-logarithmictree paradigm, as per [BBG+89] . Doubly-logarithmic trees are rooted trees with n = 22
leaves for some integer i> 0. The root has 22’) children, each being the root of a doubly-logarithmic subtree with 22(leaves. For i = 0 a doubly-logarithmic tree consists of aroot and two children, which are leaves. Such structure guides the computation in optimaldoubly-logarithmic parallel algorithms for finding the maximum among n elements [SV8Ijfusing [Val75]), finding the maximum relative to all prefixes of an array of elements [Sch87]and [l3SV88] (the prefix-maxima problem), merging two sorted lists [Kru83] and [BH85},finding the convex hull of a monotone polygon [BSV91], and finding all nearest neighbors ina convex polygon [SV9O]. Note that all merging algorithms that are mentioned in this papermay be implemented on a CREW PRAM. String matching: For some family of parallelalgorithms it is sufficient to consider only non-periodic patterns [Ga185]. A method foreliminating (at least) one among two potential occurrences of a non-periodic pattern stringin a text string in [Vis85b] was observed in [BG88J to be similar to comparing two numbersin order to determine which one is larger and together with an algorithm for finding themaximum, led to an optimal doubly-logarithmic string matching algorithm; [13091] showedrecently a matching lower-bound for a parallel comparison model of computation. The allnearest smaller values (ANSV) problem is: given an array (ai,a2...a), the ANSV problemis to find for each 1 < i n the nearest j and 1, such that a and at are smaller than a(that is, find the smallest I > i such that a1 < a’ and the largest j < i such that a, < ag).While generalizing two problems - finding the maximum and merging - an optimal doubly-logarithmic algorithm for ANSV was still possible [BSVSS]. In the same paper, the ANSValgorithm is shown to lead to optimal doubly-logarithmic algorithms for the following range-maxima problem: preprocess an array of numbers (aa,a2...afl), so that for any pair of indicesi and j, where 1 < j n, a range-maximum query requesting the maximum among

(a,a+j...a,) can be processed in constant-time. More remotedly related to the doubly-logarithmic tree paradigm is a matrix searching algorithm [Ata9Oa]
Remark. Some of the problems mentioned in this section, particularly from here on, mayhave a rather specific flavor. However, they are still interesting since improvement on themore general problem is either impossible or apparently difficult.
The surplus-log approach: suppose the aim is designing a triply-logarithmic (or faster)optimal parallel algorithm; the surplus-log approach suggests the following first step: designan algorithm with n log n processors and constant-time. Uses of the surplus-log approachcome in two flavors: (1) As part of a global strategy. (2) As a rule-of-thumb (or “sorcery”);that is, it merely provides an insight that leads to further improvements; in other words,

FIGURE 2

jsiring rnatchinç
k preorocessed

jiowest common
bncestors in tree

rtr1ctea— Input
Hnae—maxima

—
a

i
n

a
V
,

.
r

a
.

;
e

a
i
n

i
a
n

—
.

—
S

.
—

—
.

for some reason, which is not fully clear to us, it sometimes helps to follow the surplus-log

approach.
A triply-logarithmic paradigm [BJK9O1 uses the surplus-log approach, in conjunction

with doubly-logarithmic algorithms for the same problems, as part of a global strategy.

The strategy leads to optimal parallel algorithms for several problems whose running time

is triply-logarithmic in the following sense: consider, for instance, the problem of merg

ing two sorted lists of integers drawn from the domain [l...sj. The running time obtained

is O(log log logs) [BV9O]. There are also similar triply-logarithmic results for the prefix-

maxima problem [BJK9O] (and thereby for finding the maximum among n elements).

Optimal log-star time (i.e., O(log* n)) time) parallel algorithms seem to be the hardest

to fit into a strict structure of paradigms using presently available ideas. See Figure 2.2.

However, using the surplus-log approach, as a rule-of-thumb, was helpful for several problems:

(1) String matching for a preprocessed pattern [Vis9lJ; (2) prefix-maxima [BJK911; there,

this prefix-maxima algorithm is also the most time consuming step in an algorithm for

routing around a rectangle - a VLSI routing problem ; and (3) for preprocessing a rooted

tree, so that any level-ancestor query can l)e processed in constant-time IBV91b]. The input

for such query consists of a vertex v and an integer 1; the output is the l’th ancestor of v,

where the first ancestor of a vertex is its parent and the l’th ancestor is the parent of the

(1 — 1)’st ancestor; the Euler toui of the tree is assumed to be given.

Optimal inverse-A ckermann time (i.e., O(on)) time , where is the inverse-Aclcermann

extremely slow growing function) parallel algorithms actually use the surplus-log approach

in a methodological way, overviewed below. Benefiting from a construction on unbounded

fan-in circuits in [CFL83J, the inverse-Ackermann paradigm [BV89} works by designing a

series of algorithms; the first in the series should run in 0(1) time using nlogn processors;

then, in a certain way, slight increase in time implies significant decrease in the number of

processors. The cr(n)’th algorithm in the series runs in O(v(n)) time using nn(n) processors,

and finally an optimal algorithm that uses (n/a(n)) processors and O(a(n)) time is derived.

