
9/6/17	

1	

3.	Cryptography	Review	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	657	

http://ter.ps/enee657	

Today’s	Lecture	

• Where	we’ve	been	
–  IntroducFon	to	computer	security	

– Memory	corrupFon	exploits	

• Where	we’re	going	today	
–  Cryptography	review	

• Where	we’re	going	next	
–  Homework	1	due	on	Friday!	

–  OS	protecFon	mechanisms	

2	

9/6/17	

2	

Pilot	Project	Proposals	
•  Due	on	Monday	
–  Post	proposal	on	the	Piazza	discussion	board	
–  Some	ideas	available	on	the	class	Web	page	

•  Proposal	should	be	concise	(2-3	paragraphs)	
–  Problem	statement	
–  Approach	considered	for	tackling	the	problem	

• Must	describe	concrete	tasks,	not	vague	direcFons	
• Must	demonstrate	that	you’ve	thought	about	the	first	steps,	and	you	are	not	simply	
paraphrasing	the	project	ideas	I	gave	you	

•  Come	see	me	during	office	hours	(AVW	3425,	Mon	@	2pm)	
–  If	you	are	not	sure	what	to	do	for	your	project	
–  If	you	want	to	propose	a	topic	that	is	not	on	the	list	from	the	course	web	page	
–  If	you	have	any	quesFons	about	the	project	

3	

Random	Variables	and	Random	Numbers	

• A	random	variable	X	is	a	rule	for	assigning	a	number	to	each	
experimental	outcome	
–  Example:	X	is	the	number	of	heads	aYer	n	coin	tosses	

– We’re	oYen	trying	to	determine	the	probability	distribuRon	of	X	
• Assign	probabiliFes	p1,	p2,	…	pn	to	values	x1,	x2,	…	xn	of	X	
• Uniform	distribuFon:	p1	=	p2	=	…		=	pn		

• Computers	produce	pseudo-random	numbers		
–  Sequence	of	numbers	that	appears	random	

–  The	numbers	in	the	sequence	follow	certain	mathemaFcal	properFes,		
e.g.	uniform	distribuRon	

–  Sequence	of	numbers	(orbit)	starFng	from	a	seed	value	
• Same	seed	provided 	=>	same	sequence	generated	

4	
Common	crypto	misuse	#1:	using	staRc	seeds	

9/6/17	

3	

Crypto	PrimiRves:	Hashing	vs.	EncrypRon	

• Given	plaintext	x		
–  Hashing:	 	funcFon	H(),	such	that	H(x)	is	an	n-bit	string	

–  EncrypFon:		funcFons	D()	and	E(),	such	that	Dkey’	(Ekey	(x))	=	x	

• Hashing	is	one-way.	There	is	no	“uh-hashing”!	
–  A	ciphertext	can	be	decrypted	with	a	decrypFon	key…		hashes	have	no	
equivalent	of	decrypFon	

• Hash(x)	looks	“random”	but	can	be	compared	for	equality	
with	Hash(x’)	
–  Hash	the	same	input	twice	→	same	hash	value	
–  Encrypt	the	same	input	with	different	keys	→	different	ciphertexts	

5	Common	crypto	misuse	#2:	using	constant	encrypRon	keys	

Hash	FuncRons:	Main	Idea	

bit	strings	of	any	length	 n-bit	strings	

.	 .	

.	
.	
.	

x’	
x’’	

x	

y’	
y	

hash	funcFon	H	

• Hash	funcFon	H	is	a	lossy	compression	funcFon	
–  Collision:	H(x)=H(x’)	for	some	inputs	x≠x’	

• H(x)	should	look	random	
–  Every	bit	(almost)	equally	likely	to	be	0	or	1	

• A	cryptographic	hash	funcRon	must	have	certain	properFes	

“message		
digest”	message	

6	

9/6/17	

4	

One-Way	FuncRons	

•  IntuiFon:	hash	should	be	hard	to	invert	
–  “Preimage	resistance”	

–  Given	h()	and	y,	it	should	be	hard	to	find	any	x	such	that	h(x)=y	
• y	is	an	n-bit	string	randomly	chosen	from	the	output	space	of	the	hash	
funcFon,	ie,	y=h(x’)	for	some	x’	

