Structural Parallel Algorithmics

Uzi Vishkin®
University of Maryland &
Tel Aviv University

Abstract

The first half of the paper is a general introduction which emphasizes the central
role that the PRAM model of parallel computation plays in algorithmic studies for
parallel computers.

Some of the collective knowledge-base on non-numerical parallel algorithms can be
characterized in a structural way. Each structure relates a few problems and technique
to one another from the basic to the more involved. The second half of the paper
provides a bird's-eye view of such structures for: (1) list, tree and graph parallel
algorithms; (2) very fast deterministic parallel algorithms; and (3) very fast randomized
parallel algorithms.

1 Introduction

Parallelism is a concern that is missing from “traditional” algorithmic design. Unfortunately,
it turns out that most efficient serial algorithms become rather inefficient parallel algorithms.
The experience is that the design of parallel algorithms requires new paradigms and tech-
niques, offering an exciting intellectual challenge. We note that it had not been clear that the
design of efficient parallel algorithms for “enough” problems is at all possible. Specifically, I
recall a discussion with a colleague in 1979. In a thought-off support of a skeptical position,
he quoted [KMG68], who proved that parallelism will be rather ineffective in the context of
binary search; informally, they show that an increase in the number of processors from one
to p may cut the time of binary search by a factor of at most log p.

This review paper relates to very introductory as well as rather advanced material on
efficient parallel algorithmics. Only a very partial list of possible topics are touched upon.
I'reference was given to domains of parallel algorithms where more structure, in a sense
that is explained later, was found. Omitted is a review of general NC algorithms and the
wealth of fundamental results they offer (e.g., for more on this work see [Coo81], [Coo85] and
{K1188a]) It was impossible to give a self-contained presentation within the space limitations.
An introduction to parallelism, PRAMs, and PRAM algorithms is followed by a review of list,

 *Partially supported by NSF grant CCR-8906949.

364

tree and graph algorithms, most of which are not very recent. The last two chapters bring
more recent very fast deterministic and randomized parallel algorithms. Our presentation
emphasizes examples wheré the main contribution of a paper was not principally in the results
it presented, but rather in a new idea, that provided new tools, and thereby evolutionized
concepts as to what can be done efficiently in parallel. Frequently, this meant identifying and
solving subtle key problems that had been previously unnoticed obstacles blocking further
development in various areas. This distinction of idea-versus-result driven research is not an
easy task, for a standard way of arguing that an idea is powerful is to show that it has many
applications and leads to stronger results.

For over two decades there has been an understanding that fundamental physical limita-
tions on processing speed will eventually force high performance computation to be targeted
principally at the exploitation of parallelism. Today, just as the fastest cycle times are ap-
proaching these fundamental barriers, a second generation of moderately parallel machines is
emerging, and a technology of processing elements and communication switches is appearing
with sufficient power to accelerate the pace of experimental parallel machine research. At
the same time, there has been a corresponding maturation in our understanding of inter-
connection networks and their performance costs, although the substantial evolution in this
area shall doubtlessly continue. In the design of parallel algorithms, progress during the last
decade has redirected the principal research focus from an cffort to classify the problems
that can be solved in O(log* n) time on n' processors, where I and k are constants (NC
algorithms), to a growing body of rescarch on how to design cflicient algorithms exhibiting
good speedup on parallel machines.

The question of how to model parallel computation is subtle, and has significant impact
on both the design of parallel systems and the design of parallel algorithms. This problem
has no single answer; indeed, investigations touched upon two aspects of the design question:
techniques for application-specific design, and general purpose design.

Application specific problems include.methodologics for designing algorithins on special
purpose processing organizations. Their use is primarily justificd by the enormous perfor-
mance/cost benefits that can be attained for worthy problems that admit such solutions.

At the other end of the spectrum is the question of how to design general purpose parallel
algorithms, which may not be targeted for a specific machine, and which may be too complex
to be suitable for low level design. Our principal model for algorithmic design in this area is
the PRAM (parallel random access machine), which is the focal point for the present report.

At first glance, the PRAM model of computation might not appear to be suitable as
a general model for designing cfficient parallel algorithms; indeed, even its original use by
the theory community was not, for the most part, to design efficient algorithms. Yet the
PRAM has now won fairly widespread acceptance in the theoretical community, as a model
for eflicient parallel computation.

Loosely speaking, the PRAM model of computation is an idealization that draws its
power from three facts and consequences:

o It strips away levels of algorithmic complexity concerning synchronization; reliability,
data locality, machine connectivity, and communication contention and thereby allows

s MR T 3 g

the algorithm
problem at ha
designed in th
designing such

¢ Many of the de
they have appl
cach wire elem

e Recent advanc
interconnect
virtual process
for some suflici
idealizations t}

The following inf
parallel computatior
model of parallel cor
doomed Lo be a very «
that computer desig
statement is being v

In the rest of th
cfficient parallel algo

2 The PR/

We starl by reviewi:
processors, all havin
for resolving memon
(EREW), concurren
(CRCW). An EREW
sor to the saime mema
access for reads but
reads and writes. (W
among the processor
ceeds). The survey 1
Survey papers speci:
articles include [EG8
allel computational §
and [Rei91].

For sequential co
straction of the von-]
standard textbook, s

b e, v a3 45K e i

365

the algorithm designer to focus on the fundamental computational difficulties of the
problem at hand. The result has been a substantial number of efficient algorithms
designed in this model, and a growing number of design paradigms and utilities for
designing such algorithms.

e Many of the design paradigms have turned out to be strikingly robust; as a consequence,
they have applications in models outside the PRAM domain, including VLSI, where
cach wire element and gate is carefully accounted in the complexity cost.

® Recent advances have shown PRAM algorithms to be formally emulatable on high
interconnect machines, and formal machine designs that support a large number of
virtual processes can, in fact, give a speedup that approaches the number of processors
for some sufficiently large problems. Some new machine designs are aimed at realizing
idealizations that support pipelined, virtual unit time access PRAMs.

The following informal statement represents my belief on the future of general-purpose
parallel computation: Unless parallel machines are designed to support the PRAM, or a
model of parallel computation which is very close to it, the design of parallel algorithms is
doomed to be a very difficult (or even impossible) task; to avoid misunderstand, it emphasized
that computer designers should aspire to make their machine a virtual PRAM, and no
statement is being made about the actual design.

In the rest of the paper we take snapshots summarizing some chief characteristics of
efficient parallel algorithms.

2 The PRAM Model

We start by reviewing the basics of the PRAM model. A PRAM employs p synchronous
processors, all having unit time access to a shared memory. There are a variety of rules
for resolving memory access conflicts. The most common are exclusive-read exclusive-write
(EREW), concurrent-read exclusive-write (CREW), and concurrent-read concurrent-write
(CRCW). An EREW PRAM does not allow simultaneous access by more than one proces-
sor to the same memory location for read or write purposes, while a CREW allows concurrent
access for reads but not for writes, and a CRCW PRAM allows concurrent access for both
reads and writes. (We shall assume that in a concurrent write model, the smallest numbered,
among the processors attempting to write into a common memory location, actually suc-
ceeds). The survey paper [Vis83] elaborates on the raison d’etre of the “PRAM approach”.
Survey papers specializing on the class NC are [Coo81] and [Coo85). More recent review
articles include [EG88], [KR88a], and [KRS88], as well as [Ata90b], which is devoted to par-
allel computational geometry. Books on the topic include [AkI89), [GR88], [J4J91), [Par87)
and [Rei91].