See Figure 2.3 for the sequel. The most basic problem that was solved using the inverse

Ackermann paradigm is for the nearest-one problem (sec also [Rag9Oj, who calls it the

chaining problem): given an array of bits (a1, ..., an), find for each 1 i n, the two nearest

j and 1 such that a = a1 = 1 (that is, find the smallest j > i such that a = I and the

largest j < i such that a3 = 1). Inverse-Ackermann time for chaining is best possible in an

“oblivious” model of parallel computation, even with n processors [Cha9OJ. The nearest-one

algorithm has been used to reduce a general version of the merging problem to the problem of

finding all nearest neighbors (ANN) of vertices in a convex polygon; a consequence is that a

doubly-logarithmic time lower-bound for merging extends to the ANN problem, resulting in

a simpler proof than in [SV9OJ. Wherever reducibilities arc more efficient than lower bounds

they become promising tools for the theory of lower bounds. Before proceeding we make

two comments: (1) in all problems below the input is assumed to come from the domain

of integers [1...n]; (2) we avoid redefining problems that were defined earlier. Problems for

which optimal inverse-Ackerman algorithms were given include: (1) the all nearest smaller

value (ANSV) problem; this leads to: (2) parentheses matching: given the level of nesting

I
372

I

I

for each parenthesis in a legal sequence of parentheses, find for each parenthesis its match;
the last two results are in [BV91aJ; (3) the nearest-one complementation problem: given is
an array of bits (aj, ..., a,,) and suppose for each a = 1, the two nearest indices j and 1, such
that a = ai = 1, are known; find for each a = 0, 1 n, the two nearest j and I such
that aj = a = 1 (that is, find the smallest j > i such that a = 1 and the largest j < i such
that aj 1); this leads to: (4) merging two sorted lists; the nearest-one complementation
and the merging algorithms are for a CREW PRAM; the last two results are in [BV9O].

The following two problems involve preprocessing and query retrieval: (1) preprocessing
for range-maxima queries; the preprocessing is done by an optimal inverse-Ackermann paral
lel algorithm and processing a query takes inverse-Ackermann time; the series of algorithms
obtained as part of the inverse-Ackermann paradigm also implies trading-off slightly slower,
but still optimal, preprocessing for faster (e.g., constant-time) query retrieval; (2) preprocess
a rooted tree so that a query requesting the lowest-common-ancestor (LCA) of any pair of
vertices can be quickly processed; results are similar to the ones for range-maxima, assuming
that the Euler tour of the tree is given; the algorithm is new, and interestingly also simpler
than previous LCA algorithms [11T841 and [SV881.

6 Randomized Fast Algorithms

Randomization has shown to be very useful for both the simulation of PRAM-like shared
memory models of parallel computation by other models of parallel machines (e.g., in [KU8G],
[KRSSS], [MV841, [RanS7], [KPS9O] and [MSP9O]), and for the design of parallel algorithms
(e.g., in [ABJ8Gj, (AM9O], [CazSG], [GM91], [KR87J, [LubSG], [MR85), [MV9OJ, [MV91],
1RR89a], [RSS9}, [ReiSli, [Sch8Oa}, [ScnS9] and [Vis84b]).

All “target algorithms” in this section are randomized, and their running time is at the
doubly-logarithmic level, or faster. By the doubly-logarithmic level, we mean O(f(n) log log n)
where the function f(n) is o(loglogn).

Several constant-time optimal randomized algorithms were given: (1) for finding the
maximum among ii elements [Rei8l]; and its generalization (2) for linear programming in
fixed dimension [AM9OJ; (3) for finding approximate median [Sen89J; (4) for the nearest one
problem (as in [BV891 and [Rag9O]), under the assumption that there is some upper bound
on the number of ones, [Ram9O].

Several parallel deterministic and randomized algorithms, that run in time proportional
to logn/loglogn (“logarithmic level”) or slower, were given for sorting [AKSS3j, [Bat68],
1BNS9I, [ColSSj, [llir7S] [Prc781, [RV871, and [SVS1], and integer sorting [BDH89], [IIag$7],
[Hag9la}, [MV9O], [MV9I], [RR89a], [Ram90J and [RamOl]. The lower-bound in [BH87}
implies that faster algorithms are possible only by relaxing the definition of the problem:
(1) [MS9IJ gave a doubly-logarithmic level result, assuming the input comes from a certain
random source; the output is given in a “padded” representation; (2) [Hag9la] allows general
integer inputs from the range [1..n]; the output is given in a linked list which is sorted in a
non-decreasing order.

We proceed to Figure 3, the main structure in this section. At the most basic level,

373

óllow the surplus-log

oach, in conjunction
of a global strategy.
whose running time

ie problem of merg
nning time obtained
sults for the prefix
)ng n elements).
m to be the hardest
eas. See Figure 2.2.
for several problems:
ma [BJK91j; there,
in an algorithm for
eprocessing a rooted
[BV91b], The input

ie l’th ancestor of v,
is the parent of the

e inverse-Ackermann
wrplus-log approach
ction on unbounded
‘orks by designing a

n log n processors;
se in the number of
ng ncn(n) processors,
(n)) time is derived.
d using the inverse
0], who calls it the

n, the two nearest
;hat a, = 1 and the

best possible in an
)0J. The nearest-one
m to the problem of
onsequence is that a
roblem, resulting in
t than lower bounds
roceeding we make

ne from the domain
arhier. Problems for

all nearest smaller
the level of nesting

374

Figure 3 has the d-polynomial approximate compaction cd-PAC) problem (for d = 3 or 4).