• How	hard?	
–  Brute-force:	try	every	possible	x,	see	if	h(x)=y	
–  SHA256	(a	common	hash	funcFon,	broken	recently)	has	256-bit	output	
• Suppose	we	have	HW	that	can	compute	1B	(≈	230)	hashes	at	once		
and	do	234	trials	per	second		

• Can	try	289	hashes	per	year	
• Will	take	2167	years	to	invert	SHA256	on	a	random	image	

7	

Birthday	Paradox	

• T	people	
• Suppose	each	birthday	is	a	random	number	taken	from	K	days	
(K=365)	–	how	many	possibiliFes?	
–  KT			-	samples	with	replacement	

• How	many	possibiliFes	that	are	all	different?	
–  (K)T	=	K(K-1)…(K-T+1)		-	samples	without	replacement	

• Probability	of	no	repeFFon?	
–  (K)T/KT	≈	1	-	T(T-1)/2K	

• Probability	of	repeFFon?	
–  O(T2)	

8	

9/6/17	

5	

Collision	Resistance	

• Should	be	hard	to	find	x≠x’	such	that	h(x)=h(x’)	
• Birthday	paradox	
–  Let	T	be	the	number	of	values	x,x’,x’’…	we	need	to	look	at	before	finding	
the	first	pair	x≠x’	s.t.	h(x)=h(x’)	

–  Assuming	h	is	random,	what	is	the	probability	that	we	find	a	repeFFon	aYer	
looking	at	T	values?		

–  Total	number	of	pairs?	
• n	=	number	of	bits	in	the	output	of	hash	funcFon	

–  Conclusion:	
• Brute-force	collision	search	is	O(2n/2),	not	O(2n)	
–  For	SHA256,	this	means	O(2128)	vs.	O(2256)		

O(T2)	

O(2n)	

T	≈	O(2n/2)	

9	

One-Way	vs.	Collision	Resistance	

• One-wayness	does	not	imply	collision	resistance	
–  Suppose	g()	is	one-way	
–  Define	h(x)	as	g(x’)	where	x’	is	x	except	the	last	bit	
• h	is	one-way	(cannot	invert	h	without	inverFng	g)	
• Collisions	for	h	are	easy	to	find:	for	any	x,	h(x0)=h(x1)	

• Collision	resistance	does	not	imply	one-wayness	
–  Suppose	g()	is	collision-resistant	
–  Define	h(x)	to	be	0x	if	x	is	(n-1)-bit	long,	else	1g(x)	
• Collisions	for	h	are	hard	to	find:	if	y	starts	with	0,	then	there	are	no	collisions;	if	y	
starts	with	1,	then	must	find	collisions	in	g	

• h	is	not	one	way:	half	of	all	y’s	(those	whose	first	bit	is	0)	are	easy	to	invert	
(how?),	thus	random	y	is	inverFble	with	p	≥	½			

10	

9/6/17	

6	

Weak	Collision	Resistance	

• Given	a	randomly	chosen	x,	hard	to	find	x’	≠	x	such	that	
h(x)=h(x’)	
–  “Second	pre-image	resistance”	

–  Avacker	must	find	collision	for	a	specific	x…	by	contrast,	to	break	
collision	resistance,	enough	to	find	any	collision	

–  Brute-force	avack	requires	O(2n)	Fme	

• Weak	collision	resistance	does	not	imply	collision	resistance	

11	

ApplicaRon:	Password	Hashing	

•  Instead	of	user	password,	store	hash(password)	

• When	user	enters	a	password,	compute	its	hash	and	compare	
with	the	entry	in	the	password	file	
–  System	does	not	store	actual	passwords!	
–  Cannot	go	from	hash	to	password!	

• What	avacks	does	this	prevent?	
–  Does	hashing	protect	weak,	easily	guessable	passwords?	

