
8/31/17	

1	

2.	Memory	Corrup-on	Exploits	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	657	

Today’s	Lecture	

• Where	we’ve	been	
–  Intro	to	security	

• Where	we’re	going	today	
– Memory	corrupHon	exploits	
–  Homework	#1	

• Where	we’re	going	next	
–  No	lecture	on	Monday	(Labor	Day)	

–  Cryptography	review	

2	

8/31/17	

2	

Recall:	Correctness	versus	Security	

• System	correctness:	system	saHsfies	specificaHon	
–  For	reasonable	input,	get	reasonable	output	

• System	security:	system	properHes	preserved	in	face	of	aVack	
–  For	unreasonable	input,	output	not	completely	disastrous	

• Main	difference:	intelligent	adversary	trying	to	subvert	system	
and	to	evade	defensive	techniques		

3	

•  A	buffer	is	a	data	storage	area	inside	computer	memory	(stack	or	
heap)	
–  Intended	to	hold	pre-defined	amount	of	input	data	
–  The	aVacker	controls	the	inputs	

• What	can	the	aVacker	do?	
–  If	the	buffer	is	filled	with	executable	code,	the	vicHm’s	machine	may	be	tricked	
into	execuHng	it	(remote	code	execu-on	exploit)	
•  First	major	exploit:	1988	Internet	worm	(more	on	this	later)	

–  Or	it	may	reveal	parts	of	the	computer’s	memory	(informa-on	disclosure	
exploit)	
• Recent	example:	Heartbleed	(more	on	this	later)	

–  AVack	can	exploit	any	memory	operaHon	
•  Pointer	assignment,	format	strings,	memory	allocaHon	and	de-allocaHon,	funcHon	
pointers,	calls	to	library	rouHnes	via	offset	tables	…	

Buffer	Errors	

4	

8/31/17	

3	

Buffer	Errors	–	Rate	of	Discovery	

5	

Source:	NaHonal	Vulnerability	Database	(NVD)	

What	You	Need	to	Know	

• Understand	C	funcHons	and	the	stack	

• Know	how	system	calls	are	made	

• Know	the	exec()	system	call	

• Know	the	CPU	and	OS	on	the	target	machine	
–  LiVle	endian	vs.	big	endian			(x86	vs.	Motorola)	

–  Stack	frame	structure					(Unix	vs.	Windows)	
–  The	homework	uses	x86	(32	bit)	running	Linux	(Ubuntu)	

6	

8/31/17	

4	

Stack	Frames	

call	arguments	

return	address	

saved	EBP	

local	variables	

Stack	pointer	
SP	

Stack	
Growth	

high	address	

low	address	
callee	saved	registers	

Stack	“top”	

…	

Frame	pointer	
EBP	

Caller’s	
frame	

Current	
frame	

Stack	“boVom”	

7	

C	Func-on	Call	and	Return	

• When	a	C	funcHon	is	called	
–  A	new	stack	frame	is	created	
• Push	arguments,	return	address,	EBP	of	caller	frame	onto	stack	

– Make	EBP	point	to	the	base	of	the	new	frame	

–  Jump	to	the	start	of	the	funcHon		
• The	funcHon	allocates	space	for	local	variables	by	increasing	SP	

• When	a	C	funcHon	returns		
–  SP	<-	EBP	
–  Pop	the	saved	frame	pointer	into	EBP	

–  Jump	to	the	return	address	

8	

8/31/17	

5	

What	are	Buffer	Overflows?	

void	func(char	*str)	{	
			char	buf[128];	

			strcpy(buf,	str);	
	do-something(buf);	

}	

Suppose a web server contains this function:

func()’s	stack	frame	

argument:			*str	

return	address	

saved	EBP	

char	buf[128]	

SP	

EBP	 stack	
growth	

buf	
growth	

Allocate	local	buffer	
(128	bytes	reserved	on	stack)	

Copy	argument	into	local	buffer	

-4	

-128	

+4	

9	

What	are	Buffer	Overflows?	

void	func(char	*str)	{	
			char	buf[128];	

			strcpy(buf,	str);	
	do-something(buf);	

}	

What happens when str is 136 bytes long?