Given is an array of n cells; we know that only m of them contain one item each, and the

rest are empty; the problem is to insert all items into an array of size m’. A constant-time

algorithm using a processors has been given for this fundamental problem in [Rag901. The
linear approximate compaction (LAG) problem is harder: using the same input, the items
are to be inserted into an array whose size is linear in Tfl, say 4rn. An optimal randomized
algorithm for LAC, whose running time is at the log-star level was given [MVOII. Unless
mentioned otherwise, all log-star level results are from this paper. The algorithm uses the d

PAC algorithm. A somewhat similar use of the d-PAC algorithm for a different problem can

be found in [Ram9O]. Using the log-star-time deterministic algorithms for the nearest-one
and prefix-maxima problems, mentioned earlier, as well as the LAC algorithm, an optimal

log-star level for generating a random permutation was given. Other methods for this problem

are at the logarithmic level [MRS5I and [R1t89a]; [llag9lb] gives a doubly-logarithmic level

algorithm that produces random permutations in a non-standard representation. The LAC
algorithm required a new algorithmic paradigm. This paradigm has been extended, within

the same performance hounds, to cope with the more general and well-investigated problem
of hashing: given a set of n input elements, build a linear size table that supports membership
queries in constant-time. Logarithmic level hashing [MV9O], and doubly-logarithmic level
hashing [GM9II preceded this result. Some log-star level ideas for a non-standard algorithmic
model, where cost of counting, as well as assignment of Processors to jobs, are ignored
were given in [GMW9OJ. An Q(log a) time lower-bound using n processors is also given
in [GMW9O]; the lower hound is for a model of computation that admits the log-star level
algorithm. We mention here only one application of hashing; see [MV9OI for reference to
several parallel algorithms with excessive space requirements that become space-efficient
by using parallel hashing; the penalties are increase in time (as required by the hashing
algorithm) and switching from a deterministic to a randomized algorithm.

Assignment of processors to jobs is a typical concern in parallel algorithms; for instance,

one of the most powerful methodologies for designing parallel algorithms is to have a first

design in terms of total work and time; extending this first design into a “lull PRAM”
design is guided by a theorem due to [flrc74]; the problem, however, is that the theorem
holds only for a non-standard model of parallel computation, where assignment of processors
to jobs can be done free of charge; the methodology was first used for the design of a PRAM
algorithm in [SV82hI, and is elucidated in [Vis9O] and [.JiU9I], who call t the work-time
framework; typical applications of this methodology solve the processor assignment problem

in an ad-hoc manner; however, sometimes proper processor assignment can be achieved using

general methods for balancing loads among processors. Load balancing can he achieved by

a simple application of a prefix-sums algorithm (e.g., [VisS4h}), with a logarithmic-level
time overhead. A family of load balancing algorithms are treated ti [Gi190], with a doubly—
logarithmic multiplicative overhead; [MV9I] treats a more specific family, with log-star level
ad(litive overhead, using the LAC algorithm. Load balancing and hashing methods, including
the ones in [CM9I], led to a doubly-logarithmic level “dictionary” extension of hashing,

where, insertion and (leletion queries are also supported [GMV9O]; an algorithm in [DM89]

solves the dictionar
Routines for the

in Section 4. An
paragraph is given
prefix-sums problem
LAC problem; (3)
of n cells c1, ...,c,,;

count t and a poir
problem is to redis

random
b ermutatior

earest-ones

Acknowledg€
and II.. Thurimnellm

References
[AB186]

[A DKP87[

[A11U74]

[A lS84J

[Ak189]

[AKS83]

N. Mon,
itulepend
K. Abral
traction
A. V. Ab
A ddison
13. Awer1
Proc. of
S.G. Aki.
Jersey, P
M. Ajtai,
.1CM Sy

375

solves the dictionary problem with running time of the form O(n).

Routines for the prefix-sums problem play a major role in parallel algorithms, as indicated

in Section 4. An additional perspective with respect to some problems in the previous

paragraph is given by simply ordering them according to how well they “approximate” the

prefix-sums problem, as follows: (1) the d-PAC problem is a first approximation; (2) the

LAC problem; (3) the load balancing problem, which is defined as follows: given is an array

of n cells c1, ..., c.,1; cell cj contains t, tasks, 1 i n, where t, < N (each cell i has the

count t, and a pointer to an array of size l; the array has a task at each of its entries); the

problem is to redistribute the tasks among the cells such that each cell gets O(N/n) tasks.

e
S

I
S

e

Ii

-4

n
n
p

C

a
n

0

g

it

n
5

g

el
1-

el

g,

random

6 ermutation

earest-ones i 1

refix—maxima I

jspace reduction
ictionary

pplications

Iod balancing hashing IJapplications

litnear approximate
compaction

poiynomiai compaction

FIGURE 3: Very fast randomized algorithms

References

Acknowledgement. Helpful comments by 0. l3erkman, J. Ji.Já, S. Kliuller, Y. Matias

and R. Thurimella are gratefully acknowledged.

