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With new variants of malware coming out every day, Anti-Malware applications have an 
increasingly difficult job detecting malware and protecting computers from it.  It is 
estimated that more than 1 million new malware variants are produced every single day.  
However, the number of benign software programs a legitimate user may wish to run is 
far lower.  We propose the creation of a benign software corpus, and the collection of 
statistical data about the attributes of the files in the corpus.  Comparison of unknown or 
untrusted hosts and/or the executable files they contain with the data in this corpus will 
allow Anti-Malware applications to determine that a file is likely benign, a much easier 
task than determining whether the file is likely malicious. 

Introduction 
There is no question that executable malware is a significant threat to all computer users today.  The 
sheer number of malware programs available online is staggering; some masquerading as regular “safe” 
software, some as illicit “tools” like License Key generators or “Cracks” for paid software, some as 
hacking tools, and some not even trying to hide its evil. The task of detecting all such malware is quite 
difficult and there will likely always be new malware samples that skip through the detection 
mechanism.  This detection is especially difficult given that security experts estimate hundreds of 
thousands (Higgins, 2012) or even millions (Dumitras, 2013) of new malware samples are released every 
single day!  That is certainly significantly more, likely several orders of magnitude more, than the 
number of benign executable files released every day.  Although many of these new malware samples 
are detected by existing Anti-Malware definitions and heuristics, it is fairly obvious that the malware 
authors are ahead of the game.  As long as malware authors maintain this lead, it will be extremely 
difficult to ensure that all malware samples are caught and neutralized. 

In recognition of this danger, many Anti-Malware vendors are turning to white-list or reputation based 
systems to determine whether a file is “good” instead of whether a file is “bad.”  Services like 
Microsoft’s SmartScreen, Google’s Safe Browsing, and Symantec’s Polonium use reputation-based 
systems in addition to traditional malware scanning to help determine whether a file is safe or not.  
While these techniques add a significant layer of additional protection, by warning against (or outright 
blocking) execution of files with low reputation, reputation-based protection still has a high false-
positive rate for legitimate files that just don’t have a good reputation yet. 

Instead of trying to detect all malware or to calculate the reputation of arbitrary executable files, we 
postulate that it may be possible to build metrics that identify safe, or “benign,” software, based on 
attributes of the benign executable files themselves.  However, before this theory can be studied, we 
need to collect and analyze a corpus of executables to determine what properties, or “metadata,” may 
be indicators of the benignity of the files in the corpus.  Our goal in this study is to begin the collection of 
such a corpus, and to determine whether this corpus is useful and whether keeping it up to date is 
feasible. 



 

Data Collection 
Data Sources 
The most important building block of a software metadata corpus is, of course, a large collection of 
metadata of known-benign software.  It was therefore necessary to evaluate several options of data 
sources, in order to determine which would best fit the needs of this project. 

The first, and also the largest, data source we considered was the National Software Reference Library 
(NSRL), maintained by the National Institute of Standards and Technology.  The NSRL is designed “to 
collect software from various sources and incorporate file profiles computed from this software into a 
Reference Data Set (RDS) of information [which] can be used by law enforcement, government, and 
industry organizations to review files on a computer by matching file profiles in the RDS” (NIST, n.d.).  
The NSRL contains data about more than 114 million files, including SHA-1, MD5, and CRC32 hash 
values, file names, application categories, manufacturer names, product names, and operating system 
versions.  However, we decided against using this data source for several reasons.  First, other than 
application categories and manufacturers, this dataset does not actually provide significant metadata 
about programs in it.1  Second, this dataset includes a lot of noise, in the form of non-executable files, 
executables for non-Windows operating systems, and executables that run only on older versions of 
Windows no longer supported or in common use.  Third, inclusion in the NSRL dataset is solely based on 
the decision of NIST, which can choose not to include a piece of software.  Additionally, most of the 
software included in the NSRL dataset comes from manufacturer submissions of “shrink-wrapped 
Common-Off-The-Shelf (COTS)” software, which does not include updates downloaded from the 
Internet – which we anticipate seeing a lot of on normal computers.  Finally, the NSRL includes data 
about some programs which they say “may be considered malicious,” (emphasis theirs) necessitating 
processing of the dataset to remove those entries. 

We also considered using ShadowServer’s Bin Check service, but rejected it for similar reason to the 
NSRL.  This is unsurprising, given that a large portion of ShadowServer’s data comes from the NSRL.  
ShadowServer does include additional metadata, such as digital signatures, and directory names.  
However, ShadowServer does not handle the possibility of a file legitimately occurring in multiple 
directories and provides only a single directory entry for each file. 