After strcpy:	

argument:			str	

return	address	

saved	EBP	

char	buf[128]	

SP	

EBP	
-4	

-128	

+4	

Problem:			
						no	length	checking	in		strcpy()	

10	

8/31/17	

6	

• Executable	aVack	code	is	stored	on	stack,	inside		
the	buffer	containing	aVacker’s	string		
–  Stack	memory	is	supposed	to	contain	only	data,	but…	

• The	buffer	overflow	must	do	two	things:	
–  Hijack	the	program	control		
• Example:	overwrite	the	value	in	the	RET	posi-on	to	point	to	the	beginning	of	
aVack	assembly	code	in	memory	

•  If	you	return	outside	the	valid	address	space,	the	applicaHon	will	crash	with	a	
segmentaHon	violaHon	(SEGFAULT)	

–  Ensure	that	the	a`ack	code	is	stored	somewhere	in	memory	
• Example:	put	it	in	the	buffer	
• You	must	correctly	guess	in	which	stack	posiHon	his	buffer	will	be	when	the	
funcHon	is	called	

• You	can	also	achieve	this	goal	without	injecHng	code	(more	on	this	later)	

Basic	Stack-Based	Overflow	
[Aleph One – Smashing the Stack for Fun and Profit]

11	

char	buf[128]	

return	address	

Basic	Stack	Exploit	

Suppose		*str			is	such	that	arer		
strcpy()		the	stack	looks	like	this:	

AVack	code:				exec(“/bin/sh”)	

	

	

When			func()			exits,		the	aVacker	
gets	a	shell!	

Note:		the	aVack	code	runs	in	stack.	
	

	

(known	as	“shellcode”)	

Shellcode	

low	

high	

buf	
growth	

12	

8/31/17	

7	

The	NOP	Sled	

Problem:			how	does	the	aVacker		
determine	the	return	address?	
	
SoluHon:			NOP	sled	

•  Guess	approximate	stack	state		
when	func()	is	called	

•  Insert	many	NOP	(No	OPeraHon)	
instrucHons	before	the	shellcode:	

	nop					
	xor	eax,eax					
	inc	ax;	dec	ax	
	…	

•  Jump	somewhere	in	the	middle	NOP		
	

char	buf[128]	

return	address	

Shellcode	

low	

high	

NOP	Sled	

buf	
growth	

13	

Some	Complica-ons	

• The	buffer	should	not	contain	the	‘\0’		character	(why?)	
–  That	means	that	you	cannot	have	a	0	byte	in	the	shellcode	or	return	address	

–  Inspect	shellcode	and	replace	with	equivalent	instrucHons	w/o	a	0	byte	
–  Set	return	address	to	some	place	in	the	NOP	sled	w/o	a	0	byte	

• Overflow	should	not	crash	program	before		func()		exits	
–  Stack	layouts	vary	across	different	plaworms	
– Make	sure	you	don’t	copy	too	many	bytes	into	buf[]	and	run	of	the	valid	
address	space	
• Make	sure	that	your	aVack	input	is	a	properly	terminated		string	(has	‘\0’	at	the	end)	

–  Use	a	NOP	sled	
–  You	can	copy	the	jump	target	mulHple	Hmes	if	unsure	of	the	offset	

14	

8/31/17	

8	

What	If	You	Cannot	Inject	Code	on	the	Stack?	
• Over	the	years,	several	defenses	against	buffer	overflow	have	
been	proposed	
–  Examples:	ensure	integrity	of	stack	frames	(“stack	canaries”),	randomize	
memory	layout	(ASLR),	make	stack	non-executable	(DEP,	NX	bit)	

–  These	generally	target	the	two	necessary	steps	for	buffer	overflow	

• Hijack	the	program	control		
–  Overwrite	the	value	in	the	RET	posi-on	to	point	to	the	beginning	of	aVack	
assembly	code	in	memory	

• Ensure	that	the	a`ack	code	is	stored	somewhere	in	memory	
–  Put	it	in	the	buffer	
–  Jump	to	code	(already	present	in	memory)	that	does	what	you	want	
(e.g.	the	C	library	funcHons)	

15	

Return-to-libc	A`ack	

•  Jump	to	a	funcHon	in	libc	

–  system()	invokes	a	UNIX	command		
(e.g.	/bin/sh)	

–  You	can	put	the	command	on	the	stack	

•  LimitaHons	
–  0	bytes	to	terminate	command	strings	

–  Some	funcHons	take	args.	from	registers	
(why	is	this	a	limita-on?)	

–  Overcome	by	return-oriented	programming	(more	on	this	later)	 16	

char	buf[128]	

return	address	

low	

high	

buf	
growth	

“/bin/sh”	

int	
system(const	char	*command)		
{	

	…	
}	

8/31/17	

9	

What	If	You	Cannot	Smash	the	Return	Address?	