[A B 186]

[ADKP87]

[A11U74]

[AIS84J

[Akl89]

[AKS83J

N. Mon, L. Babai, and A. ltai. A fast and simple randomized parallel algorithm for the maximal

independent set problem. J. Algorithms, 7:567—583, 1988.
K. Abrahamson, N. Dadoun, D. A. Kirkpatrick, and T. Przytycka. A simple parallel tree con

traction algorithm. Technical Report 87-30, The University of British columbia, 1987.

A. V. Aho, J. E. llopcroft, and 3. D, Ullman. The design and analysis of computer algorithms.

Addison-Wesley, Reading, MA, 1974.
B. Awerbuch, A. Israeli, and Y. Shiloach. Finding Euler circuits in logarithmic parallel time. In

Proc. of the 16th Ann. ACM Symp. on Theory of Computing, pages 249—257, May 1984.

S.C. Aki. The Design and Analysis of Parallel Algorithms. Prentice hall, Engelwood Cliffs, New

Jersey, 1989.
M. Ajtai, J. Komlós, and E. Szemcrédi. An O(nlogn) sorting network. In Proc. of the 15th Ann.

ACM Symp. on Theory of Computing, pages 1—9, 1983.

J

I

376

[AM88] R.3. Anderson and Gb. Miller. Optimal parallel algorithms for list ranking. In 3rd Aegean In Proc.
workshop on computing, Lecture Notes in Computer Science 319, 1988, Springer- Verlag, pages [Cha9O] S. Chaud
81—90, 1988. [Col88] R. Cole.

[AM9O] N. Alon and N. Megiddo. Parallel linear programming almost surely in constant time. In Proc. [Coo8l] S.A. Coo
of the 31st IEEE Annual Symp. on Foundation of Computer Science, pages 574—582, 1990. 27:9912[Ata9OaJ M.J. Atallah. A faster algorithm for a parallel algorithm for a matrix searching problem. In Proc. [Coo85] S.A. Coo
2nd SWAT volume LNCS 447, pages 192—200. Springer-Verlag, 1990. 642—22[AtaOOb] M.J. AtalIah. Parallel techniques for computational geometry. Technical Report CS-1020, Purdue [CT9I] J. ClieriyUniversity, 1990. cates. In

[AVS4] M.J. Atallah and U. Vishkin. Finding Euler tours in parallel. J. Comp. Sys. Sci., 29,3:330—337, [CVS6a] R. Cole
1984. tree and

[Bat68] K. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing Confer- ience, pages 307—314, 32(1968). [CV86b] R. Cole[BBG’89] 0. Berkman, D. Breslauer, Z. Galil, B. Schieber, and 13. Vishkin. llighly-parallelizable problems. ranking.
In Proc. of the 21st Ann. AC’M Symp. on Theory of Computing, pages 309—3 19, 1989. [CV88] R. Cole a

[BDH89J P.C.P. Iihatt, K. Diks, T. llagerup, V.C. Prasad, T. Radzik, and S. Saxena. Improved determin- tree evah
istic parallel integer sorting. Technical Report TR 15/1989, Fachbereich Informatik, Universität [CV89] Il. Cole ades Saarlandes, D-6600 Saarbrücken, W. Germany, November 1989. Computa[8088] D. Breslauer and Z. Galil. An optimal O(log logn) parallel string matching algorithm. To appear [CZ90] H.. Cole ain SIAM J. Comput., 1988.

point loc[8091] D. Breslauer and Z. Galil. A lower bound for parallel string matching. In Proc. of the 23rd Ann. [DM89] M. Dietzl
ACM Symp. on Theory of Computing, 1991. Sympos:u[B1185] A. Borodin and J.E. Ilopcroft. Routing, merging, and sorting on parallel models of computation. [E088] D. Eppst
J. Computer and System Sciences, 30:130—145, 1985. Rev. Con[81187] P. Beame and J. Ilastad. Optimal bounds for decision problems on the CRCW PRAM. In Proc. [FRT89] D. Fussel
of the 19th Ann. ACM Symp. on Theory of Computing, pages 83—93, 1987. replacem[BJK90] 0. Berkman, J. JhJh, S. Krishnamurthy, ft. Thurimella, and U. Vishkin. Some triply-logarithmic [FW78] S. Fortun
parallel algorithms. In Proc. of the 31st IEEE Annnal Symp. on Foandation of Computer Science, Annual A
pages 871—881, 1990. (Gal85] Z. Galil.[l3JK91] 0. Berkman, J. JtJh, S. Krishnamurthy, H.. Thurimella, and U. Vishkin. Top-bottom routing 1985.
is as easy as prefix minima. In preparation (a preliminary and partial version is part of Some [Gaz86] 11. Gazit.
Triply-logarithmic Parallel Algorithms, see above), 1991. In Proc.