For sequential computation, it has been of considerable advantage to deal with an ab-
straction of the von-Neumann machine, namely the RAM or Random Access Machine (see a
standard textbook, such as [AHU74]). Two major advantages of such an abstraction are that

R S P

366

it makes the algorithm designer’s task less complex, and it eliminates obstacles to algorithm
portability. A third reason for the success of the RAM model is that its cost complexity
generally provides an accurate approximation of the running time on real sequential ma-
chines: by and large, efficient RAM algorithms translate into efficient programs on specific
machines that are properly designed. Similar motivations justify the use of the PRAM model
for parallel computation.

While the PRAM model is demonstrably simple, and provides a clean medium for ex-
pressing algorithms, its power depends equally on the wealth of high performance algorithms
that have been inspired by the model.

Given two parallel algorithms for the same problem one is more efficient than the other
if: (1) primarily, its time-processor product is smaller, and (2) secondarily (but important),
its parallel time is smaller. Optimal parallel algorithms are those whose time-processor
product is asymptotically equal to the serial complexity of the problem. They correspond
to optimal (often linear) time sequential algorithms. A fully-parallel algorithm is a parallel
algorithm that runs in constant time using an optimal number of processors. The notion
of fully-parallel algorithm represents an ullimate theoretical goal for designers of parallel
algorithms. Research on lower bounds for parallel computation indicates that this goal is
unachievable for almost any interesting problem. These same results often preclude much
weaker time bounds for the same problems. Consequences of the above discussion are: (1)
the evolving theory of very fast parallel algorithms cannot benefit {from the theory of not-
as-fast parallel algorithms; and (2) any result that approaches the fully-parallel performance
goal is somewhat surprising. The quest for fast and processor-cfficient parallel algorithms
has also contributed towards establishing a tradition of excellence similar to the one implied
by the quest for fast serial algorithms.

While lower-bound techniques are not the focus of this paper, we mention here several
lower-bound results whose circumvention provided motivation for much of the research in
sections 5 and 6: (1) Q(logn/loglogn) time using a polynomial number of processors for
the parity problem [BH87); (2) for finding the maximum among n elements [Val75], and
merging [BH85) on a parallel comparison model of computation; and (3) for CREW PRAM
computation of the OR function of n bits [CDR86].

As explained elsewhere (e.g., [KR88a], [KRS88] or [Vis83]), the PRAM should be viewed
as a virtual design-space for a parallel machine and not as a parallel machine, and improve-
ment in the parallel running time of a PRAM algorithm can benefit us in reducing the actual
running time. An important application area, where this is desired, is deadline-driven com-
puting. Starting from the applications and trying to design very fast parallel algorithms for
them is a natural approach. However, the fact that only few very fast algorithms are known
makes this approach hard to pursue. How can one design a very fast parallel algorithm for
a specific application without having some algorithmic paradigms that can be followed?! A
knowledge-base of deadline-driven parallel algorithms is needed. We suggest the following
first step towards building such a knowledge-base: develop a core of problems that can be
computed very fast, as well as very fast computational paradigms. Another line of additional
justification follows [KRS88], [Val90] and [Vis84a] that advocate slackness in processors. Let

g
:
3
:

us explain. Suppo
with p; processor:
algorithm is effici
defined as the rat
fixed, having a la:
simulation by the

Let us sum uj
primary intellectt
tance.

3 PRAM

A considerable b
many of them ar
theory of serial al
list of efficient and
and design techni

“available parallel

a diversity of are
and comparison |

The PRAM w
theoretic and alg
original instance
PRAM for study
time. [Gol82] wa
context (he calle
suggested using |

Figures 1-3 a
the structure of
to solve some im
this, a variety of
have been introc
more involved) a
finer) exists in a
related theories.
the context of lis
section, and illu
We highlight st:
overview of mos
most “target pr
usually, they are
The other figure

B e

e

367

us explain. Suppose we are given an efficient PRAM algorithm and a (real) parallel machine
with p; processors, on which we wish to simulate the algorithm. Suppose that the PRAM
algorithm is eflicient for up to p PRAM processors. In this case, processor slackness is
defined as the ratio p;/p,. Informally, each of these three papers argues that even if p; is
fixed, having a larger p, (and therefore larger processor slackness) leads to a more efficient
simulation by the real machine.

Let us sum up. Getting the fastest possible time by a processor-efficient algorithm is a
primary intellectual challenge; the techniques developed are likely to have practical impor-
tance.

3 PRAM Algorithms

A considerable body of PRAM algorithms has been discovered over the past several years;
many of them are [or fundamental problems that have been recognized as classical in the
theory of serial algorithms. The benefit from the PRAM model is not only in the extensive
list of efficient and fast parallel algorithms that have been designed. Fundamental paradigms
and design techniques have emerged, which are of use in many, if not all, models of physically

“available parallel machines. These techniques have led to efficient fast parallel algorithms in

a diversity of areas, including computational geometry, graph problems, pattern matching,
and comparison problems.

The PRAM was first proposed as a model for parallel computation in a joint complexity
theoretic and algorithmic context in a 1979 thesis [Wyl79] and in a paper [FW78]; this
original instance concerned the CREW PRAM model. [Sch80b] also advocated using a
PRAM for studying the limits of parallel computation at around the same chronological
time. [Gol82] was the first to propose the CRCW PRAM model in a complexity theoretic
context (he called it a SIMDAG). [Pip79] identified and characterized the class NC. [SV81]
suggested using the CRCW PRAM in an algorithmic context.

Figures 1-3 are a focal point for this short tutorial paper. The figures illustrate some of
the structure of PRAM algorithmics. The research itself seems to have been led by a desire
to solve some involved problems; however, these figures reveals that in order to accomplish
this, a variety of techniques, as well as solutions to more fundamental underlying problems,
have been introduced. This structure of problems and techniques (from the basic to the
more involved) adds elegance to parallel algorithmics. Such fine structure {or actually much
finer) exists in a few classical fields of Mathematics, but is rather unique in combinatorics-
related theories. The first observation that such interesting structures are possible was in
the context of list, tree and graph problems; this particular structure is described in the next
section, and illustrated in Figure 1. Most of this work was done between 1980 and 1988.
We highlight structure-related issues of this work, primarily for background; an elaborate
overview of most of this material can be found in [EGS8] and [KKR88a]. The algorithms for
most “target problems” in this figure (these are the more involved and known problems;
usually, they are at the top or slightly below the top of the figure) run in logarithmic time.
The other figures (and sections) are on doubly-logarithmic time, or faster algorithms; this

ST TR TN A ST Y O O R DY S 4 A e OO sty . b
“u

368

work was done recently; while it was hard to anticipate the structure of F igure 1 beforehand, algorithms for this p
searching for a similar structure became one of the research goals for the later work.