“SoftwareScanner” Client 
In the end, we determined that we would get the best results by scanning for all executable files on 
computers that we had a reasonable expectation were trustworthy and contained only benign software.  
This allowed us to choose exactly what metadata points we wanted to capture. 

Our program is called SoftwareScanner, and it is targeted to run on trusted computers running Windows 
Vista or newer.  SoftwareScanner scans the local hard drive (or a list of user-selected locations) for all 
files in the Portable Executable (“PE”) format, calculates their hashes, collects their metadata, and sends 

1 While it is important to collect the hash data, hashes are, by definition, not analyzable to determine whether 
software is benign, and therefore not significant metadata for us.  Also, NIST-assigned “categories” are equally 
useless to us, being arbitrary designations given by NIST that do not translate to analysis of non-labeled software. 

                                                            



the hashes and metadata to our server.  For analysis purposes, it also submits the Windows version and 
bitness and a unique ID that identifies the scan and marks all files found in that scan.2 

 

Figure 1 SoftwareScanner in action. Note that the scan found 26,204 files, but only analyzed 17,730 of them. 
That means there were 8,474 duplicate executables on this computer. 

Data Elements 
Since we were collecting our own data, we needed to determine what attributes we wanted to collect 
from each of the files we scanned.  There are a lot of possible data elements that could be considered 
“metadata” of an executable file.  In the end, we decided to collect the ones listed in Figure 2 below. 

File Name []  Size 
Full Path []  “From the Internet?” 
Date Created / Modified  “Strings” [] 

Figure 2 List of data elements collected 

Notes About Specific Elements 
File Name and Path. While still on the scanned computer, files found were grouped by SHA-1 hash to 
identify multiple instances of the same file with different names and/or folder paths.  They were then 
submitted to the server as a record of a single file with multiple locations. 

File Extension. Although traditional Windows executables use the file extension “.exe”, we scanned for 
all files using any of the eight file extensions typically used to represent PE-format files.  We did this to 
ensure that we collected data on executable DLLs (which are executed using Windows’ ‘rundll32’ 
functions), screen savers, and device drivers, all of which are valid Windows executables.  

“From the Internet” refers to Microsoft’s way of identifying that a file 
has been downloaded from the Internet and the user should be 
prompted every time it runs.3  It is uses a simple text flag, hidden in an 
NTFS “Alternate Data Stream” that is stored on the disk along with the 

2 While SoftwareScan currently collects the real machine name of each scanned computer, that data is collected 
only for debugging the scanner application and is not used for any scans.  Any future public version of this tool 
would not collect such identifiable data and would instead generate a random Machine ID. 
3 This is the same data that triggers “protected mode” when opening documents from the Internet in newer 
versions of Microsoft Office. 

                                                            



downloaded file that identifies that the file came from the internet, 
local network or possibly other locations. The open file confirmation 
dialog and the file properties box give the user a way to remove the flag. 

“Strings” refer to actual text content inside the executable.  They were collected using the SysInternals 
Strings utility.  To avoid licensing issues should we choose to distribute SoftwareScan, we did not bundle 
the Strings executable, instead prompting the user to download it when necessary. 

Scan Results 
Using our scanning tool, we collected metadata for 123,794 unique executable files (as counted by SHA-
1), totaling close to 24 GB of data. 

The vast bulk of our data by disk space is the strings.  Collecting all of the Strings all at once for a 
computer with 20,000 executable files takes over 10GB of RAM to process.  Therefore, we collected 
Strings as a second step, only after the primary data submission was complete and the server could 
respond with a list of which files had not yet had Strings submitted.  We also submitted the strings to 
the server one executable at a time to prevent excessive memory usage on both sides.  This process was 
extremely slow, so we did not have time to complete the string collection for our entire dataset.  We 
currently have string data for 62% of collected executables. 

All scan results were submitted via HTTPS to a server owned by the University of Maryland chapter of 
the Association for Computing Machinery, collocated at the Department of Computer Science.  They 
were processed by a PHP script and inserted into a MongoDB database. 

Data Processing  
Technical Requirements 
Access. The collected data must be easily and quickly accessible to any person or program that needs it.  
Some of the processing done may only require a subset of our dataset.  We stored our data in a 
MongoDB database which is not accessible directly.  Instead, the client makes a query and downloads 
the resulting data file to use in the analysis application.  This ensures that the analyzer is responsive 
(because it does not have to fight for database server resources) and that the data integrity of the 
database is not compromised by outside access (due to MongoDB’s lack of proper authentication and 
authorization mechanisms). 