[11N89] C. Bilardi and A. Nicolau. Adaptive hitonic sorting: an optimal parallel algorithm for shared- 1986.
memory machines. SIAM J. Computing, 18:216—228, 1989. [Gil9Oj J. Gil. Fi[13re74] R.P. Brent, The parallel evaluation of general arithmetic expressions. J. Assoc. ‘ornput. Mach., for Ilashi:
21:302—206, 1974. [GM9I] 3. Gil an[BSV88] 0. Berkman, B. Schieber, and U. Vishkin. Some doubly logarithmic parallel algorithms based Syinpos:u
on finding all nearest smaller values. Technical Report UMIACS-TR-88-79, Univ. of Maryland [GMV9O] Y. Gil, Y
Inst. for Advanced Computer Studies, 1988. [GMW9O] Y. Gil, F.

[BSV91] 0. Berkman, 8. Schieber, and U. Vishkin. The parallel complexity of finding the convex hull of In Proc. i
a monotone polygon. In preparation, 1991. [0ol82] EM. Gok

[13V89] 0. Berkman and U. Vishkin, Recursive *_trce parallel dta-structure. in Proc. of the 30th IEEE Mach., 20
Annual Symp. on Foundation of Computer Science, pages 196—202, 1989. [GPS87j A. Goldb

[BV9O] 0. Berkman and U. Vislikin. On parallel integer merging. Technical Report UMIACS-TR-90-15, Proceedin
University of Maryland Inst. for Advanced Computer Studies, 1990. [GR86] A: Gibbo[BV91a] 0. Berkman and U. Vishkin. Almost fully-parallel paretheses matching. In preparation, 1991. plations

[BV9lb] 0. Berkman and U. Vishkin. Finding level-ancestors in trees. Technical Report UMIACS-TR- Phcoretw.
91-9, University of Maryland Institute for Advanced Computer Studies, 1991. Verlag, 10

[CDR86] S.A. Cook, C. Dwork, and ft. Reischuk. Upper and lower time bounds for parallel random access [GR88] A. Gibbo
machines without simultaneous writes. SIAM J. Comput., 15:87—97, 1986. bridge, 10

[CFLS3] AK. Chandra, S. Fortune, and R.J. Lipton. Unbounded fan-in circuits and associative functions. [llag87] r. llagert
1987.

377

In Proc. of the 15th Ann, ACM Symp. on Theory of Computing, pages 52—60, 1983.

S. Chaudhuri. Tight bounds for the chaining problem. preprint, December, 1990.

ft. Cole. Parallel merge sort. SIAM J. Computing, 17(4):770’-785, 1988.

S.A. Cook. Towards a complexity theory of synchronous parallel computation. Ensign. Math.,

27:99—124, 1981.
S.A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,

64:2—22, 1985.
3. Cberiyan and K. Tliurimella. Algorithms for parallel k-vertex connectivity and sparse certifi

cates. In Proc. of the 23rd Ann. ACM Symp. on Theory of Computing, 1991.

ft. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to list,

tree and graph problems. In Proc. of the 27th IEEE Annual Symp. on Foundation of Computer

Science, pages 478—491, 1986.

ft. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list

ranking. Information and Control, 70:32—53, 1986.

ft. Cole and U. Vishkin. ‘I’he accelerated centroid decomposition technique for optimal parallel

tree evaluation in logarithmic time. Algorithinica, 3:329—348, 1988.

ft. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Information and

Computation, 81:334—352, 1989.

K. Cole and 0. Zajicek. An optimal parallel algorithm for building a data structure for planar

point location. J. Parallel and Distributed Computing, 8:280—285, 1990.

M. Dietzfelbinger and F. Meyer auf der Heide. An optimal parallel dictionary. In Proc. 1st ACM

Symposium on Parallel Algorithms and Architecturcs, pages 360—368, 1989.

D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial computation. Ann.

Reu. Comput. Sci,, 3:233—283, 1988,
D. Fussell, VI.. R.amachandran, and ft. Thurimella. Finding triconnected components by local

replacements. In Proc. of 16th IC’ALP, Springer LNC’S 372, pages 379—393, 1989.

S. Fortune and 3. Wyllie. Parallelism in random access machines. In Proceedings of the 10th

Annual AC’M Symposium on Theory of Computing, pages 114—118, 1978.

Z. Gaul. Optimal parallel algorithms for string matching. Information and C’ontrol, 67:144—157,

1985.
11. Gazit. An optimal randomized parallel algorithm for finding connected components in a graph.

In Proc. of the 27th IEEE Annual Symp. on Foundation of Computer Science, pages 492—501,

1986.
J. Gil. Fast load balancing on PRAM. Preliminary report; see also: Lower Bounds and Algorithms

for hashing and Parallel Processing, Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 1990.

3. Cii and Y. Matias. Fast hashing on a PRAM. In Proc. of the 2nd Second ACM-SIAM

Sy,nposium on Discrete Algorithms, pages 271—280, 1991.