4 List, Tree and Graph Algorithms

A basic routine that is used most often in parallel algorithms is undoubtedly that for the
prefiz sums problem [LF80]. The fact that the prefix-sums problem appears at the bottom
of Figure 1 is meant to convey the basic role of this problem. A faster CRCW algorithm for
prefix-sums also exists [CV89]. A generalization of this problem to pointer structures, the list
ranking problem, was identified in [Wyl79]; list ranking has proven to be a key subroutine in
parallel algorithms. In fact, obtaining optimal algorithms for list ranking and (undirected)

graph connectivity proved to be central to obtaining optimal algorithms for a considerable ~gdge/vertex]
number of list, tree and graph problems. First randomized, and later deterministic, opti- connectivity i
mal parallel algorithms for list ranking were given [Vis84b], [CV86b), [CV86a], [AMS8S] and T

[CV89]. The deterministic algorithms are based on a deterministic arbitration technique,
dubbed deterministic coin tossing [CV86b]. Extensions of this technique for sparse graphs

and other applications were given [GPS87], [CZ90], and [HCDS7). centroid E
Key techniques for parallel algorithms on trees are reviewed next: (1) The Buler tour decomposition

technique [TV85] reduces the computation of many tree problems to list ranking. (2) The

tree contraction technique [MR85] led to a number of optimal randomized logarithmic-time

algorithms for tree problems, including expression tree evaluation; optimal deterministic ver-

sions were also given [GR86), [CV88], [ADKP87] and [KD88]. Implicit use of tree contraction ST ThRET

N in a non-standard parallel algorithmic setting appeared in [Bre74]. (3) Centroid decomposi-

o tion of a tree, as implicitly used in [Win75] for O(log? n) time computations. Accelerating |
centroid decomposition was the motivation for the tree contraction version of [Cvss). =rmng=
= Two logarithmic time connectivity algorithms were given: (1) a deterministic one which is
{ optimal on all except very sparse graphs [CV86a]; (2) a randomized optimal one [Gaz86). For

i Figure 1, the deterministic algorithms builds on a restricted union Jfind problem, a scheduling
problem, dubbed duration unknown task scheduling, and the Euler tour technique, as well as
3 ideas from two previous connectivity algorithms [HCS79] and [SV82a). It should be pointed
k out that the logarithmic time version of the deterministic connectivity algorithm requires
' the use of expander graphs and thus is highly impractical at present; however, a slightly less

parallel version involves much smaller constants. Depth first searc

The graph connectivity problem turned out to be the main obstacle to deriving optimal for designing sequer

logarithmic time algorithms for several graph problems, including: biconnectivity [TV85], how to implement L

finding Euler tour in a graph [AV84), [AIS84] and orienting the edges of an undirected graph (EDS) was suggestec

to get a strongly connected digraph (“strong orientation)” [Vis85a]. We also note some recent algorithms [MSV86]

parallel algorithms for k (edge and vertez) connectivity problems [KS89] and [CT91]. in parallel in a fast t

The problem of achieving optimal speedups on sparse graphs for the strong orientation for biconnectivity an

and biconnectivity problems turned out to depend on an efficient solution for yet another | st-numbering of a gr:

fundamental problem: preprocessing of a rooted tree so that a query requesting the lowest and [RV88]. An st-1

common ancestor (LCA) of any pair of nodes can be processed in O(1) operations. Parallel

369

d, algorithms for this problem [SV88] and [BV89] use the Euler tour technique.

BEfanced nignarity tesrinagl
he
m Bdvanced riconnectiviiyg pAoaciry Testing
for
ist =
in
«d)
le —edgesvertex] ainimum EdTer] [ear gecomp- fconn-| [trong
ti- connectivity spanning forest] | tours) losition searchj fctivity prientation
nd T
hs ; CEntroid TEe TGWEesSL common graph
T decomposition contraction lancestors gnnectivity
he |
ne ! [duration unknNowr ,
°r- ; find task scheduling |
on I ‘.
si- ‘. =T rpong] cotoring pianar : :
ng l and bounded o |
f . degree graphs
is ;
or | prelix-sumsl Helerministic coln [assingd S 1
ng |)
as | FIGURE 1: List, tree and graph algorithms : .
ed] -
_
88 :
i Depth first search (DFS) is perceived by many as the most useful technique known .
1al l for designing sequential algorithms for graph problems. Unfortunately, it is not known
3], . how to implement DFS efficiently in parallel. A technique called ear decomposition search
ph : (EDS) was suggested as a replacement for DFS in the context of efficient and fast parallel
nt " algorithms [MSV86] and [MR86), after an earlier suggestion in [Lov85] for computing EDS
in parallel in a fast but inefficient manner. The EDS method implies alternative algorithms
n i for biconnectivity and sirong orientation. More powerful applications were for finding an i |
er st-numbering of a graph, again in [MSV86], as well as for triconnectivity algorithms [MR87] k |
‘38: ‘ and [RV88]. An st-numbering is used in the planarity testing algorithm of [KR88b]. The
e
{
!
i

R i s, oy W LS e e W WS N R 2 ST p————

370

most recent algorithms for triconnectivity [FRT89] and planarity testing [RR89b], are very
nice examples of reaching target problems by building an even higher level in the structure
of Figure 1, and using effectively many of the previous techniques.

5 Deterministic Fast Algorithms

Structure that was found in optimal doubly-logarithmic time (or faster), parallel algorithms
is highlighted. Figure 2.1 discusses works that can be viewed as using the doubly-logarithmic
tree paradigm, as per [BBG*89] . Doubly-logarithmic trees are rooted trees with n = 2%
leaves for some integer i > 0. The root has 22" children, each being the root of a doubly-
logarithmic subtree with 22'™" leaves. For i = 0 a doubly-logarithmic tree consists of a
root and two children, which are leaves. Such structure guides the computation in optimal
doubly-logarithmic parallel algorithms for finding the mazimum among n elements [Svai)
(using [Val75)), finding the mazimum relative to all prefizes of an array of elements [Sch87)
and [BSV8S] (the prefiz-mazima problem), merging two sorted lists [Kru83] and [BHS3,
finding the convez hull of a monotone polygon [BSV91], and finding all nearest neighbors in
a convez polygon [SV90]. Note that all merging algorithms that are mentioned in this paper
may be implemented on a CREW PRAM. String matching: For some family of parallel
algorithms it is sufficient to consider only non-periodic patterns [Gal85). A method for
eliminating (at least) one among two potential occurrences of a non-periodic pattern string
in a text string in [Vis85b] was observed in [BG8S] to be similar to comparing two numbers
in order to determine which one is larger and together with an algorithm for finding the
maximum, led to an optimal doubly-logarithmic string matching algorithm; [BG91) showed
recently a matching lower-bound for a parallel comparison model of computation. The all
nearest smaller values (ANSV) problem is: given an array (aj, as...a,), the ANSV problem
is to find for each 1 < ¢ < n the nearest 7 and [, such that ¢; and a; are smaller than a;
(that is, find the smallest I > i such that q; < a; and the largest j < i such that a; < a;).
While generalizing two problems - finding the maximum and merging - an optimal doubly-
logarithmic algorithm for ANSV was still possible [BSV88]. In the same paper, the ANSV
algorithm is shown to lead to optimal doubly-logarithmic algorithms for the following range-
mazima problem: preprocess an array of numbers (a1, az...a,), so that for any pair of indices
tand j, where 1 <i<j <n, a range-mazimum query requesting the maximum among
(@i, ai41...a;) can be processed in constant-time. More remotedly related to the doubly-
logarithmic tree paradigm is a matrix searching algorithm [Ata90a)

Remark. Some of the problems mentioned in this section, particularly from here on, may
have a rather specific flavor. However, they are still interesting since improvement on the
more general problem is either impossible or apparently difficult.

