
ENEE 757 – Security Analytics Homework

Homework Due: 19 October 2015 at 11 am.

Submission Instructions: Write two Python programs, following the instructions below. Submit
them from the GRACE machines, along with the corresponding output files, using the following
commands:

$CLASS/submit 2015 fall AAAA BBBB 0101 2 clustering_problem.zip

$CLASS/submit 2015 fall AAAA BBBB 0101 2 spark_problem.zip

where $CLASS is /afs/glue.umd.edu/class/fall2015/enee/757/0101/bin/. You must replace
AAAA BBBB with your own college and course number (enee 757 or cmsc 818v).

1 Homework overview

The learning objective of this homework is for students to gain first-hand experience with some data
analytics techniques that are commonly used to solve security problems. Specifically, clustering
algorithms allow you to group data items into clusters of similar items, and expose the salient
patterns in the data. For example, clustering algorithms may be applied to the entries in a system
log to identify normal and anomalous behaviors, without having to specify manually what these
behaviors should look like. However, the standard clustering algorithms do not scale well to high
dimensional spaces and large data volumes. Locality sensitive hashing (LSH) is a technique for
approximate clustering and nearest-neighbor search. For example, locality sensitive hashing may
be applied to streaming Twitter posts to identify posts that are similar to a corpus of documents
containing exploit code. The Spark data analytics platform allows you to perform some of these
operations efficiently at scale.

2 Initial setup

Use the same Ubuntu VM as in the first homework. The VM includes all the tools you
need for this homework. If you need to download the VM again, you can find it here:

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/homeworks.html

1

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/homeworks.html

Fall 2015
ECE Department, University of Maryland, College Park

ENEE 757 Dr. Tudor Dumitras,

This is the machine I will use for testing your submissions. If your submission doesn’t work on
that machine, you will get no points. It makes no difference if your submission works on another
Ubuntu version (or another OS).

You can find links to several tutorials at the address above; read these documents if youre stuck. I
also encourage you to ask questions on our Piazza message board.

Starter files. Starter files are available on the class web page:

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/homeworks.html

3 Task 1: Identifying salient program behaviors with cluster anal-
ysis

The materials you need for this task are provided in the starter files, under the
unsupervised_learning directory.

In this task, you are given a sample of 3000 machines, monitored over a one-week period. The data
is in a comma-separated file, called Error_Machines.csv. Each row in this file corresponds to a
machine, and has 11 columns:

• Column 1: Count of application crashes during the sample period.

• Columns 2–11: How many times the top 10 applications were launched during the sample
period.

Your task is to cluster the machines based on the application usage. Note that it is difficult to
determine in advance how many clusters the data will have, so you should experiment with different
numbers of clusters.

TF-IDF. In many clustering applications, it is a good idea to start by selecting the most use-
ful features before applying a clustering algorithm. One way to do this is to compute the term
frequency-inverse document frequency (TF-IDF) values of the application instances. The TF-IDF
value of an application Appi on a given machine Mj is the usage frequency of the application on
that machine (term frequency) multiplied by the logarithmically scaled fraction of the machines
where the application is present:

tf-idf(Appi,Mj) = FMj (Appi)× log
|M |

|{Mk : Appi runs on Mk}|

where M is the set of all machines and FMj (Appi) is the usage frequency of app Appi on machine
Mj .

The intuition behind this formula is that the term frequency will highlight the applications that
are most frequently used on a machine, but does not distinguish between the frequent applications
that appear on all the machines (and that are not useful for clustering) and the frequent appli-
cations that appear on a small set of machines. We therefore weight this value with the inverse

2

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/homeworks.html

Fall 2015
ECE Department, University of Maryland, College Park

ENEE 757 Dr. Tudor Dumitras,

document frequency, which measures whether an application is frequent or rare across all the ma-
chines. The resulting TF-IDF values allow us to highlight the applications that are specific to each
machine.

Clustering. There are several widely used clustering algorithms. For this homework, your task is
to apply K-Means clustering and agglomerative hierarchical clustering to feature vectors with the
TF-IDF values of application usage. You will also evaluate the clustering results by computing the
silhouette score.

Starter files. The starter files include the Error_Machines.csv data file and a partially completed
Python program called clustering_exercise.py. Complete this program by adding the appro-
priate code to replace all the None values. You should program in Python and use the functions
provided by the Scikit-learn library (http://scikit-learn.org/).

Submitting. Create an archive, called clustering_problem.zip, which contains the completed
clustering_exercise.py. The starter files include a shell script, called pack_files.sh, that will
create this archive for you.

Submit the clustering_problem.zip file as described at the beginning of this handout.

4 Task 2: Evaluating document similarity in real time

The materials you need for this task are provided in the starter files, under the
locality_sensitive_hashing directory.