Y. Gil, Y. Matins, and U. Vishkin. A fast parallel dictionary. In preparation, 1990.

Y. Gil, F. Meyer auf der Ileide, and A. Wigderson. Not all keys can be hashed in constant time.

In Proc. of the 22nd Ann. ACM Symp. on ‘l’heory of C’omputing, pages 244—253, 1990.

f.M. Goldschlager. A universal interconnection pattern for parallel computers. J. Assoc. Gomput.

Mach., 29:1073—1086, 1982.
A. Goldberg, S. Plotkin, and C. Shannon. Parallel symmetry-breaking in sparse graphs. In

Proceedings 19th Annual ACM Symposium on Theory of computing, pages 315—324, 1987.

A. Gibbons and W. Rytter. An optimal parallel algorithm for dynamic evaluation and its ap

plications. In Proceedings of the sixth Conference on Foundations of Software Technology and

Theoretical Computer Science, Lecture Notes in Computer Science 241, pages 453—469. Springer-

Verlag, 1986.
A. Gibbons and ‘N. itytter. Efficient Parallel rllgorithmns. Cambridge University Press, Cam

bridge, 1988.
T. Ilagerup. Towards optimal parallel bucket sorting. Information and Gomputation, 75:39—51,

1987.

[Cha9OJ
[Col88]
[Coo8lJ

[Coo851

[CT91J

[CV86aI

—

[CV86b)

[CV88]

[CV89]

[CZDO]

[DM89]

[EG88J

[FRT89J

[FW78]

[Ga1851

[Gaz86}

[Gil9OJ

[GM91J

[GMV9O]
[GM W90J

[Gol82J

[C PS871

[CR86]

[CR88]

[11ag87]

378

[Hag9la] T. Hagerup. Constant-Lime parallel integer sorting. In Proc. of the 23rd Ann. ACM Symp. on
Theory of Computing, 1991.

[Hag9lb] T. Hagerup. Fast parallel generation of random permutations. In Proc. of 18th ICALP, 1991.
[HCD87] T. Ilagerup, M. Chrobak, and K. Diks. Parallel 5-coloring of planar graphs. In Proc. of 14th

ICALP, pages 304—313, 1987.
(11CS79] D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate. Computing connected components on parallel

computers. Comm. ACM, 22,8:461—464, 1979.
[Hir78] D. S. llirschberg. Fast parallel sorting algorithms. Comm. ACM, 21:657—661, 1978.
[HT84] D. Ilarel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.

Cornput., 13(2):338—355, May 1984.
[iaJ9l] J. J4Jh. Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1991.
{KD88j S.R. Kosaraju and A.L. Delcher. Optimal parallel evaluation of tree-structured computations

by ranking. In Proc. of AWOC 88, Lecture Notes in Computer Science No. 319, pages 101—110.
Springer-Verlag, 1988,

[KMG8] ft M Karp and W L Miranker Parallel minimax ‘march for a maximum J of Combinatorial
Theory, 4:19—34, 196k,

[KPS9O} 7 M Kedem K V Palem and P C Spirakis Efficient robust parallel computations In Proc of
the 22nd Ann ACM Symp on Theory of Computing pages 138—148 1990

[KR87J ft M Karp and M 0 Rabin Efficient randomized pattern matching algorithms IBM J of
Research and Development 31 249—260 1987

(KR88a] ft M Karp and V Ramachandran A survey of parallel algorithms for shared memory machines
Technical Report UCB/CSD 88/408 Computer Science Division (EECS) U C Berkeley 1988
also in Handbook of Theoretical Computer Science North holland to Ippear

[KR88b] P Klein and I H Reif An efficient parallel algorithm for planarity J Comp Sys Sc: 37 1988
[KRS88I C P Kruskal L Rudolph and M Snir A complexity theory of efficient parallel algorithms In

Proc of 15th ICALP Springer LNCS 317 pages 333—346 1988
[Kru83] C P Kruskal Searching merging and sorting in parallel computation IEEE Trans on Comp

C 32 942—946 1983
[KS89] S Khuller and B Schieber Efficient parallel algorithms for testing connectivity md finding

— disjoint s-t paths in graphs In Proc of the 30th IEEE Annual Symp on Foundation of Computer
Science pages 288—293 1989

[KU86] A Karlin and E Upfal Parallel hashing — an efficient implementation of shmred memory In
Proc of the 18th Ann ACM Symp on Theory of Computing pages 160—168 1986

[LF8O] ft F Ladner and M I Fischer Parallel prefix computation J Assoc Comput Mach 27 831—
838, 1980.

I: [LovSSJ I.. Lovasz. Computing ears and branching in parallel. In Proc. of Ihe 26th IEEE Annual Symp.
on Foundation of Computer Science, pages ‘164—467, 1985.

(Lub86] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
CompuL, 15:1036—1053, 1986.

iM1t85] G.L. Miller and .LhI. Reif. Parallel tree contraction and its application. In Proc. of the 26th IEEE
Annual Symp. on Foundation of Computer Science, pages 478—489, 1985.

[MR86] G.L. Miller and V.L. Ramachandran. Efficient parallel ear decomposition and applications.
unpublished manuscript, 1986.