The surplus-log approach: suppose the aim is designing a triply-logarithmic (or faster)
optimal parallel algorithm; the surplus-log approach suggests the following first step: design
an algorithm with nlogn processors and constant-time, Uses of the surplus-log approach
come in two flavors: (1) As part of a global strategy. (2) As a rule-of-thumb (or “sorcery™);
that is, it merely provides an insight that leads to further improvements; in other words,

BTring =7

matching | smal’

ot

merging| maxir

T~

a

FIGURE Z

STFTNG MaLching
reprocessed

fTowest common
ancestors in tree:

Festricted-Input
range-maxima

[——

O USRS M e M e

o e e (D

Ul W

=8 =

an

integer | finteger
axima erging prefix-maxima |

-nearest
maller values

all nearest
eighbors

refix- convex mic

axima ull

Cripiy=Togar|

merging| maximum baradiam

FIGURE 2.1: Doubly- and triply-logarithmic time algorithms

NS roirng aronod A rectangla]

tring matching .. n] integer
reprocessed pattern) refix-maxima

FIGURE 2.2: log-star time algorithms

~hearest-neignobor

lower bound
owesl common arentheses | TNverse-Ackermann | T nJ]integer
ncaestors in trees atching time reducibility meraing
Festricted- input estrictea-inpul all fearesi- pearest-one
range-maxima earest smaller values| pne comoplementation

FIGURE 2.3: Inverse-Ackermann time algorithms

ik het kRt

ey e m———

372

for some reason, which is not fully clear to us, it sometimes helps to follow the surplus-log
approach.

A triply-logarithmic paradigm [BJK*90] uses the surplus-log approach, in conjunction
with doubly-logarithmic algorithms for the same problems, as part of a global strategy.
The strategy leads to optimal parallel algorithms for several problems whose running time
is triply-logarithmic in the following sense: consider, for instance, the problem of merg-
ing two sorted lists of integers drawn from the domain [1...s]. The running time obtained
is O(logloglog s) [BV90]. There are also similar triply-logarithmic results for the prefix-
maxima problem [BJK*90] (and thereby for finding the maximum among n elements).

Optimal log-star time (i.e., O(log" n)) time) parallel algorithms seem to be the hardest
to fit into a strict structure of paradigms using presently available ideas. See Figure 2.2.
However, using the surplus-log approach, as a rule-of-thumb, was helpful for several problems:
(1) String matching for a preprocessed pattern [Vis91]; (2) prefix-maxima [BJK*91]; there,
this prefix-maxima algorithm is also the most time consuming step in an algorithm for
routing around a rectangle - a VLSI routing problem ; and (3) for preprocessing a rooted
tree, so that any level-ancestor query can be processed in constant-time [BV91b]. The input
for such query consists of a vertex v and an integer I; the output is the I’th ancestor of v,
where the first ancestor of a vertex is its parent and the I’th ancestor is the parent of the
(I = 1)’st ancestor; the Euler tour of the tree is assumed to be given.

Optimal inverse-Ackermann time (i.e., O(a(n)) time , where « is the inverse-Ackermann
extremely slow growing function) parallel algorithms actually usc the surplus-log approach
in a methodological way, overviewed below. Benefiting from a construction on unbounded
fan-in circuits in [CFL83], the inverse-Ackermann paradigm [BV89] works by designing a
series of algorithms; the first in the series should run in O(1) time using nlogn processors;
then, in a certain way, slight increase in time implies significant decrease in the number of
processors. The a(n)’th algorithm in the series runs in O(a(n)) time using na(n) processors,
and finally an optimal algorithm that uses (n/a(n)) processors and O(a(n)) time is derived.
See Figure 2.3 for the sequel. The most basic problem that was solved using the inverse-
Ackermann paradigm is for the nearest-one problem (see also [Rag90], who calls it the
chaining problem): given an array of bits (ay, ..., a,), find for each 1 < ¢ < n, the two nearest
7 and I such that a¢; = a; = 1 (that is, find the smallest j > ¢ such that a; =1 and the
largest j < i such that a; = 1). Inverse-Ackermann time for chaining is best possible in an
“oblivious” model of parallel computation, even with n processors [Cha90]. The nearest-one
algorithm has been used to reduce a general version of the merging problem to the problem of
finding all nearest neighbors (ANN) of vertices in a convex polygon; a consequence is that a
doubly-logarithmic time lower-bound for merging extends to the ANN problem, resulting in
a simpler proof than in [SV90]. Wherever reducibilities are more efficient than lower bounds
they become promising tools for the theory of lower bounds. Before proceeding we make
two comments: (1) in all problems below the input is assumed to come from the domain
of integers [1...n]; (2) we avoid redefining problems that were defined earlier. Problems for
which optimal inverse-Ackerman algorithms were given include: (1) the all nearest smaller
value (ANSV) problem,; this leads to: (2) parentheses matching: given the level of nesting

ALY SPATEM TRA

S

L s €

ollow the surplus-log

oach, in conjunction
of a global strategy.
whose running time
1¢ problem of merg-
nning time obtained
ssults for the prefix-
mg n elements).

'm to be the hardest
eas. See Figure 2.2.
for several problems:
ma [BJK*91]; there,
in an algorithm for
eprocessing a rooted
[BV91b). The input
te I'th ancestor of v,
is the parent of the

e inverse-Ackermann
surplus-log approach
ction on unbounded
rorks by designing a
g nlogn processors;
ise in the number of
ng na(n) processors,
{(n)) time is derived.
«d using the inverse-
0], who calls it the
< n, the two nearest
hat a; = 1 and the
5 best possible in an
30]. The nearest-one
2m to the problem of
onsequence is that a
yroblem, resulting in
t than lower bounds
sroceeding we make
ne from the domain
arlier. Problems for
> all nearest smaller
the level of nesting

R

g e e

373

for each parenthesis in a legal sequence of parentheses, find for each parenthesis its match;
the last two results are in [BV91a); (3) the nearest-one complementation problem: given is
an array of bits (ay, ..., a,) and suppose for each a; = 1, the two nearest indices § and I, such
that a; = a; = 1, are known; find for each a; = 0, 1 < 7 < n, the two nearest j and ! such
that a; = a; = 1 (that is, find the smallest j > 1 such that a; = 1 and the largest j < i such
that a; = 1); this leads to: (4) merging two sorled lists; the nearest-one complementation
and the merging algorithms are for a CREW PRAM; the last two results are in [BV90).

The following two problems involve preprocessing and query retrieval: (1) preprocessing
for range-mazima queries; the preprocessing is done by an optimal inverse-Ackermann paral-
lel algorithm and processing a query takes inverse-Ackermann time; the series of algorithms
obtained as part of the inverse-Ackermann paradigm also implies trading-off slightly slower,
but still optimal, preprocessing for faster (e.g., constant-time) query retrieval; (2) preprocess
a rooted tree so that a query requesting the lowest-common-ancestor (LCA) of any pair of
vertices can be quickly processed; results are similar to the ones for range-maxima, assuming
that the Euler tour of the tree is given; the algorithm is new, and interestingly also simpler
than previous LCA algorithms [HIT84] and [SV88].

6 Randomized Fast Algorithms

Randomization has shown to be very useful for both the simulation of PRAM-like shared
memory models of parallel computation by other models of parallel machines (e.g., in [KUS86],
[KRS88], [MV84], [Ran87], [KPS90] and [MSP90)), and for the design of parallel algorithms
(e.g., in [ABI8G], [AM90], [Gaz86], [GM91), [KRS87], [Lub86], [MRS5], [MV90], [MV91],
[RR89a], [RS89], [Rei81], [Sch80a), [Sen89] and [Vis8db)).

All “target algorithms” in this section are randomized, and their running time is at the
doubly-logarithmic level, or faster. By the doubly-logarithmic level, we mean O(f(n)log logn)
where the function f(n) is o(log logn).