Processing. Applications must be able to perform analysis of the collected data.  The difficulty with our 
massive dataset is that it cannot fit into memory at once on any hardware we have access to.  The 
solution is for the application to request a batch, or smaller group, of data at one time.  The program can 
then process the data, save the results into a partial or compressed state, then release the batch and 
request for another.  While the garbage collector often takes a long time to successfully release the 
unreferenced memory, if the partial state size is acceptably bounded, then the application will be 
guaranteed to be able to finish running.  We implemented a data provider that fulfills this exact 
function. 

Processing Application User Interface 
Approach. Large datasets of multivariable descriptors can be difficult to analyze effectively since there 
are endless ways to view and compare the data.  It is therefore important to construct an application 



that is able to process given data with any desired configuration and immediately display the results.  
This way, a researcher can observe and compare different aspects of multiple datasets in a short 
amount of time and can easily process new data.   

Design. One or two data files attained from our database server can be processed at once.  The dataset 
we constructed can be grouped by machine, so our application is able to analyze and compare any two 
subsets of machines at one time.  Once the data is selected, display and processing options are available 
to the user which dictate what analysis is done and how the results are shown.  These options are 
essential to successful program execution due to existing display and processing constraints.  The 
granularity of the partial and compressed state can be changed depending on the size of the dataset to 
be processed (Figure 3: Data Options -> Bin Size in KB4).  The larger the dataset, the more the partial 
state must be compressed in order to avoid running out of application memory.  The datasets used in 
this paper are orders of magnitude smaller than what is needed in practice but even they are large 
enough to grow an uncompressed state beyond application memory limits. 

The application has two areas to display analysis results.  A tabbed graphical area is used to display any 
charts and figures that are dynamically created by the analysis.  There is a console output area where 
text results can be written to and are categorized for easier access.  Our application features of data 
selection and display allow our large datasets to be observed with a relatively small amount of time and 
effort. 

 

Figure 3 Data Processing Application User Interface 

4 When graphing something with respect to file size, each interval of bin size must be grouped together and its 
data compressed.  This is not an issue with graphing with respect to variables with a higher per point density 
because then the intermediate state is adequately compressed automatically. 

                                                            



Data Analysis 
Initial Look 
The goal of our data analysis is to find characteristics and patterns of benign software.  Once patterns 
are found, it is important to find the reasons behind them in order to create the logic around 
determining if a given file is benign, which of course is the entire point.  To start, we got a view of what 
the files by themselves looked like.  Looking at size we could see that the vast majority of binary files 
were quite small with 60 percent of files under .167MB and 90 percent under 1MB.  However, this 
distribution did not tell us much about the characteristics of benign data other than the fact that a 60MB 
binary file is quite out of the ordinary.  Looking at creation and access times did not show a useful 
distribution.  Our data collection was not implemented to keep track of all the different times each file 
was created so that was not a possible analysis however interesting it may have proven to be.  In order 
to find patterns, the data must be grouped in some effective way.  Since generic data analysis groupings 
were proving fruitless, something else must be used. 

 

Figure 4 Size then Time CDF of Full Collected Dataset 

Improved Groupings 
Files were then grouped by identical file names and identical binaries.  This gave way to several much 
more interesting ways to observe the data.   

Each file name in our dataset was mapped to the total number of times it had been used to name a file.  
Files were then grouped with other files whose name had also been used that same number of times.  
The total number of files seen in each group plus the total number of files in the groups prior divided by 
the total number of files in the data was graphed.  This gives us the cumulative distribution of file names 
based on the uniqueness of their names (Figure 5: Blue area).  For all the binary executables of type 
‘.exe’ only 16 percent have names that are only used by one file.  Files whose names are used one or 
two times make up 26 percent of the total files seen.  By the time 50 percent of our executables have 
been seen we are up to including all names repeated up to 7 times.  From this we can see that repeated 
file names are quite common.  Considering that our data is only from a handful of computers, it is quite 
probable that a much larger dataset will have a much smaller fraction of names that have not been 
seen.  Since average possibility space for file names (accounting average file name length) is significantly 
larger than the rate at which the number of unique file names decreased here it is safe to assume that 
benign file names have some pattern for which they are expressed.  This makes a lot of sense since 
many of the names are made by humans who are bound by nature to some form of organization.  Some 
of the most common names found are setup.exe, win32k.sys, and iexplore.exe.  