12	

9/6/17	

7	

ProtecRng	Passwords	Against	DicRonary	A`acks	

• People	tend	to	chose	common	words	for	passwords	
–  Avacker	can	pre-compute	H(word)	for	every	word	in	the	dicFonary	–	this	
only	needs	to	be	done	once!	
(more	on	this	later)	

–  Defenses	aim	to	increase	the	avacker’s	work	factor	

• SalFng	
–  Chose	a	salt:	does	not	have	to	be	secret,	but	must	be	random	
–  Compute	H(salt	||	pwd)	

• Key	derivaFon	funcFons	
– MulFple	iteraFons	of	the	hash	funcFon:	H(H	(H	(…	(salt	||	pwd))))	

13	

Common	crypto	misuse	#3:	hashing	passwords	with	constant	salts	

Common	crypto	misuse	#4:	fewer	than	1000	iteraRons	of	key	deriv.	funcRon	

ApplicaRon:	Soaware	Integrity	

goodFile	

SoYware	manufacturer	wants	to	ensure	that	the	executable	file	
						is	received	by	users	without	modificaFon…	
Sends	out	the	file	to	users	and	publishes	its	hash	in	the	NY	Times	
The	goal	is	integrity,	not	secrecy	

Idea:	given	goodFile	and	hash(goodFile),		
									very	hard	to	find	badFile	such	that	hash(goodFile)=hash(badFile)	

BigFirm™	 User	

VIRUS	

badFile	

The	Times	

hash(goodFile)	

14	

9/6/17	

8	

Which	Property	Is	Needed?	

• Passwords	stored	as	hash(password)	
–  One-wayness:	hard	to	recover	enFre	password	
–  Passwords	are	not	random	and	thus	guessable	

•  Integrity	of	soYware	distribuFon	
– Weak	collision	resistance?	
–  But	soYware	images	are	not	random…	maybe	need	full	collision	resistance	

• AucFons:	to	bid	B,	send	H(B),	later	reveal	B	
–  One-wayness…	but	does	not	protect	B	from	guessing	
–  Collision	resistance:	bidder	should	not	be	able	to	find	two	bids	B	and	B’	
such	that	H(B)=H(B’)	

15	

Common	Hash	FuncRons		

• MD5	
–  Completely	broken	by	now	

• RIPEMD-160	
–  160-bit	variant	of	MD-5	

• SHA-1	(Secure	Hash	Algorithm)	
– Widely	used	(but	recently	broken)	

–  US	government	(NIST)	standard	as	of	1993-95	
• Also	the	hash	algorithm	for	Digital	Signature	Standard	(DSS)	

• SHA256	

16	

9/6/17	

9	

Integrity	and	AuthenRcaRon	

Integrity	and	authenRcaRon:	only	someone	who	knows	KEY	can	
compute	correct	MAC	for	a	given	message	

Alice	 Bob	

KEY	
KEY	

message	

MAC	
(message	authenFcaFon	code)	

message,	MAC(KEY,message)	

=	
?	

Recomputes	MAC	and	verifies	whether	it	is	
equal	to	the	MAC	avached	to	the	message	

17	

HMAC	

• Construct	MAC	from	a	cryptographic	hash	funcFon	
–  Invented	by	Bellare,	Cane|,	and	Krawczyk	(1996)	

–  Used	in	SSL/TLS,	mandatory	for	Ipsec	

• Why	not	encrypFon?	
–  Hashing	is	faster	than	encrypFon	
–  Library	code	for	hash	funcFons	widely	available	
–  Can	easily	replace	one	hash	funcFon	with	another	
–  There	used	to	be	US	export	restricFons	on	encrypFon	

	
18	

9/6/17	

10	

Symmetric	Cryptography	

?	
-----	-----	-----	

Given:	both	parFes	already	know	the	same	secret		

How	is	this	achieved	in	pracFce?	Goal:	send	a	message	confidenFally	

Any	communicaFon	system	that	aims	to	guarantee	
confidenRality	must	solve	this	problem	

19	

Kerckhoffs's	Principle	

• An	encrypFon	scheme	should	be	secure	even	if	
enemy	knows	everything	about	it	except	the		
key	
–  Avacker	knows	all	algorithms	

–  Avacker	does	not	know	random	numbers	

• Do	not	rely	on	secrecy	of	the	algorithms		
(“security	by	obscurity”)	

	

Full	name:		
Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste	
Kerckhoffs	von	Nieuwenhof	

20	

Common	crypto	misuse	#5:	DIY	crypto	

9/6/17	

11	

Common	Symmetric	Crypto	Algorithms	

• DES	
–  64-bit	blocks	(56-bit	key	+	8	bits	for	parity)	
–  Outdated,	but	sFll	in	use	(especially	as	3DES)	
• 3DES:	DES	+	inverse	DES	+	DES	(with	2	or	3	different	keys)	