Several constant-time optimal randomized algorithms were given: (1) for finding the
maximum among n elements [Rei81]; and its generalization (2) for linear programming in
fixed dimension [AM90]; (3) for finding approximate median [Sen89); (4) for the nearest one
problem (as in [BV89] and [Rag90]), under the assumption that there is some upper bound
on the number of ones, [Ram90].

Several parallel deterministic and randomized algorithms, that run in time proportional
to logn/loglogn (“logarithmic level”) or slower, were given for sorting [AKS83), [Bat68],
[BN89], [Col88], [Hir78) [PreT8), [RV87], and [SV81], and integer sorting [BDH*89], [Hag87),
[Hagdla), [MV90], [MV91], [RR89a], [Ram90] and [Ram91]). The lower-bound in [BH87)
implies that faster algorithms are possible only by relaxing the definition of the problem:
(1) [MS91) gave a doubly-logarithmic level result, assuming the input comes from a certain
random source; the output is given in a “padded” representation; (2) [Hag91a] allows general
integer inputs from the range [1..n]; the output is given in a linked list which is sorted in a
non-decreasing order.

We proceed to Figure 3, the main structure in this section. At the most basic level,

B g o o e i sl S T ok e e R bt GRS S

374

Figure 3 has the d-polynomial approzimate compaction (d-PAC) problem (for d = 3 or 4).
Given is an array of n cells; we know that only m of them contain one item each, and the
rest are empty; the problem is to insert all items into an array of size m?. A constant-time
algorithm using n processors has been given for this [undamental problem in [Rag90]. The
linear approzimate compaction (LAC) probler is harder: using the same input, the items
are to be inserted into an array whose size is linear in m, say 4m. An optimal randomized
algorithm for LAC, whose running time is at the log-star level was given [MV91]. Unless
mentioned otherwise, all log-star level results are from this paper. The algorithm uses the d-
PAC algorithm. A somewhat similar use of the d-PAC algorithmn for a different problem can
be found in [Ram90]. Using the log-star-time deterministic algorithms for the nearest-one
and prefix-maxima problems, mentioned earlier, as well as the LAC algorithm, an optimal
log-star level for generating a random permutation was given. Other methods for this problem
are at the logarithmic level [MR85] and [RR89a); {Hagd1b] gives a doubly-logarithmic level
algorithm that produces random permutations in a non-standard representation. The LAC
algorithm required a new algorithmic paradigm. This paradigm has been extended, within
the same performance bounds, to cope with the more general and well-investigated problem
of hashing: given a set of n input elements, build a linear size table that supports membership
queries in constant-time. Logarithmic level hashing [MV90], and doubly-logarithmic level
hashing [GM91] preceded this result. Some log-star level ideas for a non-standard algorithmic
model, where cost of counting, as well as assignment of processors to jobs, are ignored
were given in [GMW90]. An Q(log" n) time lower-bound using n processors is also given
in [GMW90]; the lower bound is for a model of computation that admits the log-star level
algorithm. We mention here only one application of hashing; sce [MV90] for reference to
several parallel algorithms with excessive space requirements that become space-efficient
by using parallel hashing; the penalties are increase in time (as required by the hashing
algorithm) and switching from a deterministic to a randomized algorithm.

Assignment of processors to jobs is a typical concern in parallel algorithms; for instance,
one of the most powerful methodologies for designing parallel algorithms is to have a first
design in terms of total work and time; extending this first design into a “full PRAM”
design is guided by a theorem due to [Bre74]; the problem, however, is that the theorem
holds only for a non-standard model of parallel computation, where assignment of processors
to jobs can be done free of charge; the methodology was first used for the design of a PRAM
algorithm in [SV82b], and is elucidated in (Vis90] and [JiJ91], who call it the work-time
framework; typical applications of this methodology solve the processor assignment problem
in an ad-hoc manner; however, sometimes proper processor assignment can be achieved using
general methods for balancing loads among processors. Load balancing can be achieved by
a simple application of a prefix-sums algorithm (e.g., [Vis84b]), with a logarithmic-level
time overhead. A family of load balancing algorithms are treated in {Gil90], with a doubly-
logarithmic multiplicative overhead; [MV91] treats a more specific family, with log-star level
additive overhead, using the LAC algorithm. Load balancing and hashing methods, including
the ones in [GM91], led to a doubly-logarithmic level “dictionary” extension of hashing,
where, insertion and deletion queries are also supported [GMV90]; an algorithm in [DM89]

TR PR T, A AL 5 A PN 5a il R @ S R

solves the dictionar

Routines for the
in Section 4. An
paragraph is given
prefix-sums proble;
LAC problem; (3) -
of n cells ¢y, ..., Cn;
count t; and a poir
problem is to redis

Fandom
ermutatior

nearest-ones

Acknowledge
and R. Thurimell:

References
[ABI8S] N. Alon,
independ:
[ADKP87) K. Abral
traction ¢
[AIIUT4] A. V. Ah
Addison-
[A1S84] B. Awert
Proc. of .
[AkI89) S.G. Akl
Jersey, 1!
[AKS83] M. Ajtai,
ACM Sy

375
. solves the dictionary problem with running time of the form O(n¢).
e Routines for the prefix-sums problem play a major role in parallel algorithms, as indicated
e in Section 4. An additional perspective with respect to some problems in the previous
e paragraph is given by simply ordering them according to how well they “approximate” the
8 prefix-sums problem, as follows: (1) the d-PAC problem is a first approximation; (2) the
1 LAC problem; (3) the load balancing problem, which is defined as follows: given is an array
] of n cells ¢y, ..., ca; cell ¢; contains ¢; tasks, 1 <i < n, where T, t; < N (each cell i has the - :
; =1
5 count ; and a pointer to an array of size {;; the array has a task at each of its entries); the |
n problem is to redistribute the tasks among the cells such that cach cell gets O(N/n) tasks. |
e J
d
n eredu 0 |
| RAN0NY lications
3 \ .
n = 5
angom 0ad balancing i
n |
D ermutation ngllcaglons _ ashing :
2]
c \
d nearest-ones [1 . n] linear approximate
n refix-maxim com i .
2l
o
3
1t F
g ; !
FIGURE 3: Very fast randomized algorithms
3’
it Acknowledgement. Helpful comments by O. Berkman, J. JiJd, S. Khuller, Y. Matias
" and R. Thurimella are gratefully acknowledged.
N .
i3 -
4 References
‘e [ABI86] N. Alon, L. Dabai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal '
n independent set problem. J. Algorithms, 7:567-583, 1986. 1
g [ADKP87] K. Abrahamson, N. Dadoun, D. A. Kirkpatrick, and T. Przytycka. A simple parallel tree con-
traction algorithm. Technical Report 87-30, The University of British Columbia, 1987.
Y [AHUT4] A. V. Aho, J. E. Hoperoft, and J. D. Ullman. The design and analysis of compuler algorithma. :
el Addison-Wesley, Reading, MA, 1974. |
/- [AIS84] B. Awerbuch, A. Israeli, and Y. Shiloach. Finding Euler circuits in logarithmic parallel time. In :
el Proc. of the 16th Ann, ACM Symp. on Theory of Compuling, pages 249-257, May 1984. 1
g [AkIBY] S.G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, Engelwood Cliffs, New
Jersey, 1989.
% [AKS83] M. Ajtai, J. Komlds, and E. Szemerédi. An O(n logn) sorting network. In Proc. of the 15th Ann. ;
9] ACM Symp. on Theory of Computing, pages 1-9, 1983.
1
:
L

376

(AM88) R.J. Anderson and G.L. Miller. Optimal parallel algorithms for list ranking. In $rd Aegean
workshop on computing, Lecture Noles in Computer Science 319, 1988, Springer- Verlag, pages
81-90, 1988.