{MRS7] G.L. Miller and V.L. Ramachandran. A new graph triconnectivity algorithm and its parallization.
In Proc. of the 19th Ann. ACM Symp. on Theory of Computing, pages 335—344, 1987.

[MS91] PD. MacKenzie and Q.F. Stout, Ultra-fast expected time parallel algorithms. In Proc. of the
2nd Second ACM-SIAM Symposium on Discrete Algorithms, pages 414—424, 1991.

[MSP9O] C. Martel, ft. Subramonian, and A. Park. Asynchronous PRAMs are (almost> as good as syn
chronous PRAMs. In Proc. of the list IEEE Annual Symp. on Foundation of Computer Science,
pages 590—599, 1990.

[MSV86] Y. Maon
in graph

[MV84] K. MehIl
machinei

[MV9OI ‘• Matii
Springer
Compute

[MV91] Y. Mati
cations t

1991.
[Par87J I. Parber
[Pip79] N. Pippe

Foundat:
[Pre78] F. P. Pre
[Rag90 P. Ragde

LNCS 4
[ftam9O] ft. Rami

sorting.
Univ. of

[Ram9l] ft. Rama
1991.

[Ran87] A.G. Re
Foundah

[ReiSl] ft. Reisci
Symp. 01

[ReiOl] 1.11. Reil
1991.

[ftR89a] S. Rajas
algorithr

[RR89b] VL. Ra:
of the 36

[RS89] 1.11. Reil
Proc. of

[RV87] J.hI. Roil
Mach., 3

[ftV881 V.L.Rar
In Proc.
1988.

[SchSOa] I. Schws
27(4):70t

[Sch8Obl J. T. Sd
2(4):484-

[Sch87j B. Schiel
Science,

[Sen89] S. Sen.
1989.

[SV81] Y. Shilo
tion mod

[SV82a] Y. Shilos
1982.

[SV82b] Y. Shilo
146, 198

s. on

379

[MSV86]

[MVS4]

[MV9O}

M J.
[MV91J

Y. Maon, B. Schieber, and U. Vishkin. Parallel ear-decomposition search (EDS) and st-numbering

in graphs. Theoretical Computer Science, 47:277—298, 1986.
K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel

machines with restricted granularity of parallel memories. Ada Informatica, 21:339—374, 1984.

Y. Matias and U. Vishkin. On parallel hashing and integer sorting. In Proc. of 17th ICALP,

Springer LNCS 443, pages 720—743, 1990. Also, in UMIACS-TR-90-13, Inst. for Advanced

Computer Studies, Univ. of Maryland, Aug. 1990 (revised), and J. Algorithms, to appear.

Y. Matins and U. Vishkin. Converting high probability into nearly-constant time - with appli

cations to parallel hashing. In Proc. of the 23rd Ann. ACM Symp. on Theory of Computing,

[Par87]
[Pip79J

[Pre78}
[Rag90

[RamOOl

I

,c. of

J. of

ines.
[988.

1988.
S. In

ding
uter

[R.am9l]

[Ran87}

[Rei8l]

[ReiOl]

[ftR89a1

[RR89bJ

[RS89]

[RV87

[RV88]

1991.
I. Parberry. Parallel Complexity Theory. Pitman, London, 1987.

N. Pippenger. On simultaneous resource bounds. In Proc. of the 20th IEEE Annual Symp. on

Foundation of Computer Science, pages 307—311, 1979.
F. P. Preparata. New parallel sorting schemes. IEEE trans. Computer, C-27:669—673, 1978.

P. Ragde. The parallel simplicity of compaction and chaining. In Proc. of 17th ICALP, Springer

LNCS 443, pages 744—751, 1990.
R. Raman. The power of collision: Randomized parallel algorithms for chaining and integer

sorting. Technical Report TR-336 (revised version, January 1991), Computer Science Dept.,

Univ. of Rochester, 1990.
R. Raman. Optimal sub-logarithmic time integer sorting on a CRCW PRAM (note). manuscript,

1991.
A.G. Ranade. flow to emulate shared memory. In Proc. of the 28th IEEE Annual Symp. on

Foundation of Computer Science, pages 185—194, 1987.
Il. Reischuk. A fast probabilistic parallel sorting algorithm. In Proc. of the 42nd IEEE Annual

Symp. on Foundation of Computer Science, pages 212—219, October 1981.

J.lI. Eteif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, California,

1991.
S. Rajasekaran and 3.11. Reif. Optimal and sublogarithmic time randomized parallel sorting

algorithms. SIAM J. Comput., 18:594—607, 1989.
V.L. Ramachandran and 3.11. Reif. An optimal parallel algorithm for graph planarity. In Proc.

of the 30th IEEE Annual Symp. on Foundation of Computer Science, pages 282—287, 1989.

.1.11. Reif and S. Sen. Polling: a new random sampling technique for computational geometry. In

Proc. of the 21st Ann. ACM Symp. on Theory of Computing, pages 394—404, 1989.

.1.11, Reif and E.G. Valiant, A logarithmic time sort for linear size networks. J. Assoc. Comput.