• AES	(Rijndael)	
–  128-bit	blocks,	keys	can	be	128,	192	or	256	bits	
–  US	federal	standard	as	of	2001	

• These	are	block	ciphers	
–  Operate	on	fixed-size	blocks		
–  As	opposed	to	stream	ciphers	(key	is	as	long	as	the	plaintext)	

21	

EncrypRng	a	Large	Message	

• So,	we’ve	got	a	good	block	cipher,	but	our	plaintext	is	larger	
than	128-bit	block	size	

• Electronic	Code	Book	(ECB)	mode	
–  Split	plaintext	into	blocks,	encrypt	each	one	separately	using	the	block	
cipher	

• Cipher	Block	Chaining	(CBC)	mode	
–  Split	plaintext	into	blocks,	XOR	each	block	with	the	result	of	encrypFng	
previous	blocks	

• Also	various	counter	modes,	feedback	modes,	etc.	

22	

9/6/17	

12	

ECB	Mode	

•  IdenFcal	blocks	of	plaintext	produce	idenFcal	blocks	
of	ciphertext	

• No	integrity	checks:	can	mix	and	match	blocks	

plaintext	

ciphertext	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

key	 key	 key	 key	 key	

23	

InformaRon	Leakage	in	ECB	Mode	
[Wikipedia]	

Encrypt	in	ECB	mode	

24	

Common	crypto	misuse	#6:	using	ECB	mode	

9/6/17	

13	

Sent	with	ciphertext	
(preferably	encrypted)	

CBC	Mode:	EncrypRon	

•  IdenFcal	blocks	of	plaintext	encrypted	differently	
•  Last	cipherblock	depends	on	enFre	plaintext	

plaintext	

ciphertext	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

⊕	
IniFalizaFon	

vector	
(random)	 ⊕	 ⊕	 ⊕	

key	 key	 key	 key	

25	Common	crypto	misuse	#7:	using	a	constant	IV	in	CBC	mode	

CBC	Mode:	DecrypRon	

plaintext	

ciphertext	

decrypt	 decrypt	 decrypt	 decrypt	

⊕	IniFalizaFon	
vector	 ⊕	 ⊕	 ⊕	

key	 key	 key	 key	

26	

• SFll	does	not	guarantee	integrity	

9/6/17	

14	

How	Can	a	Cipher	Be	A`acked?	

• Avackers	knows	ciphertext	and	encrypFon	algorithm	
– What	else	does	the	avacker	know?	Depends	on	the	applicaFon	in	which	the	
cipher	is	used!	

• Known-plaintext	avack	(stronger)	
–  Knows	some	plaintext-ciphertext	pairs	

• Chosen-plaintext	avack	(even	stronger)	
–  Can	obtain	ciphertext	for	any	plaintext	of	his	choice	

• Chosen-ciphertext	avack	(very	strong)	
–  Can	decrypt	any	ciphertext	except	the	target	
–  SomeFmes	very	realisFc	

27	

Informal	IntuiRon	

• Security	against	chosen-plaintext	avack	
–  Ciphertext	leaks	no	informaFon	about	the	plaintext	

–  Even	if	the	avacker	correctly	guesses	the	plaintext,	he	cannot	verify	his	
guess	

–  Every	ciphertext	is	unique,	encrypFng	same	message	twice	produces	
completely	different	ciphertexts	

• Security	against	chosen-ciphertext	avack	
–  Integrity	protecFon	–	it	is	not	possible	to	change	the	plaintext	by	
modifying	the	ciphertext	

Minimum	security		
requirement	for	a		

modern	encrypFon	scheme	

28	

9/6/17	

15	

Encrypt	+	MAC	

Goal:	confidenFality	+	integrity	+	authenFcaFon	

Alice	 Bob	

K1,	K2	
K1,	K2	

msg	

MAC=HMAC(K2,msg)	

encrypt(msg),	MAC(msg)	

=	
?	

Encrypt(K1,msg)	

Decrypt	

Verify	MAC	

encrypt(msg2),	MAC(msg2)	

Can	tell	if	messages	
are	the	same!	

MAC	is	determinisFc:	messages	are	equal	⇒	their	MACs	are	equal	

SoluFon:	Encrypt,	then	MAC				(or	MAC,	then	encrypt)	

Breaks	chosen-
plaintext	security	

29	

Public-Key	Cryptography	

?	