[AM90) N. Alon and N. Megiddo. Parallel linear programming almost surely in constant time. In Proc.
of the 31st IEEE Annual Symp. on Foundation of Computer Science, pages 574-582, 1990.

[Atag0a] M.J. Atallah. A faster algorithm for a parallel algorithm for a matrix searching problem. In Proe.
2nd SWAT, volume LNCS 447, pages 192-200. Springer-Verlag, 1990.

(Ata90b] M.J. Atallah. Parallel techniques for computational geometry. Technical Report CS-1020, Purdue
University, 1990.

[AV84) M.J. Atallah and U. Vishkin. Finding Euler tours in parallel. J. Comp. Sys. Sei., 29,3:330-337,
1984,

[Bat68) K. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing Confer-
ence, pages 307-314, 32(1968).

[(BBG+89) O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Ilighly-parallelizable problems.
In Proc. of the £1st Ann. ACM Symp. on Theory of Compuling, pages 309-319, 1989.

(BDI*89) P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, and S. Saxena. Improved determin-
istic parallel integer sorting. Technical Report TR 15/1989, Fachbereich Informatik, Universitit
des Saarlandes, D-6600 Saarbriicken, W. Germany, November 1989.

[BG88) D. Breslauer and Z. Galil. An optimal O(log logn) parallel string matching algorithm. To appear
in SIAM J. Comput., 1988.

[BG91) D. Breslaver and Z. Galil. A lower bound for parallel string matching. In Proc. of the 23rd Ann.
ACM Symp. on Theory of Compuling, 1991.

(BNI85) A. Borodin and J.E. Hopcroft. Routing, merging, and sorting on parallel models of computation.
J. Computer and System Sciences, 30:130~145, 1985.

[BI187) P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM. In Proc.
of the 19th Ann. ACM Symp. on Theory of Computing, pages 83-93, 1987.

[BJK*90] O. Berkman, J. J4J4, S. Krishnamurthy, R. Thurimella, and U. Vishkin. Some triply-logarithmic
parallel algorithms. In Proc. of the 31st IEEE Annual Symp. on Foundation of Computer Science,
pages 871-881, 1990.

(BIK*91] O. Berkman, 3. JaJ4, S. Krishnamurthy, R. Thurimella, and U. Vishkin. Top-bottom routing
is as easy as prefix minima. In preparation (a preliminary and partial version is part of Some
Triply-logarithmic Parallel Algorithms, see above), 1991.

[BN89) G. Bilardi and A. Nicolau. Adaptive bitonic sorting: an optimal parallel algorithm for shared-
memory machines. STAM J. Computing, 18:216-228, 1989.

[Bre74} R.P. Brent. The parallel evaluation of general arithmetic expressions. J. Assoc. Compul. Mach.,
21:302-208, 1974.

[BSV88] O. Berkman, B. Schieber, and U. Vishkin. Some doubly logarithmic parallel algorithms based
on finding all nearest smaller values. Technical Report UMIACS-TR-88-79, Univ. of Maryland
Inst. for Advanced Computer Studies, 1988.

[BSV91) O. Berkman, B. Schieber, and U. Vishkin. The parallel complexity of finding the convex hull of
a monotone polygon. In preparation, 1991.

[BV89] O. Berkman and U. Vishkin. Recursive *-tree parallel data-structure. in Proc. of the 30th IEEE
Annual Symp. on Foundation of Compuier Science, pages 196-202, 1989.

[BV90) O. Berkman and U. Vishkin. On parallel integer merging. Technical Report UMIACS-TR-90-15,
University of Maryland Inst. for Advanced Computer Studies, 1990.

[BV91a] O. Berkman and U. Vishkin. Almost fully-parallel paretheses matching. In preparation, 1991,

[BV91b] O. Berkman and U. Vishkin. Finding level-ancestors in trees. Technical Report UMIACS-TR-
91-9, University of Maryland Institute for Advanced Computer Studies, 1991.

[CDR86] S.A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random access
machines without simultaneous writes. SIAM J. Comput., 15:87-97, 1986.

[CFL83] A.K. Chandra, S. Fortune, and R.J. Lipton. Unbounded fan-in circuits and associative functions.

e ———

[Cha90)
[Col8]
[Coo81)
[Coo85)
[CT91]

[CV86a)

[CV86b)
(CV8s)
[CV89]
(C290)
[DM89)
[EG88]
[FRT89}
[FW78)
(Gal8s)

[Gaz86)

[Gil90)
(GMY1)

[GMV90)
[GMW90)

[Gol82)
[GPS87)

[GRS6)

[GR8S)

(ag87]

In Proc.
S. Chaud
R. Cole.
S.A. Coo
27:99-12
S.A. Coo
$4:2-22,
J. Cheriy
cates. In
R. Cole ¢
tree and |
Science, |
R. Cole :
ranking.
R. Cole 2
tree eval
R. Cole 3
Compula
R. Cole a
point loe:
M. Dietzf
Symposiu
D. Eppst«
Rev. Con
D. Fussel
replaceme
S. Fortun
Annual A
Z. Galil.
1985.

H. Gazit.
In Proe.
1986.

J. Gil. Fa
for Hashi;
J. Gil an
Symposiu
Y.Gil,Y
Y. Gil, F.
In Proc. ¢
L.M. Golc
Mach., 28
A. Goldb
Proceedin
A. Gibbo
plications
Theorelic:

Verlag, 1¢
A. Gibbo
bridge, 19
T. Hagert
1987.

———

(Cha90)
[Col8s)
[Coo81]
[Coo85)
[CT91)

[CV86a]

[CV86b)
[CVss]
[CV89)
(C290)
(DM89)
[EGBS)
(FRT89)
(FWT8)
(Gal85)

(Gaz86]

(Gilgo)
[GM91)

(GMV90)
([GMW90)

[Gol82)
([GPS8T)

(GRS6]

(GRs8]

[11ag8T]

377

In Proc. of the 15th Ann. ACM Symp. on Theory of Compuling, pages 52-60, 1983.

S. Chaudhuri. Tight bounds for the chaining problem. preprint, December, 1990.

R. Cole, Parallel merge sort. SIAM J. Compuling, 17(4):770-785, 1988,

S.A. Cook. Towards a complexity theory of synchronous parallel computation. Ensign. Math.,
27:99-124, 1981,

S.A. Cook. A taxenomy of problems with fast parallel algorithms. Information and Control,
64:2-22, 1985.

J. Cheriyan and R. Thurimella. Algorithms for parallel k-vertex connectivity and sparse certifi-
cates. In Proc. of the 23rd Ann. ACM Symp. on Theory of Computing, 1991.

R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to list,
tree and graph problems. In Proc. of the 27th JEEE Annual Symp. on Foundation of Computer
Science, pages 178-491, 1986.

R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list
ranking. [nformation and Control, 70:32-53, 1986.

. Cole and U. Vishkin. The accelerated centroid decomposition technique for optimal parallel
tree evaluation in logarithmic time. Algorithmica, 3:320-348, 1988.

R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Information and
Compulation, 81:334-352, 1989,

. Cole and O. Zajicek. An optimal parallel algorithm for building a data structure for planar
point location. J. Parallel and Distributed Compuling, 8:280-285, 1990.