Mach., 34:60—76, 1987.
yE. Ramachandran and U. Vishkin. Efficient parallel triconnectivity in logarithmic parallel time.

In Proc. ofAWOC88, Lecture Notes in Computer Science No. 319, pages 33—42. Springer-Verlag,

tSchSOal

[Sch8ObJ

[Sch87]

[Sen89J

[SV81J

[SV82aJ

[SV82b]

syn
:0cc,

1988.
J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. JACM,

27(4):701—717, 1980.
3. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,

2(4):484—521, 1980.
B. Schieber. Design and analysis of some parallel algorithms. PhD thesis, Dept. of Computer

Science, Tel Aviv Univ., 1987
S. Sen. Finding an approximate-median with high-probability in constant time. Manuscript,

1989.
Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a parallel computa.

tion model. J. Algorithms, 2:88—102, 1981.
Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. J. Algorithms, 3:57—67,

1982.
Y. Shiloach and U. Vishkin. An Q(2 logo) parallel Max-Flow algorithm. J. Algorithms, 3:128—

116, 1982.

/

380

[SV8$] II. Scliieber and U. Vishkin. on biding lowest coliirnoii ancestors: simplification :tii taraileliza—
Lion. SlIM Journal on Computing, 17(61:1253— 1262, lOSS.

[S \/9O[El Sehieber aim! U V sit kin - Ui nding all nearest ii glihors for convex polygons ii parallel a new Jnip
lower hounds .eclimtne ant! a natcliing algorithm. i)iccrrte Applied Mat/i, 29:97-Ill 1 990.

[‘I’VSS[It U. Tarjan tm! U. \-‘ishkiii Finding hiconmiected contponenls anti cohiittimiig tree functions in

logaritlimitic parallel time. SI7IM J. Con tlzi, -1:862 -874, 1985. Desh I
Va175j b.C ValtanL i’arallelisiii ti -oniparisott irohl”ItIS. SiAM 1. (output., 1:18—355, 975.

[VaIOO] IC. Valiant. A bridging uitodel for parallel conupiit.al ion. Comma .1 (‘Al, 33,8:03 III 090)

VisS3j 1_I. Visiukin. Syiicliroiiotts parallel coniputation — a survey. Ieclimoual ll’jtort ‘III. 71, l)t-itt.. of
LttuJiItuIr Scone’, (urauit Institute, New York l!itivt’rsitv, 1983.

[VisS-Ia] U. Visiukin A iarallel—tlt:ign distributed—i npletrientatioii (l’l)[)I) g’ui’ral ts uuutputer.
1’/iettretmtal Cotti1ttiler Science, 32:1 57-— 172, 1984

[VisS-ih[II. Vislikiiu. 1andomizt’tl speed—tips in parallel e’ompntatiouis. lit]‘YOc. (tf //ic lit/li Ann. 4CM

Smp. on lu cory of Coniputitig, pagcs 23)) 2:19, 1984.
[VisSSa] Il. Vislikiii. On t’Iliciuuit par:tlhd strotig orit’nt:ttion. ltifottttaluott I’moti s-iiuiq [elItes, 2/)235- 2-10,

985.

[VisS !t] U islil in 010 in il p tr tIlt I p i/It ii ii 0 diin in ot ritis [nfou tutu ti stud (ottiptilation hi 1
Tn tins P II

:1:91-113, 1985.
Lionization

[VisOO[U - Vislikin. A parallel blocking low tlgoritlutut Cr acyclic tietworks. ‘I’t’rltuuic:tl Report. U MIA(cotinterexallhl)

‘l’R-90-l 1, tinivt’rsity of Maryland lnsL For Advancetl Coiìipiiter Sttutliu’s, 990. we prove that
[Visi)l[U. Vislikin, l)etermiitistic sanuplitig - a new ta-clumnqume for fast pattern itiatcluitg. .s’!,IAi J. problems. evo

(:onuptiu,, 20(l):22 --10, l”t:ltrttary 991 talilish sharp
Wiui7S] S. Winogratl. On lie evaluation of ct’rtain :tri/,lun’tic expressions. .1. -1 ssoc (‘outtptil. Macit.

22,1:477 492, 1975
extend the mo

[Wy179} .1. C. Wy llie, ‘J’lte Co tttitlemlg of Parallel Cutup n/a lions. IOu D thesis, (7tm nut Or Science 1)epart— that nor restil

nuent, (nnelI U niversity, I tli:uca, NV, 1979.

1 Introdu

Efficient solo tO in

((Ill I miter S deli Ce

i)ptiiilumIll St)llitiOIli

prauti(’e aiiil tliiot

S ever ;tl 1110(14 ‘1
Iliuti’ is iiii tiiiiveto

I igati mu krajitek

op tiinizat ii uJI p ru)1)

m11—1iOSvt’rflll tenth
is tO ((11111)11 t(t.lld

at any point tim I

If there iS 110 bet t

ong a c(uuutercxafl
by tile number of

,Ollitiu)11 given th
‘oncerii time ulithei
oecaulse it relates

those about his m

Iii I lie next see
:9fluijtjtui15 miiti re

‘-tilliliort ni liv .\1

tStippuirt i’d liv N

