8/31/17

Computer Security

ENEE 657
@"ERS'T”
. X
Prof. Tudor Dumitras N °;
Assistant Professor, ECE MOUS
University of Maryland, College Park IRYLAS
About Me

Tudor Dumitras
Office: AVW 3425
Email: tdumitra@umiacs.umd.edu

Course Website: http://ter.ps/enee657

My Background

e Ph.D. at Carnegie Mellon University

— Research in distributed systems and fault-tolerant middleware

e Worked at Symantec Research Labs

— Built WINE platform for security analytics

e Used for sharing real-world security telemetry with
academic researchers

¢ One of the early ‘threat intelligence’ platforms

e Joined UMD faculty

e Data-driven security (measurements, machine learning, malware)

— Focus on solving security problems with data analysis techniques

ENEE 657 in a Nutshell

e ENEE 657 is a graduate-level security course
— Learn by reading, explaining and doing

— Project oriented: develop to a degree that would merit publication in one
of the workshops associated with the USENIX Security Symposium 2018

e Aims to prepare you for research in security

— Not a tutorial or comprehensive course on these topics

— Instead, exploring a range of topics to illustrate some of the current
research challenges

— Targeted at students who want to conduct research in the area or who
are more generally interested in security or distributed systems

8/31/17

Who Can You Trust?

[

Application
| wonder PP Request NFS Server
what Tudor’s
SSNis ... O/S o/s
{0 -
() r Workstation Server
& = Network
channel

Keyboard/display
channel

e Where is the request “from”?

— The user? The workstation? The application? The network channel?
All of the above?

— Which of these actors do you trust?

Ken Thompson

ACM Turing Award, 1983

“Reflections on Trusting Trust”

e What software can we trust?

e Example: any operating system includes a program
checking whether users are allowed to log in

— "login" or "su" in Unix

— Is the login binary from Windows/Mac OS/Ubuntu/etc. trustworthy?
— Does it send your password to someone?

— Does it have backdoor for a “special” remote user?

e Can't trust the binary, so check source code or write your own,
recompile

e Does this solve problem?

“Reflections on Trusting Trust” — cont’d

e Who wrote the compiler?

e Compiler looks for source code that looks like the login
process, inserts backdoor into it

e Ok, inspect the source code of the compiler... Looks good?
Recompile the compiler!

e Does this solve the problem?

8/31/17

“Reflections on Trusting Trust” — cont’d

e The UNIX login program is compiled by a C compiler

— The C compiler was also compiled by an (older) C compiler

e Aside: how does the compiler handle special characters?

¢ = next(); c = next();
if(c = "\\") if(c 1= "\\")
return(c); return(c);
c = next(); c = next();
if(c == "\\") if(c == "\\")
return('\\"); return('\\');
if(c== 'n") if(c== 'n")
return(‘'\n'); return('\n"');)
if(c == 'v') if(c == 'v') Infutureyermonsof
return(11); return('\v'); the compiler: use

When adding a new special character to the

C language, must specify the character code °

the special character

“Reflections on Trusting Trust” — cont’d

e The compiler is writtenin C ...
compiler(S) {
if (match(S, "login-pattern")) {
compile (login-backdoor)
return

}
if (match(S, "compiler-pattern")) {

In future versions of
the compiler: the

compile (compiler-backdoor) backdoor no longer
return appears in the source
code

}

.... /* compile as usual */

10

8/31/17

“Reflections on Trusting Trust” — cont’d

“The moral is obvious. You can't trust code that
you did not totally create yourself. (Especially

code from companies that employ people like me.)”

11

What Can Attackers Do?

o Attack targets: clients, servers, networks, applications, users

e Example attack methods:
— End-hosts (or devices): install malware
— LAN: read, replay, insert, delete, block messages
— Internet: send spam, conduct distributed denial of service attacks
— Applications: exploit vulnerabilities
— Data: steal/corrupt secret data, plant invalid data

— Users: conduct social engineering attacks

12

8/31/17

Aside: Is Hardware Secure?

e Malicious device firmware
— Some HW functionality is actually implemented in SW
— Do you trust device firmware to come from legitimate vendor?

— Is firmware free of vulnerabilities?

e Malicious hardware
— HW is as complex as SW and is designed using SW tools
— Do you know where each HW component comes from?
— Can you authenticate your HW?
— Could the CAD tools have introduced a backdoor (HW trojan)?

