2. Memory Corruption Exploits
ENEE 657

Prof. Tudor Dumitras

Assistant Professor, ECE
University of Maryland, College Park

\&,RSIT},
S A

g 3°

AL)V
IRYLES

Today’s Lecture

e Where we’ve been

— Intro to security

e Where we’re going today
— Security principles (discuss reading assignment)
— Memory corruption exploits

— Homework #1

e Where we’re going next
— No lecture on Monday (Labor Day)

— Cryptography review (Wednesday)
— Homework #1 due (Friday)

8/30/19

Logistics

e Choose a hacker handle

— Examples of famous hackers:
e Aleph One (buffer overflow exploits)
e Solar Designer (return-to-libc exploits)

e Dark Avenger (polymorphic malware)
e th3j35t3r (https://twitter.com/th3j35t3r)

— Sign up on our Piazza message board with your new handle
e Don’t use your real name
e Sign up link at http://ter.ps/enee657

e Reading assignments

e Read papers, but don’t post critiques (for now)

e More details on critiques later

Reading: J. Saltzer & M. Schroeder, SOSP’73

Design Principles for Secure Systems

8/30/19

https://twitter.com/th3j35t3r
http://ter.ps/enee657

Memory Corruption

Recall: Correctness versus Security

e System correctness: system satisfies specification

— For reasonable input, get reasonable output

e System security: system properties preserved in face of attack

— For unreasonable input, output not completely disastrous

e Main difference: intelligent adversary trying to subvert system
and to evade defensive techniques

8/30/19

Buffer Errors

¢ A buffer is a data storage area inside computer memory (stack or
heap)
— Intended to hold pre-defined amount of input data
— The attacker controls the inputs

e What can the attacker do?

— If the buffer is filled with executable code, the victim’s machine may be tricked
into executing it (remote code execution exploit)
o First major exploit: 1988 Internet worm (more on this later)

— Or it may reveal parts of the computer’s memory (information disclosure
exploit)

® Recent example: Heartbleed (more on this later)
— Attack can exploit any memory operation

* Pointer assighment, format strings, memory allocation and de-allocation, function
pointers, calls to library routines via offset tables ...

Buffer Errors — Rate of Discovery

Total Matches By Year

1000 —

500

of Vulnerabilities Meeting Specified Limitations

1997
1998
1999
20004
20014

Year

Source: National Vulnerability Database (NVD)

8/30/19

What You Need to Know
e Understand C functions and the stack
* Know how system calls are made

e Know the exec () system call

e Know the CPU and OS on the target machine
— Little endian vs. big endian (x86 vs. Motorola)
— Stack frame structure (Unix vs. Windows)

— The homework uses x86 (32 bit) running Linux (Ubuntu)

10

Stack Frames Stack “bottom”

> =

call arguments

return address

Frame pointer <
EBP — saved EBP

local variables

Stack pointer callee saved registers
s -~

Stack “top”

Caller’s
frame

Current
frame

high address

Stack
Growth

\{

low address
11

8/30/19

C Function Call and Return

e When a C function is called

— A new stack frame is created

e Push arguments, return address, EBP of caller frame onto stack

— Make EBP point to the base of the new frame

— Jump to the start of the function

e The function allocates space for local variables by increasing SP

When a C function returns
— SP<-EBP

— Pop the saved frame pointer into EBP

— Jump to the return address

12

What are Buffer Overflows?

Suppose a web server contains this function:

Allocate local buffer
(128 bytes reserved on stack)

[Copy argument into local buffer

func()’s stack frame

argument: *str

return address 4
EBP saved EBP
* -4
buf
Char buf[128] growth
I -128
SP

void func(char *str) {
char buf[128];

strcpy(buf, str);
do-something(buf);

stack
growth

v 13

8/30/19

8/30/19

What are Buffer Overflows?

What happens when str is 136 bytes long? void func(char *str) {
char buf[128];

strcpy(buf, str);
do-something(buf);

After strcpy: }

argument: str

Problem:
no length checking in strcpy()

14

Basic Stack-Based Overflow
[Aleph One — Smashing the Stack for Fun and Profit]

e Executable attack code is stored on stack, inside
the buffer containing attacker’s string

— Stack memory is supposed to contain only data, but...

e The buffer overflow must do two things:

— Hijack the program control

e Example: overwrite the value in the RET position to point to the beginning of
attac[E assembly code in memory

e If you return outside the valid address space, the application will crash with a
segmentation violation (SEGFAULT)

— Ensure that the attack code is stored somewhere in memory
e Example: put it in the buffer

¢ You must correctly guess in which stack position his buffer will be when the
function is called

* You can also achieve this goal without injecting code (more on this later)

Basic Stack Exploit

Suppose *str is such that after
strcpy() the stack looks like this:

Attack code: exec(“/bin/sh”)
(known as “shellcode”)

When func() exits, the attacker
gets a shell!