Given:	Everybody	knows	Bob’s	public	key	
	 	-	How	is	this	achieved	in	pracFce?	

										Only	Bob	knows	the	corresponding	private	key	

private	key	

Goals:		1.	Alice	wants	to	send	a	message	that	only	Bob	can	read	
									 		2.	Bob	wants	to	send	a	message	that	only	Bob	could	

		have	wriven	

public	key	

public	key	

Alice	
Bob	

30	

9/6/17	

16	

ApplicaRons	of	Public-Key	Crypto	

• EncrypFon	for	confidenFality	
–  Anyone	can	encrypt	a	message	
• With	symmetric	crypto,	must	know	the	secret	key	to	encrypt	

–  Only	someone	who	knows	the	private	key	can	decrypt	
–  Secret	keys	are	only	stored	in	one	place	

• Digital	signatures	for	authenFcaFon	and	integrity	
–  Only	someone	who	knows	the	private	key	can	sign	

• Session	key	establishment	
–  Exchange	messages	to	create	a	secret	session	key	
–  Then	switch	to	symmetric	cryptography	(why?)	

31	

Public-Key	EncrypRon	

• Key	generaFon:	computaFonally	easy	to	generate	a	pair	(public	
key	PK,	private	key	SK)	

• EncrypFon:	given	plaintext	M	and	public	key	PK,	easy	to	
compute	ciphertext	C=EPK(M)	

• DecrypFon:	given	ciphertext	C=EPK(M)	and	private	key	SK,	easy	
to	compute	plaintext	M	
–  Infeasible	to	learn	anything	about	M	from	C	without	SK	

–  Trapdoor	funcFon:	Decrypt(SK,Encrypt(PK,M))=M	

• Popular	algorithm:	RSA	
32	

9/6/17	

17	

Digital	Signatures:	Basic	Idea	

?	

Given:		Everybody	knows	Bob’s	public	key	
										 	Only	Bob	knows	the	corresponding	private	key	

private	key	

Goal:	Bob	sends	a	“digitally	signed”	message	
1.  To	compute	a	signature,	must	know	the	private	key	
2.  To	verify	a	signature,	only	the	public	key	is	needed	

public	key	

public	key	

Alice	 Bob	

33	

Popular	Digital	Signature	Schemes	

• RSA	signatures	
–  Signing	and	decrypFon	are	the	same	mathemaFcal	operaFon	

–  VerificaFon	and	encrypFon	are	the	same	mathemaFcal	operaFon	

– Message	must	be	hashed	and	padded		

• DSA	(digital	signature	algorithm)	signatures	
–  U.S.	government	standard	(1991-94)	
– ModificaFon	of	the	ElGamal	signature	scheme	(1985)	

–  Security	of	DSA	requires	hardness	of	discrete	log	problem	
• Hard	to	extract	x	(private	key)	from	gx	mod	p	(public	key)	

–  If	the	same	message	is	signed	twice,	signatures	are	different	
• Each	signature	is	based	in	part	on	random	secret	k	
• Secret	k	must	be	different	for	each	signature!	

34	

9/6/17	

18	

Diffie-Hellman	Protocol	

• Alice	and	Bob	never	met	and	share	no	secrets	
• Public	info:	p	and	g	
–  Hard	to	extract	x	(private	key)	from	gx	mod	p	(public	key)	

Alice	 Bob	

Pick	secret,	random	X	 Pick	secret,	random	Y	

gy	mod	p	

gx	mod	p	

Compute	k=(gy)x=gxy	mod	p	
	

Compute	k=(gx)y=gxy	mod	p	
	

35	

Common	crypto	misuse	#8:	exchanging	keys	w/o	authenRcaRng	the	endpoint	

ProperRes	of	Diffie-Hellman	

• Assuming	the	discrete	logarithm	problem	is	hard,	Diffie-Hellman	
is	a	secure	key	establishment	protocol	against	passive	avackers	
–  Eavesdropper	can’t	tell	the	difference	between	the	established	key	and	a	
random	value	

–  Can	use	the	new	key	for	symmetric	cryptography	

• Basic	Diffie-Hellman	protocol	does	not	provide	authenFcaFon	
–  IPsec	combines	Diffie-Hellman	with	signatures,	anF-DoS	cookies,	etc.	