13

Network Stack

Network stack

[Phishing attacks, usability |

people
email, Web, NFS Sendmail, FTP, NFS bugs, chosen-
application protocol and version-rollback attacks
RPC .
session RPC worms, portmapper exploits
TCP SYN flooding, RIP attacks,
transport sequence number prediction
network Pv4 /1Pv6 IP smurfing and other
address spoofing attacks
data link 802.11
atalin WEP attacks
. RF
physical RF fingerprinting, DoS

Only as secure as the single weakest layer (or interconnection between layers)

14

8/31/17

Network Defenses

Password managers,
company policies...

Systems Firewalls, intrusion
detection...
Blueprints TLS, IPsec, access

control...

Building
' blocks

All defense mechanisms must work correctly and securely

RSA, DSS, SHA-1...

15

Attack Method Examples

e Malware (malicious software/firmware):
— rootkits
— bots
— trojan horses
— spyware
— worms
— viruses
— backdoors ...

* Malware-insertion methods

— User Interaction/Social Engineering
— Incorrect OS/Application Configuration
— Compromised OS/Application & Vulnerability Exploitation

16

8/31/17

Percentage of Attacks Analyzed

Malware Insertion Methods

Analysis reported in the Microsoft Intelligence Report, vol. 11, 2011

a5 44.8%
40
35
30
26.0%
25
20
17.2%
15
10
4.4%
5
. 3.2% 2.4% 1.7% 0.3% oo
0 N e 2O
User Autorun Autorun File Exploit Exploit Password Office Zero-day
Interaction usB Network Infection Update Update Guessing Macros Exploit
Required Long (>1yr) Available Brute
Available Force 17

Cybercrime in the Real World

e Botnets
— Worker bots running in the background on millions of compromised hosts
— Bot master sending instructions to worker bots via command & control nodes

— Possible instructions: propagate, send spam, conduct DDoS, mine Bitcoin

e Pay-per-Install (PPI)
— “Affiliate” programs rewarding miscreants for installing malware on end-hosts

— Useful for bootstrapping botnets, sending spam, staging denial of service
attacks, performing click fraud, hosting scam websites

e Distributed Denial of Service (DDoS)

— Instruct a botnet to direct a large amount of traffic to the target

— Leverage protocols that can amplify traffic (e.g. NTP, DNS)

8/31/17

Example: Stormbot Spam Architecture
[Kanich, Kreibich, Levchenko et al.]

Worker bots
Gateway

-
- = °
= (| Traffic Archive Spam templates
= ol it B e Custom macro language
= T = servers —
%’ 20| [0t m
g - — Polymorphic content
o Storm .
. C&C - —
H Rewriter ==
S e
Proxy bot 8

et meed _mewremay @ DiCtiONAries

Webmail regular Mail Infection WWW
—

= — Email addresses

J — Subject lines
(UL

e Worker bots generate unique
Infragtr'ucture for measuring the messages for each address, try to
activity of the Storm botnet deliver, report results to proxies

i [[
A\

Example: The Pav-Per-Install Business Model
[Cabalero, Grier, Kreibich, Paxson]

Clients % % 1. PPlclients .provide software
] they want installed
| — Spambot
Fake AV \@ogger A . .
2. The PPI service finds affiliates

able to provide this service

PPI
Service 3. The PPI service pushes the
Downloader client’s executable
Install
PPI 1H H
Affite payment 4. The afﬁhgtes receive
commission for successful
installations
Target
Host

8/31/17

10

Example: DDoS Attack on Spamhaus

e Spamhaus provides data on p, Adversary
spam-related activities

¢ In March 2013, it was targeted by a
massive DDoS attack

~100K open DNS
resolvers

— 85-120 Gbps on average, over 4 days
— 300 Gbps peak

e Attack mechanism

— Attacker sends query for large DNS record seamaac?
to several open DNS resolvers

— Spoofs IP address, so that replies are sent to
the target

— request << reply => traffic is amplified

Desirable Security Properties

e Authenticity

e Confidentiality

e Integrity

e Availability

e Accountability and non-repudiation
e Access control

e Privacy

22

8/31/17

11

Correctness versus Security

e System correctness: system satisfies specification

— For reasonable input, get reasonable output

e System security: system properties preserved in face of attack

— For unreasonable input, output not completely disastrous

¢ Main difference: intelligent adversary trying to subvert system
and to evade defensive techniques

23

ENEE 657 In A Nutshell

e Course objectives

— Understand attacks and defenses in distributed systems

¢ To create effective security mechanisms, you must understand the capabilities of
real-world attackers

— Prepare you to collaborate with security researchers

e Learn how to discuss security topics intelligently

e Gain thorough grounding in the techniques for defending against attacks on
distributed systems and networks

e What ENEE 657 is not

— A course on cryptography

— A course on theoretical security

24

8/31/17

12

ENEE 657 Course Content

e Topics

— Design and implementation of protection mechanisms
¢ Vulnerability exploits and defenses against exploitation
e Privilege separation
e Confinement
e Trust and reputation
e ..