M. Dietzfelbinger and F. Meyer auf der Heide. An optimal parallel dictionary. In Proc. lst ACM
Symposium on Parallel Algorithms and Architeclures, pages 360-368, 1989,

D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial computation. Ann.
Rev. Comput. Sei., 3:233-283, 1988.

D. Fussell, V.L. Ramachandran, and R. Thurimella. Finding triconnected components by local
replacements. In Proc. of 16th ICA LP, Springer LNCS 372, pages 379-303, 1089,

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the 10th
Annual ACM Symposium on Theory of Compuling, pages 114-118, 1978.

7. Galil. Optimal parallel algorithms for string matching. Information and Control, 67:144-157,
1985.

I. Gagzit. An optimal randomized parallel algorithm for finding connected components in a graph.
In Proc. of the 27th IEEE Annual Symp. on Foundation of Compuler Science, pages 192-501,
1986.

1. Gil. Fast load balancing on PRAM. Preliminary report; see also: Lower Dounds and Algorithms
for Hashing and Parallel Processing, Ph.D. Thesis, llebrew University, Jerusalem, Israel, 1990.
1. Gil and Y. Matins. Fast hashing on a PRAM. In Proc of the 2nd Second ACM-SIAM
Symposium on Discrete Algorithms, pages 271-280, 1991.

Y. Gil, Y. Matias, and U. Vishkin. A fast parallel dictionary. In preparation, 1090. =
Y. Gil, F. Meyer auf der Ileide, and A. Wigderson. Not all keys can be hashed in constant Lime.
In Proc. of the 22nd Ann. ACM Symp. on Theory of Computing, pages 244-253, 1990,

..M. Goldschlager. A universal interconnection pattern for parallel computers. J. Assoc. Compul.
Mach., 29:1073-1086, 1982.

A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse graphs. In
Proceedings 19th Annual ACM Symposium on Theory of Computing, pages 315-324, 1087.

A. Gibbons and W, Rytter. An optimal parallel algorithm for dynamie evaluation and its ap-
plications. In Proceedings of the sizth Conference on Foundations of Software Technology and
Theorelical Computer Science, Lecture Notes in Computer Science 241, pages 453-469. Springer-
Verlag, 1986.

A. Gibbons and W. Rytter, Efficient Parallel Algorithms. Cambridge University Press, Cam-
bridge, 1988.

T. lMagerup. Towards optimal parallel bucket sorting. [nformation and Computation, 75:39-51,
1087,

SiaSians 2

[Hag91a)

[Hag91b]
(HCDS7]

[ACS79)

[Hir78]
[HT84)

(33391}
(KD88}
[KM68]
[KPS90}
[KR87)
[KR88a)
[KR88b)
[KRS88}
[Kru83]

[KS89)

(KU86]
(LF80]

[Lov85)
[Lub8s)
[MR85]
[MR36]
[MR87)
[MS91)

[MSP90)

378

T. Hagerup. Constant-time parallel integer sorting. In Proc. of the 23rd Ann. ACM Symp. on
Theory of Compuling, 1991.

T. Hagerup. Fast parallel generation of random permutations. In Proc. of 18th ICALP, 1991.
T. Hagerup, M. Chrobak, and K. Diks. Parallel 5-coloring of planar graphs. In Proc. of 1{th
ICALP, pages 304-313, 1987.

D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate. Computing connected components on parallel
computers. Comm. ACM, 22,8:461-464, 1979.

D. S. Hirschberg. Fast parallel sorting algorithms. Comm. ACM, 21:657-661, 1978.

D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
Compul., 13(2):338-355, May 1984.

J. JaJA. Introduction 1o Parallel Algorithms. Addison-Wesley, Reading, MA, 1991.

S.R. Kosaraju and A.L. Delcher. Optimal parallel evaluation of tree-structured computations
by ranking. In Proc. of AWOC 88, Lecture Noles in Compuler Science No. 319, pages 101-110.
Springer-Verlag, 1988.

R.M. Karp and W.L. Miranker. Parallel minimax search for a maximum. J. of Combinatorial
Theory, 4:19-34, 1968,

Z.M. Kedem, K.V. Palem, and P.G. Spirakis. Efficient robust parallel computations. In Proc. of
the 22nd Ann. ACM Symp. on Theory of Computing, pages 138-148, 1990.

R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms. IBM J. of
Research and Development, 31:249-260, 1987.

R.M. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory machines,
Technical Report UCB/CSD 88/408, Computer Science Division (EECS) U. C. Berkeley, 1988.
also, in Handbook of Theoretical Computer Science, North-Holland, to appear.

P. Klein and J.H. Reif. An efficient parallel algorithm for planarity. J. Comp. Sys. Sci., 37, 1988.
C.P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms. In
Proc. of 15th ICALP, Springer LNCS 317, pages 333-346, 1988.

C.P. Kruskal. Searching, merging, and sorting in parallel computation. [EEE Trans. on Comp,
C-32:942-946, 1983.

S. Khuller and B. Schieber. Efficient parallel algorithms for testing connectivity and finding
disjoint s-t paths in graphs. In Proc. of the 30ih IEEE Annual Symp. on Foundation of Compuler
Science, pages 288-293, 1989.

A. Karlin and E. Upfal. Parallel hashing — an efficient implementation of shared memory. In
Proc. of the 18th Ann. ACM Symp. on Theory of Compuling, pages 160-168, 1988.

R.E. Ladner and M.J. Fischer. Parallel prefix computation. J. Assoc. Compul. Mach., 27:831-
838, 1980.

L. Lovasz. Computing ears and branching in parallel. In Proc. of the 26th IEEE Annual Symp.
on Foundation of Compuler Science, pages 464-467, 1985,

M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
Compul., 15:1036-1053, 1986.

G.L. Miller and J.H. Reif. Parallel tree contraction and its application. In Proc. of the 26th IEEE
Annual Symp. on Foundalion of Compuler Science, pages 478-489, 1985.

G.L. Miller and V.L. Ramachandran. Efficient parallel ear decomposition and applications.
unpublished manuscript, 1986.

G.L. Miller and V.L. Ramachandran. A new graph triconnectivity algorithm and its parallization.
In Proc. of the 19th Ann. ACM Symp. on Theory of Computing, pages 335~344, 1987.

P.D. MacKenzie and Q.F. Stout. Ultra-fast expected time parallel algorithms. In Proc. of the
2nd Second ACM-SIAM Sympostum on Discrele Algorithms, pages 414-424, 1991.

C. Martel, R. Subramonian, and A. Park. Asynchronous PRAMs are (almost) as good as syn-
chronous PRAMs. In Proc. of the 31st IEEE Annual Symp. on Foundation of Compuler Science,
pages 590-599, 1990.

[MSV86)
[MV84]

[MV90)
[MV91]
[Par87]

[Pip79)

[Pre78]
[Rag90]

[Ram90)

[Ram91]
[Ran87)
[Rei81]
[Rei91]
(RR89a]
[RR89b)
[RS89]
[RV87]

[RV88)

[Sch80a)
(Sch80b)
(Sch87)
[Sen89)
[Sv81)
(SV82a]

[SV82b)

Y. Maon
in grapht
K. Mehll
machines
Y. Matie
Springer
Compute
Y. Matie
cations t
1991.

I. Parber
N. Pippe
Foundati
F. P. Pre
P. Ragde
LNCS 4«
R. Ramt
sorting.
Univ. of
R. Rama
1991.
A.G. Ra
Foundati
R. Reisel
Symp. o1
J.H. Rei
1991.