 

Figure 5 File Name Grouping 

We can look at the ratio of files with the same name compared to how many unique binaries do those 
files represent (Figure 5: Red Line).  When the ratio is close to 1 it indicates that the files named the 
same all represent different binaries while when the ratio is close to 1/n if means that they all represent 
a single binary.  For each group of files with repeated names we can look at the graph or file structure 
distance away from each other.  We can calculate all possible differences for each file name and average 
those distances in to a single number for each repeat group (Figure 5: Green Line).  This number paired 
with the unique representation ratio can indicate more about the layout of the average benign file 
system.  It seems to correlate that when a file name represents the same binary, the average distance 
between those files is shorter.  Conversely, when the name represents all different binaries, their 
average distance is greater.  It would only make sense that identical binaries would be found closer 
together than non-identical.  It hints that files with identical names but different binaries are named so 
out of coincidence not purpose.  The act of purposely naming files of different binaries the same seems 
like it could be more of a malicious pattern.  

Each file was then grouped into identical binaries and mapped to the number of copies of that binary 
that have been seen by our collection process.  The cumulative distribution function was then calculated 
which showed that about half of the binary files in our entire collected dataset have only one copy.  This 
means that our collection has seen every binary an average of two times.  The rate at which this number 
changed with respect to the growing size of our dataset would be an interesting piece of information.  If 
this number increases by a near 1 to 1 with respect to our data set that means that the total number of 
unique benign binary files is close to the set that our current dataset represents.  I imagine this growth 
would be the case since it seems based on the data that the average machine contains a great deal of 
the same software.  The purple line represents the average file system distance of each copy bucket 
group.  This line is not very informative in and of itself, however, when paired with the two following 
metrics it can yield some additional information.   



 

Figure 6 File Binary Graphing 

The following metrics distinguish between the three configurations in Figure 7 where files a, b, and c 
have the same binary (and therefore the same hash) but different names.  The common scenario, 
according to our dataset, is where each identical binary has the same name but are simply in different 
directories.  The less common scenario is where the binaries are all in the same directory but have 
different names.  The least common scenario is where the binaries all have different names and are in 
different directories.  The red line within the blue shows the ratio of unique locations verses copies of 
the file.  If this is close to one, then the scenario is pointed towards the common and uncommon 
outcomes.  If it is close to zero, then it is closer to the less common scenario.  The green area is not 
location based but name and file based.  It is similar to the red ratio in the name grouped chart except 
this only considers files of the same binary.  It is the ratio of unique files names to copies.  When it is 
close to 1, the less and uncommon situation arise. When it is close to 1/n the common situation occurs.  
The least the ratio can be is 1/n where n is the number of copies of the binary.  The intersection of the 
red and green options tell the observer immediately which situation is most strongly occurring in that 
category.  This type of behavior seems to correlate very highly with our dataset.  It is because of this that 
I think this will be one of the best indicators of benign data.   

 

Figure 7 File System Situations 

The last grouping is by binary commonality, the ranking of the number of times we saw a file during 
collections.  This shows what type of computer was scanned.  Compared to all the files we have seen, 



how common are your files?  Computers with a greater portion of unique files tend to be machines with 
development software or other unique tools.  Figure 8 below is an example of the commonality 
difference between our collected dataset (blue) and one of the OIT lab computers (red) that is kept 
extremely standardized (The x-axis is the uniqueness rank of the number of times seen bin).  This shows 
that the vast majority of software on the OIT lab computer is software that is often found the other 
computers we scanned.  This is one metric we found that is a quick but useful look into what their 
computer is actually like. 

 

 

Figure 8 Complete Dataset vs. OIT Lab Machine 

In contrast to the data in Figure 8, comparison of an OIT lab computer and an OIT classroom computer 
show curves that are almost perfectly matched, which is a likely indicator that the two machines share 
have most of their software in common. 

The last addition to this project’s analysis was the addition of executable type filters.  It gives the 
application an easy look at what benign software looks like for ‘.exe’ files versus ‘.dll’ files or system 
files.  Analysis of files in the “C:\Windows” folder was also made optional.  Since the Windows operating 
system protects most of its files from being written to by an unauthorized process, we can choose to 
ignore those files to prevent them from diluting the patterns of more data about more-interesting 
executable. 

Interesting Findings 
Although we did not have anywhere near enough data to make sweeping claims about the metadata of 
benign software, we did find several interesting things that illustrate that this kind of analysis does show 
the characteristics of the software on the computers we scanned. 