— Security analytics (e.g. measure effectiveness of defenses, infer malicious activity)
e Cybercrime measurements (spam, zero-day attacks)
e Cyber conflict
¢ Predicting security events

e This is a systems-oriented course
— Semester-long project: substantial programming component

— Project goal: depth and quality adequate for publication in a workshop
associated with USENIX Security

25

This is a Graduate Course

e Learning the material in this course requires participation
— This is not a sit-back-and-listen kind of course
— Understanding the assigned readings is required for understanding the topics

— In-class discussions are part of your grade

® You are responsible for holding up your end of the educational
bargain
— | expect you to attend classes and to complete reading assignments
— | expect you to try things out for yourself
— | expect you to know how to find research literature on security topics
e The required readings provide starting points
— | expect you to manage your time

¢ In general there will be assignments due before each lecture
26

8/31/17

13

8/31/17

Homeworks

e Two homeworks to refresh background material
— Buffer overflow

— Data analytics
e First homework

— Will introduce the material on Wednesday

— Homework will be due on September 6%

27

Reading Assignments

e Readings: 1-2 papers before each lecture
— Not light reading — some papers require several readings to understand
— Check course web page (still in flux) for next readings and links to papers

e Paper critiques: critique the papers you read using a defined template
— More on this later

e In-class paper discussions: debate contributions and weaknesses of each paper

— Structured discussion, inspired by competitive debating

e Ahead of each lecture, | will select 4 students to participate in the debate
— Open discussion with whole class afterward
— More on this later

¢ Discussion summaries: edit a Google doc collaboratively, to capture the key
issues in the research area discussed

— Activity done during or after the debate

— More on this later
28

14

Course Projects

* Pilot project: two-week individual projects
— Goal is to create a proof of concept

e Some ideas are available on the web page

— Propose projects by September 11t
— Submit report by September 25t

— Peer reviews: review at least 2 project reports from other students

® Group project: ten-week group project
— Deeper investigation of promising approaches
— Submit written report and present findings during last week of class

¢ 2 checkpoints along the way (schedule on the course web page)

— Form teams and propose projects by October 2"

29

Pre-Requisite Knowledge

e Good programming skills

¢ Ability to come up to speed on advanced security topics
— Basic knowledge of security (CMSC 414, ENEE 457 or equivalent) is a plus

e The first module (‘Fundamental principles’) will provide some basic background

— The assigned readings provide the content of interest
¢ Ability to come up to speed on data analytics

— Several readings will provide good examples of measurement studies

e Understand these techniques and apply them in your projects!

30

8/31/17

15

Policies

* “Showing up is 80% of life” — Woody Allen

— You can get an “A” with a few missed assignments, but reserve these for
emergencies (conference trips, waking up sick, etc.)

— Notify the instructor if you need to miss a class, and submit your
assignment on time

e UMD’s Code of Academic Integrity applies, modified as follows:

— Complete your critiques entirely on your own. After you hand in your
critiques, you are welcome (and encouraged) to discuss them with others

— Discuss the problems and concepts involved in the project and
homeworks, but produce your own implementations
e Group projects are the result of team work

* You can post code snippets on Piazza (e.g. to ask a question), but don’t post the
whole program listing

31

e See class web site for the official version

Grading Criteria

e Components of the grade
— 5% Background homework
— 25% Written paper critiques
— 30% Participation (in-class discussion, contributions to topic summaries)
— 40% Projects
— 10% Potential bonus points

e Expectations
— You must do all the required readings
— You can explain the contributions and weaknesses of the papers you read

— You produce a working implementation for your project, and you must
understand how the implementation works

32

8/31/17

16

Review of Lecture

e What did we learn?

— Determining whether we can trust software is a tricky business
— Methods and motivations of attackers
— Examples of distributed systems used by cybercriminals

e Sources
— Various slides from Vitaly Shmatikov, Virgil Gligor and Mike Reiter

e | want to emphasize

— This is systems course, not a not a pen-and-paper course
— You will be expected to build a real, working, system

e What’s next?

— Memory corruption and vulnerability exploits -

8/31/17

17