S. Rajas
algorithr
V.L. Rar
of the 30
J.H. Reil
Proc. of
J.H. Reil
Mach., 3
V.L. Rar
In Proc.
1988.

J. Schwe
27(4):70:
J. T. Set
2(4):484-
B. Schiel
Science,
S. Sen.
1989.

Y. Shilo:
tion mod
Y. Shilos
1982.

Y. Shiloz
146, 198

91.
14th

rallel

tions
-110.

‘orial

. of

ines.

1988.

1988.

s. In
omp,

ding
ruler

831~
ymp.
v
EEE
ions.
tion.
f the

syn-
nce,

[MSV36)
(MV84)

[MV90)
[(MVo1)
(Par87)

(Pip79]

[Pre78]
[Rag90)

[Ram90)

[Ram91]
[Ran87]
[Rei81)
(Rei91)
[RR89a)
[RR89b)
(RS89)
(RVS7]

[RV8S]

[Sch80a)
(Sch80b)
[SchB7)
[Sen89)
[SVs1]

[SV82a]
[SV82b)

379

Y. Maon, B. Schieber, and U. Vishkin. Parallel ear-decomposition search (EDS) and st-numbering
in graphs. Theoretical Compuler Science, AT:277-298, 1986.

K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel memories. Acta Informatica, 21:339-374, 1984.
Y. Matias and U. Vishkin. On parallel hashing and integer sorting. In Proc. of ITth ICALP,
Springer LNCS {43, pages 729-743, 1090. Also, in UMIACS-TR-90-13, Inst. for Advanced
Computer Studies, Univ. of Maryland, Aug. 1990 (revised), and 1. Algorithms, to appear.

Y. Matias and U. Vishkin. Converting high probability into nearly-constant time - with appli-
cations to parallel hashing. In Proc. of the 23rd Ann. ACM Symp. on Theory of Computing,
1991.

I. Parberry. Parallel Complezity Theory. Pitman, London, 1987.

N. Pippenger. On simultaneous resource bounds. In Proe. of the 20th IEEE Annual Symp. on
Foundation of Compuier Science, pages 307-311, 1979.

F. P. Preparata. New parallel sorting schemes. /EEE trans. Computer, C-27:669-673, 1978.

P. Ragde. The parallel simplicity of compaction and chaining. In Proc. of 17th ICALP, Springer
LNCS {43, pages T44-751, 1990.

R. Raman. The power of collision: Randomized parallel algorithms for chaining and integer
sorting. Technical Report TR-336 (revised version, January 1991), Computer Science Dept.,
Univ. of Rochester, 1990.

R. Raman. Optimal sub-logarithmic time integer sorting on a CRCW PRAM (note). manuscript,
1991.

A.G. Ranade. How to emulate shared memory. In Proc. of the 28th IEEE Annual Symp. on
Foundation of Computer Science, pages 185-194, 1087.

R. Reischuk. A fast probabilistic parallel sorting algorithm. In Proc. of the 22nd IEEE Annual
Symp. on Foundation of Compuler Science, pages 212-219, October 1981.

1IL. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, California,
1991.

S. Rajasekaran and J.H. Reif. Optimal and sublogarithmic lime randomized parallel sorting
algorithms. SIAM J. Comput., 18:594-607, 1989.

V.L. Ramachandran and J.H. Reif. An optimal parallel algorithm for graph planarity. In Proc.
of the 30th IEEE Annual Symp. on Foundation of Compuler Science, pages 282-287, 1989.
1.1 Reif and S. Sen. Polling: a new random sampling technique for computational geometry. In
Proc. of the 21st Ann. ACM Symp. on Theory of Computing, pages 394-404, 1989,

1.1, Reif and L.G. Valiant. A logarithmic time sort for linear size networks, J. Assoc. Compul.
Mach., 34:60-76, 1987.

V.L. Ramachandran and U. Vishkin. Elficient parallel triconnectivity in logarithmie parallel time.
In Proc. of AWOC 88, Lecture Noles in Computer Science No. 319, pages 33-42. Springer-Verlag,
1088,

J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. JACM,
27(4):701-717, 1980.

1. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,
2(4):184-521, 1980.

B. Schieber. Design and analysis of some parallel algorithms. PhD thesis, Dept. of Compuler
Science, Tel Aviv Univ., 1987,

S. Sen. Finding an approximate-median with high-probability in constant time. Manuscript,
1989.

Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a parallel computa-
tion model. J. Algorithms, 2:88-102, 1981.

Y. Shiloach and U, Vishkin. An O(logn) parallel connectivity algorithm. J. Algorithms, 3:57-67,
1982.

Y. Shiloach and U. Vishkin. An O(n? logn) parallel Max-Flow algorithm. J. Algorithms, 3:128-
1416, 1982,

Ca

i

Frono

ks e

[sV88]
[Sv90]
[TV85)
[Val75)
[Val90]
[Vis83]
[Vis8da]
[VissAb]
[Vis85a]
[Vis85h]
[Vis90]
[Visol]
[WiaT5)

[Wy179)

380

B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification and paralleliza-
tion. SIAM Journal on Computing, 17(6):1253-1262, 1988.

B. Schieber and U. Vishkin. Finding all nearest neighbors for convex polygons in parallel: a new
lower bounds technique and a matching algorithm. Discrete Applied Math, 29:97-111, 1990.

R. E. Tarjan and U. Vishkin. Finding biconnected components and computing tree functions in
logaritlinic parallel time. SIAM J. Computing, 14:862 -874, 1985.

L.G. Valiant. Parallelisin in comparison problems. SIAM J. Comput. 4:348-355, 1975.

L.G. Valiant. A bridging model for parallel computation. Comm. ACM, 33,8:103-111, 1990.

U. Vishkin. Synchironous parallel computation - a survey. Technical Report TR 71, Dept. of
Computer Science, Courant Institute, New York University, 1983,

U. Vishkin. A paradlel-design distributed-implementation (PDDI) general purpose computer.
Theoretical Computer Science, 32:157-172, 1984,

U. Vishkin. Randomized speed-ups in parallel computations. In Proc. of the {6th Ann. ACM
Symp. on Theory of Computing, pages 230 -239, 1984.

J. Vishkin. On efficient parallel strong orientation. Information Processing Leiters, 20:235- 240,
1985.

U. Vishkin. Optimal parallel pattern matching in strings. Information and Computation, 67,1-
3:91-113, 1985,

U. Vishkin. A parallel Blocking flow algorithm for acyclic networks. Technical Report UMIACS-
TR-90-11, University of Maryland Inst. for Advanced Computer Studies, 1990,

U. Vishkin, Deterministic sampling - o new technique for fast pattern matching. STAM J.
Comput., 20{1):22 40, February 1891,

S. Winograd. On the evaluation of certain arithmetic expressions. J. Assoc. Comput. Mach.,
22,4:477--492, 1975.

J. C. Wyllie. The Complexily of Parallel Computalions. PhD thesis, Computer Science Depart-
ment, Conell University, [thaca, NY, 1979.

Imp

Desh |

Tu this pajg
timization prc
counterexamp
we prove that
problems, eve
tablish sharp |
extend the mo
that our resul

1 Introdu

Efficient solution
computer science.
optimum solutions
practice and theor
Several models
there is no nnivers
tigation Wrajicek
optiization prob
all-powerful teach
is to compute the
: at any point i t
If there is no bette
ing a counterexan
by the number of
solution given the
concern the ditficr
because it relates
those about this t
In the next sec
definitions and re

*Supported by M!
tSupported by N