Note: the attack code runs in stack.

Shellcode

char buf[128]

buf
growth

lew
high
The NOP Sled t
Shellcode
Problem: how does the attacker
determine the return address?
Solution: NOP sled 2L
buf
e Guess approximate stack state growth
when func() is called
¢ Insert many NOP (No OPeration)
instructions before the shellcode:
nop
xor eax,eax
inc ax; dec ax char buf[128]
e Jump somewhere in the middle NOP
low

8/30/19

Some Complications

¢ The buffer should not contain the “\@’ character (why?)
— That means that you cannot have a 0 byte in the shellcode or return address
— Inspect shellcode and replace with equivalent instructions w/o a 0 byte

— Set return address to some place in the NOP sled w/o a 0 byte

e Overflow should not crash program before func() exits
— Stack layouts vary across different platforms

— Make sure you don’t copy too many bytes into buf[] and run of the valid
address space

¢ Make sure that your attack input is a properly terminated string (has ‘\0’ at the end)
— Use a NOP sled

— You can copy the jump target multiple times if unsure of the offset

18

What If You Cannot Inject Code on the Stack?
e Over the years, several defenses against buffer overflow have
been proposed

— Examples: ensure integrity of stack frames (“stack canaries”), randomize
memory layout (ASLR), make stack non-executable (DEP, NX bit)

— These generally target the two necessary steps for buffer overflow

¢ Hijack the program control

— Overwrite the value in the RET position to point to the beginning of
attack assembly code in memory

e Ensure that the attack code is stored somewhere in memory
Rt it i tho-buf

— Jump to code (already present in memory) that does what you want
(e.g. the Clibrary functions)

19

8/30/19

8/30/19

high
Return-to-libc Attack

e Jump to a function in libc

int
system(const char *command)

{
}

— system() invokes a UNIX command
(e.g. /bin/sh)

— You can put the command on the stack

A

e Limitations

— 0 bytes to terminate command strings char buf[128]

— Some functions take args. from registers
(why is this a limitation?)

low
— Overcome by return-oriented programming (more on this later) 2

What If You Cannot Smash the Return Address?

¢ Hijack the program control

— Overwrite other things that will ultimately give you control (e.g. EBP,
function pointers, exception handlers)

e Ensure that the attack code is stored somewhere in memory
— Put it in the buffer

21

10

Off-By-One Overflow

e Home-brewed range-checking string copy

void notSoSafeCopy(int *input) {
int buffer[512]; int i; This will copy 513

integers into
for (i=0; (i<=512) i++) buffer. Oops!
buffer[I] = input[i];
}

void main(int argc, char *argv[]) {
if (argc==2)
notSoSafeCopy((int*) argv[1]);

* 1-int overflow: can’t change the return address, but can change
saved pointer to previous stack frame

— On little-endian architecture, make it point into buffer
— The caller’s return address will be read from the buffer!

22

Smash the Frame Pointer

17 Fake return
address

Fake EBP |
Attack code N args
Arranged like a return address
real frame

\ buffer
Change the caller’s saved frame

pointer to point to attacker-controlled
memory. Caller’s return address will be
read from this memory.

23

8/30/19

11

Fundamental Causes for Basic Stack Smashing Exploits

e Cstrings are nul-terminated, rather than specifying the bound

— Programmer must check the range manually
— Many unsafe functions in the standard C library
e strcpy(char *dest, const char *src)
e strcat(char *dest, const char *src)
e gets(char *s)
e scanf(const char *format, ...)
e printf(const char *format, ...)

e Stacks grow down and arrays grow up

e Von Neumann architecture: program and data in same memory

— In addition, for x86: no distinction between executable and readable pages

24

Where Can We Find Buffer Overflows?

e Most operating systems are written in C
— Internet worms:

 (1988) Morris worm

¢ (2000) Code Red worm
¢ (2008) Conficker

¢ (2017) WannaCry

e Web browsers
— (2007) Overflow in Windows animated cursors (ANI). LoadAnilcon()
e Security software
— (2005) Overflow in Symantec Virus Detection
test.GetPrivateProfileString "file", [long string]
¢ Cars, embedded devices

25

8/30/19

12

How Exploits Are Used Today
[Grier et al, CCS 2012]
e Writing successful exploits today requires specialized skills

— On underground markets, you can buy specialized services and products
that provide this function

e Exploit kits
— Packaged software with a collection of exploits

— Code for profiling the target and deliver the right exploit

* Exploit services

— Web sites that exploit vulnerabilities in Web browsers
e Drive-by-downloads (more on this later)

— Just redirect your victims to those Web sites

26

Review of Lecture

e What did we learn?
— Design principles of secure systems

— Memory corruption attacks: return address, shellcode, stack frames

e Sources

— Vitaly Shmatikov, Dan Boneh
e What’s next?

— Cryptography review

— First homework due next Friday

28

8/30/19

13