36	

9/6/17	

19	

Advantages	of	Public-Key	Crypto	

• ConfidenFality	without	shared	secrets	
–  Very	useful	in	open	environments	

–  Can	use	this	for	key	establishment,	avoiding	the	“chicken-or-egg”	problem	
• With	symmetric	crypto,	two	parFes	must	share	a	secret	before	they	can	
exchange	secret	messages	

• AuthenFcaFon	without	shared	secrets	

• EncrypFon	keys	are	public,	but	must	be	sure	that	Alice’s	public	
key	is	really	her	public	key	
–  Hard	problem,	currently	solved	using	public-key	cerFficates		
(more	on	this	later)	

37	

Disadvantages	of	Public-Key	Crypto	

• CalculaFons	are	2-3	orders	of	magnitude	slower	
– Modular	exponenFaFon	is	an	expensive	computaFon	

–  Typical	usage:	use	public-key	cryptography	to	establish	a	shared	secret,	
then	switch	to	symmetric	crypto	
• SSL,	IPsec,	most	other	systems	based	on	public	crypto	

• Keys	are	longer	
–  2048	bits	(RSA)	rather	than	128	bits	(AES)	

• Relies	on	unproven	number-theoreFc	assumpFons	
–  Factoring,	RSA	problem,	discrete	logarithm	problem,	decisional	Diffie-
Hellman	problem…	

38	

9/6/17	

20	

Common	Crypto	Misuse	Examples	
• Using	staFc	seeds	for		
random	number	generators	

• Using	constant	encrypFon	keys	
• Hashing	passwords	with		
constant	salts	

• Fewer	than	1000	iteraFons	of		
key	derivaFon	funcFon	

• DIY	crypto	
• Using	ECB	mode	
• Using	a	constant	IV	in	CBC	mode	
• Exchanging	keys	w/o	authenFcaFng	the	endpoint	

• Many	others	(see	hvp://cwe.mitre.org)		
39	

the security benefits of symmetric encryption. For example,
AdMob encrypts the phone’s location data using a constant
key and sends it over the network. Another example is an
application that stores the user’s Google credentials on disk
encrypted using a static key.

Rule 2: Do not use a non-random IV for CBC encryp-

tion. CryptoLint identified 1,932 applications that make
use of constant initialization vectors in CBC mode encryp-
tion.

Rule 4: Do not use constant salts for PBE. Cryp-

toLint identified 1,574 applications that use a static value
for the salt used with the key derivation function in PBE.
Using a static salt allows an attacker to pre-compute a dictio-
nary based on the known salt, negating much of the benefit of
using a salt at all. While the use of a static salt is better than
using the password directly as encryption key, this choice
negates the advantages in multi-instance security [5].

Rule 5: Do not use fewer than 1,000 iterations for PBE.

The Java PBEKeySpec API implements password based en-
cryption based on the PKCS#5 standard. The RFC for
PKCS#5 recommends an iteration count of at least 1,000.
CryptoLint identified 1,636 applications that use fewer
iterations. Applications that use a low iteration count and
a static salt for password-based encryption are exposed to
trivial dictionary-based o↵-line attacks, exactly the type of at-
tacks that password-based encryption schemes were designed
to protect against.

Applications violating multiple rules We next investi-
gated the number of applications that violate multiple rules.
These results are illustrated in Figure 1. Interestingly, it
was more common for applications to violate two rules than
only violating a single rule. Of the applications violating a
single rule, rule 1 was violated the most (3,033 times). 511
applications violated rule 2 and used constant IVs. For 246
applications CryptoLint identified the use of a static sym-
metric encryption key (violation of rule 3). 29 applications
were flagged for using a low iteration count, and 13 appli-
cations use static salt values for password-based encryption
schemes. CryptoLint identified 6 applications that only
violated rule 6 by seeding SecureRandom with a static seed.

The numbers of applications that violated exactly two
rules are listed in Table 3. Additionally, our dataset con-
tained exactly one application that violated all six rules
that CryptoLint evaluates.

apps rules violated
1,905 Rule 1 & Rule 3
1,588 Rule 1 & Rule 6
1,247 Rule 4 & Rule 5
866 Rule 2 & Rule 3
109 Rule 1 & Rule 2
24 Rule 1 & Rule 5
11 Rule 3 & Rule 5
5 Rule 2 & Rule 5
2 Rule 1 & Rule 4
2 Rule 3 & Rule 4

Table 3: Applications violating two rules

 1

 10

 100

 1000

 10000

0 1 2 3 4 5 6

N
u
m

b
er

 o
f

d
is

ti
n
ct

 a
p
p
li

ca
ti

o
n
s

Number of distinct violated rules

Figure 1: Number of applications violating 0, 1, 2,

. . . 6 rules.