Duplicate Files. All of the computers we scanned exhibited large numbers of duplicate files, as matched 
by SHA-1 hash.  Examination of the duplicates revealed that most of them were found in the folders: 

• C:\Windows\WinSxS\ 
• C:\Windows\Installer\ 

These locations are used by the Windows Installer, Windows Update, and Windows Repair mechanisms 
to store files used in installs and updates.  The number of duplicate files in these folders could be a good 
indication of a system’s age measured by the number of Windows Updates that have been applied. 



Similar Disk Images. We chose computers to scan with the intention of collecting data from a variety of 
Operating System versions.  We were able to collect at least two of each of: Windows 7 x86, Windows 7 
x64, and Windows Server 2012.  One of our findings was that there were differences between the 
Windows System portions of the scan on machines that should look similar. This likely indicates different 
update levels and/or additional Windows Features installed on each machine.  However, the Windows 
System portions of the scans of OIT lab computers and OIT classroom computers both run Windows 7 
Enterprise x86 and have characteristics much more similar than those of the other machines in the plots 
of files found.  This can be explained by OIT’s use of disk images and their practice of regularly 
(automatically) wiping and reimaging their machines. 

Unnecessary Redundancy.  We also found many other instances of files occurring in multiple locations 
and with multiple names.  The most interesting of these were files that existed on the same computer 
with both “.exe” and “.dll” names.  We found this most-commonly with files from Adobe products, but 
also with some Microsoft files (mostly on Windows 8 and Server 2012).  We are unsure why a software 
developer would need to release two identical executable files in the same folder with different file 
extensions, except to keep to a convention that only files named “.dll” (or “.ocx”, etc.) can be 
dynamically linked to by other programs. (This is true despite the fact that these identical EXE and DLL 
files contain the same executable entry point and the same API entry points.  The DLL version can, in 
fact, be run as an executable using a utility like Microsoft’s RunDLL, and the EXE version can likewise be 
called as a dynamically linked library from another executable.) 

 

Figure 9 Multiple copies of Adobe Director files5 

Discussion 
Is this worth it? 
Our primary focus for this study was not to build an exhaustive corpus of benign software – the sheer 
amount of benign software out there is far too much for us to handle, notwithstanding that it is out.  
Our goal was instead to determine, based on what we collected and analyzed, whether we believed it is 
feasible to build such a corpus (given the resources of a large company with presence on many 
computers – e.g. Microsoft or and Anti-Malware vendor), and whether we believe that the data in this 
corpus will be useful.  Based on what we have collected and analyzed, we believe that an organization 
with greater resources and a wider presence than we have should be able to build, maintain, and 
successfully use this kind of software corpus. 

Future Work 
Equivalent analysis of bad programs. Our goal was to study the feasibility of creating a corpus 
containing the metadata of benign software, which could, in the future, be used to determine whether a 

5 Note that there are actually only two files here, not four.  The paths containing “System32” are from scanning a 
32-bit computer, while the other paths containing “SysWOW64” are the same file on a 64-bit computer. 

                                                            



piece of software is benign by comparing the metadata of that piece of software to the data in the 
corpus.  However, a similar study needs to be made in order to ensure that the metadata of malicious 
software is not the same as that of benign software.  Ideally, the same analysis methods can be applied 
to a collection of bad software and the results compared to determine what are the differences 
between the metadata of the two sets.  However, even if it turns out that there is no difference 
between the metadata of good and bad software, this corpus can still be used as part of a whitelist or 
reputation-based system. 

Other Analysis Methods. There may be other analysis methods that would be useful on this dataset, for 
example, different clustering methods.  We used the methods that our group was familiar with, though 
it is possible that other methods may produce important results. 

Automated Analysis. We built a GUI application to analyze our data because we were unsure at the 
beginning what metrics we would be looking at.  Using the GUI was an easy way to add analysis methods 
and generate graphs.  However, in order to be used automatically at full scale, our analysis methods 
need to be converted into something that can be done in an automated, or at least semi-automated, 
manner. 

More Metadata. We collected the metadata that we could collect, given the resources we had.  For 
greater completeness, future data collection should include additional metadata that we were unable to 
write code to collect, such as Digital Signatures, file version numbers, and file descriptions.  There is also 
other data that might be useful, such as Compiler or Packer fingerprints, some measure of code 
obfuscation, and dissemination mechanisms (e.g. physical media, downloaded media, update services, 
etc). We would also like to look at additional NTFS Alternate Data Streams which we currently do not 
collect beyond the Zone Identifier (for internet downloads).  Because Alternate Data Streams can be 
entire files by themselves, this is potentially an entire unexplored file structure siting under the visible 
file structure, in which it would be very easy to hide additional executable files. 