• Hijack	the	program	control		
–  Overwrite	the	value	in	the	RET	posi-on	to	point	to	the	beginning	of	aVack	
assembly	code	in	memory	

–  Overwrite	other	things	that	will	ulHmately	give	you	control	(e.g.	EBP,	
funcHon	pointers,	excepHon	handlers)	

• Ensure	that	the	a`ack	code	is	stored	somewhere	in	memory	
–  Put	it	in	the	buffer	

17	

•  Home-brewed	range-checking	string	copy	
	 	void	notSoSafeCopy(int	*input)	{	

			 					int	buffer[512];	int	i;		
	
													for	(i=0;	i<=512;	i++)	
																	buffer[i]	=	input[i];		
								}	
								void	main(int	argc,	char	*argv[])	{	
													if	(argc==2)		
																notSoSafeCopy((int*)	argv[1]);	
								}	

•  1-int	overflow:	can’t	change	the	return	address,	but	can	change	
saved	pointer	to	previous	stack	frame	

–  On	liVle-endian	architecture,	make	it	point	into	buffer	
–  The	caller’s	return	address	will	be	read	from	the	buffer!	

Off-By-One	Overflow	

This	will	copy	513	
integers	into	
buffer.	Oops!	

18	

8/31/17	

10	

args
return address
EBP
buffer (buf)

AVack	code	

Fake return
address
Fake EBP

Smash	the	Frame	Pointer	

Change	the	caller’s	saved	frame	
pointer	to	point	to	aVacker-controlled		
memory.	Caller’s	return	address	will	be		
read	from	this	memory.	

Arranged	like	a		
real	frame	

19	

Fundamental	Causes	for	Basic	Stack	Smashing	Exploits	

•  C	strings	are	nul-terminated,	rather	than	specifying	the	bound	
–  Programmer	must	check	the	range	manually	

–  Many	unsafe	funcHons	in	the	standard	C	library	
•  strcpy(char	*dest,	const	char	*src)	
•  strcat(char	*dest,	const	char	*src)	
•  gets(char	*s)	
•  scanf(const	char	*format,	…)	

• prinw(const	char	*format,	…)		

•  Stacks	grow	down	and	arrays	grow	up	

•  Von	Neumann	architecture:	program	and	data	in	same	memory	
–  In	addiHon,	for	x86:	no	disHncHon	between	executable	and	readable	pages	

20	

8/31/17	

11	

Where	Can	We	Find	Buffer	Overflows?	
• Most	operaHng	systems	are	wriVen	in	C		

–  Internet	worms:	
• (1988)	Morris	worm	
• (2000)	Code	Red	worm	
• (2008)	Conficker	
• (2017)	WannaCry	

• Web	browsers	
–  (2007)		Overflow	in	Windows	animated	cursors	(ANI).					LoadAniIcon()	

• Security	sorware	
–  (2005)		Overflow	in	Symantec	Virus	DetecHon	

 test.GetPrivateProfileString "file", [long string]	

• Cars,	embedded	devices	
21	

How	Exploits	Are	Used	Today	
[Grier	et	al,	CCS	2012]	

• WriHng	successful	exploits	today	requires	specialized	skills	
–  On	underground	markets,	you	can	buy	specialized	services	and	products	
that	provide	this	funcHon	

• Exploit	kits	
–  Packaged	sorware	with	a	collecHon	of	exploits		
–  Code	for	profiling	the	target	and	deliver	the	right	exploit	

• Exploit	services	
– Web	sites	that	exploit	vulnerabiliHes	in	Web	browsers	
• Drive-by-downloads	(more	on	this	later)	

–  Just	redirect	your	vicHms	to	those	Web	sites	

22	

8/31/17	

12	

Homework	Submission	

• Use	the	submit	command	on	GRACE	
–  SSH	into	grace.umd.edu	

submit	<year>	<semester>	<college>	<course>	<section>	<assignment>	<filename>	

• Example:	submit	2017	fall	enee	657	0101	1	exploit_1.c	

–  For	more	informaHon	on	GRACE:	hVp://www.grace.umd.edu/		

23	

Review	of	Lecture	

• What	did	we	learn?	
– Memory	corrupHon	aVacks:	return	address,	shellcode,	stack	frames	

• Sources	
–  Vitaly	ShmaHkov,	Dan	Boneh	

• What’s	next?	
–  Cryptography	review	
–  First	homework	due	next	Wednesday	

24	