6.2 Case Studies

Social gaming platform To estimate the impact of apply-
ing cryptographic primitives incorrectly, we manually exam-
ined a popular game that CryptoLint reported as misusing
crypto. This game is from a development studio that released
a series of popular games, all containing a social platform for
connecting and interacting with friends. This social platform
is used to track high-scores on a leader board. According
to Google play, the application we analyzed has between
50,000,000 and 100,000,000 installations. The application
communicates with the back-end servers of the social compo-
nents over http. However, data that is transmitted between
the server and the client is encrypted. This application got
flagged by CryptoLint for two reasons. First, it uses the
DES blockcipher in ECB mode. The developers explicitly
specified the ECB block cipher mode as the used transfor-
mation string is DES/ECB). Furthermore, CryptoLint also
complains that the application uses a static key with this
encryption scheme. We evaluated the correctness of these
results by interacting with the game and exercising the social
network functionality while at the same time recording all
network tra�c sent by the application. With the key ma-
terial retrieved by CryptoLint, it was trivially possible to
decrypt the encrypted network tra�c.

Bookmark Manager We also investigated a bookmark man-
ager application in more detail (install base between 1,000,000
and 5,000,000). This application allows the user to synchro-
nize bookmarks between di↵erent browsers installed on the
mobile device. Furthermore, it provides the functionality to
synchronize browser bookmarks with Google’s web services.
To make use of this functionality, the user has to provide her
Google credentials. The application stores these credentials
in a regular Java property file. While the Google user-name is
stored in the clear, the password is encrypted. CryptoLint

flagged this application because it uses the DES blockcipher
in ECB mode to store that information in the property file.
Furthermore, the application also uses a constant key for
the encryption. Again we verified that decryption of the
password is trivially possible. We agree that safe storage of
access credentials is challenging to get right. To this end, An-
droid provides a KeyStore facility that is designed for exactly

Crypto	misuse	in	Android	apps	
[Egele	et	al.,	2013]	

88%	of	apps	made		
at	least	1	mistake	

How	Are	Cryptosystems	A`acked	in	PracRce?	
•  Don’t	bother	with	the	crypto;	target	the	users	instead	
–  Social	engineering	
–  Password	guessing	

•  Exploit	bugs	or	misuse	of	crypto	APIs	in	the	implementaFon	
–  SSL:	goto	fail,	Heartbleed	
–  Diebold	voFng	machines:	3DES	in	CBC	mode	with	NULL	IV	

•  Exploit	misconfiguraFons	or	environmental	factors	
–  Insufficient	entropy,	shared	primes	

• Debian	OpenSSL	bug	
•  Embedded	devices	without	keyboard,	mouse,	real-Fme	clock,	etc.	

•  Avack	the	math	
–  Flame	worm:	chosen-prefix	collision	avack	against	MD5	 40	

9/6/17	

21	

AddiRonal	References	

•  Jonathan	Katz’s	Coursera	class:	
hvps://www.coursera.org/course/cryptography		

• KPS	chapters	2–6		

41	

Review	of	Lecture	
•  What	did	we	learn?	
–  Hash	funcFons:	one-way,	collision	resistant,	weakly	collision	resistant	
–  Message	authenFcaFon	codes	
–  Security	properFes:	confidenFality,	integrity,	authenFcaFon	
–  Symmetric	crypto	
–  Public	key	crypto	
–  Common	ways	to	misuse	crypto	APIs	

•  Sources	
–  Vitaly	ShmaFkov	

•  Deadline	reminder		
–  Monday:	post	pilot	project	proposal	on	Piazza		
–  If	you	are	not	sure	what	to	do,	or	if	you	want	to	propose	a	topic	that	is	not	on	the	list	from	

the	course	web	page,	come	see	me	during	office	hours	aYer	class	

•  What’s	next?	
–  OS	protecFon	mechanisms	 42	