Data Error Handling. There are a few inconsistencies in parts of our data, caused by bugs in the 
SoftwareScanner application and a minor change in database design.  While we do not believe that 
these errors were significant enough to change our results, a larger implementation would need to deal 
with this issue.  However, we did have to throw out the data from most of our earlier scans, which were 
not collected properly.  Another related issue that we did not yet address is path normalization.  
Collecting data from many computers, some of which are 32-bit and some 64-bit, means that almost 
every file in “C:\Windows\System32” will also show up in “C:\Windows\SysWOW64”.  Normalizing this 
data so that such files show up only once instead of twice, will be helpful for future analysis.  This is also 
true about executables found in a user’s home directory.  Two users with different names who have the 
same file in their “Downloads” folders will have that file show up as a duplicate.  Normalizing user 
names to “User” in paths beginning with “C:\Users\...” will avoid marking these files as duplicates as 
well.  We also had some issues with the “Strings” utility.  Some of the “Unicode Strings” that it gave us 
for certain files were likely just bits of code that happened to compile to a binary representation that 
looked like a Unicode string.  We need to work on a way to filter those out of the results.  Also, there 
were times when the strings utility threw an error and just printed its own “Usage” text instead of the 
proper output.  In the end, these two issues contributed to making preliminary results from the strings 
data inconclusive.  We also attempted to analyze String data in R, but ran into errors when importing the 
data and variable size limitations (even in the 64-bit version). 



Wider data collection. We collected data on a limited number of computers that we knew we could 
trust.  However, this meant that all of the executables we found were of the type that can be found on 
the computers of Computer Science college students and their families.  Ideally, full-scale data collection 
will cast a much wider net. The data from the NSRL and/or other databases may be useful as a coverage 
metric, to see how big the corpus currently is and how far it has left to go. 

Issues 
SHA-1 Collisions. We chose to use SHA-1 because it is a standard choice for file hashing. There are 
theoretical attacks on SHA-1 to create deliberate hash collisions, but no actual collisions have been 
found using this method (Stevens, 2013).  We are therefore less worried about purposeful hash 
collisions, but we do need to look at the possibility of randomly-occurring hash collisions. The probability 
𝑝𝑝 of a collision is 

𝑝𝑝 ≤
𝑛𝑛(𝑛𝑛 − 1)

2
×

1
2𝑏𝑏

 

where 𝑛𝑛 is the number of files and 𝑏𝑏 is the number of bits in the hash function – for SHA-1, 𝑏𝑏 = 160. 
Assuming that the average computer in our search has 25,000 executables, then 𝑝𝑝 ≤ 2 × 10−40, which 
we feel is sufficient for this purpose. 

Deliberate Manipulation. It is possible that, like for any system that relies on differences between 
trusted and untrusted data, an attacker could develop a program specifically to look like benign 
software.  However, we believe that this is true about all signature-based detection systems and that 
this is why multiple detection methods are often applied to a single unknown file. 

Database Poisoning. Our SoftwareScanner program authenticated to the server by using a shared-secret 
to calculate an HMAC for the scan results, which was verified on the server.  However, because the 
secret was stored directly in the scanner, this was only secure because we did not release the scanner to 
the public.  Design of a full-scale automated system must balance receiving new data with maintaining 
the quality of the existing database. 

Related Work 
There are several other projects that attempt to classify executable files in different ways.  Two that we 
have discussed are Symantec’s WINE and Polonium (Chau, Nachenberg, Wilhelm, Wright, & Faloutsos) 
projects. 

Conclusion 
We collected and analyzed metadata from benign executables in order to determine whether it is 
feasible and useful to build a corpus of benign software metadata that can be used to determine 
whether an unknown file is benign.  In this paper, we describe our data collection and analysis methods.  
We determine that, despite having data only from a small number of computers, there are interesting 
patterns in the data that mean such a collection may be useful.  We also believe that collection of such 
metadata is doable, and that keeping the corpus up-to-date is feasible for an organization with wide 
reach, like an Anti-Virus vendor.  We also discuss the issues that we had with our collection and analysis 
and how to mitigate them in a full-scale deployment, and we discuss potential issues that can occur 
once the system is running at scale. 
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