In this task, you are given a pre-existing model built from a set of documents of interest (e.g.
documents that include exploit code), and you must check, in real time, which of the documents
from an incoming stream of data are most similar to the documents of interest. A document D is
represented as a set of the words WD = {w1, w2, ...} that appear in the document.

Locality Sensitive Hashing. A standard measure of the similarity between two documents D1

and D2 is the Jaccard index J(D1, D2) =
|WD1

∩WD2 |
|WD1

∪WD2
| ∈ [0, 1]. The Jaccard index of two documents

is 1 if the documents are identical and 0 if they don’t have any words in common. However, the
set intersection and union needed to compute the Jaccard are expensive operations, which makes
it difficult to use this similarity measure when dealing with large data sets.

Instead, it is possible to approximate the Jaccard index with MinHashing. Given the set W of all
possible words that may appear in the documents, this technique requires a random permutation
function h : W 7→ {1, ..., |W |}. In other words, h(w) assigns a unique rank to word w; in practice,
you can use a collision-resistant hash function for h. The MinHash of a document D is first word
from WD in the ranking given by h: MinHashh(D) = arg minw∈Wd

h(w). For two documents
D1 and D2, the probability of their MinHashes being the same is equal to their Jaccard index
J(D1, D2).

The MinHash is often not enough to conclude whether two documents are similar. The idea behind
locality sensitive hashing (LSH) is to compute multiple hashes and map documents into buckets;
similar documents are likely to be mapped to the same bucket. With LSH, you need n = b × r
different hash functions and you compute n MinHashes for each document. You then arrange these

3

http://scikit-learn.org/

Fall 2015
ECE Department, University of Maryland, College Park

ENEE 757 Dr. Tudor Dumitras,

Table 1: Locality Sensitive Hashing Example

h D1 D2 D3 Buckets

Band 1
MinHashh1 w1 w1 w1 [D1, D2] [D3]MinHashh2 w1 w1 w2

Band 2
MinHashh3 w5 w5 w3 [D1, D2] [D3]MinHashh4 w8 w8 w4

Band 3
MinHashh5 w1 w7 w7 [D1] [D2, D3]MinHashh6 w6 w6 w6

MinHashes into b bands, each band having r rows. Table 1 illustrates LSH for three documents,
D1, D2, and D3. We compute six MinHashes, partitioned in three bands with two rows per band.
Each band has its own buckets (clusters). Two documents are in the same bucket if their MinHash
values match for all the rows in the band (recall that in this case the MinHash of a document is a
word). In our example, the MinHashes for documents D1 and D2 match in both Bands 1 and 2, so
they are in the same bucket in those bands, while in Band 3 documents D1 and D2 are in the same
bucket. Two documents are considered similar if they appear together in at least one bucket; the
documents have b chances of appearing in the same bucket. The probability that two documents
D and D′ are considered similar, when using LSH, is 1− (1− J(D,D′)r)b.

Matching an LSH model. Your task is to write a program to find the candidate subset of docu-
ments that match the content of a pre-built model using LSH. All operations must be implemented
in Spark, using parallel collections (RDDs). Your program should load documents from disk and
distribute them amongst the Spark workers. Each worker is responsible for doing text normaliza-
tion (removal of multiple white spaces & non-ASCII characters, lowercase conversion, etc.). The
workers then compute the LSH for each of the documents and check the content match against a
set of documents in the model. The interface returns None for documents with no match; these
entries should be filtered out before saving the results to the output folder. The final list should
contain the ids of the files that are considered candidate matches and can be further verified using
an exact match algorithm. Your program should save this list to disk.

Starter files. The starter files include a partially completed Python program, located at
/homework/minhash_homework.py. Complete this program by adding the appropriate code to
replace all the None values in the __main__ function. The section where you need to add your
code is delimited by comments; you must complete 7 steps, in order (each step depends on the
completion of the previous steps). The data files are in the data subdirectory. Invoke the program
like this:

$ cd /home/seed/Documents/spark/spark/bin/

$./spark-submit homework/minhash_homework.py > data/solution.out

You can also find these files in the VM, under /home/seed/Documents/spark/spark/bin. The
output of your program will be located in data/output_folder. The output folder must be deleted
between consecutive runs:

$ rm -r data/output_folder/

4

Fall 2015
ECE Department, University of Maryland, College Park

ENEE 757 Dr. Tudor Dumitras,

Submitting.

Make sure you un-comment the print instructions after completing each step. The
program stdout will be evaluated as part of your grade. Create an archive, called
spark_problem.zip, which contains the data\output_folder, the data\solution.out and
your completed minhash_homework.py script. The starter files include a shell script, called
pack_files.sh, that will create this archive for you (run chmod +x pack_files.sh if you can’t
execute it). Submit the clustering_problem.zip file as described at the beginning of this hand-
out.

5

	Homework overview
	Initial setup
	Task 1: Identifying salient program behaviors with cluster analysis
	Task 2: Evaluating document similarity in real time

