
8/31/17	

1	

Computer	Security	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	657	

About	Me	

Tudor	Dumitraș	
Office:	AVW	3425	
Email:	tdumitra@umiacs.umd.edu	
Course	Website:	http://ter.ps/enee657		

2	

8/31/17	

2	

My	Background	
•  Ph.D.	at	Carnegie	Mellon	University	
–  Research	in	distributed	systems	and	fault-tolerant	middleware	

• Worked	at	Symantec	Research	Labs	
–  Built	WINE	plaVorm	for	security	analyWcs	

• Used	for	sharing	real-world	security	telemetry	with		
academic	researchers		

• One	of	the	early	‘threat	intelligence’	plaVorms	

•  Joined	UMD	faculty	

•  Data-driven	security	(measurements,	machine	learning,	malware)	
–  Focus	on	solving	security	problems	with	data	analysis	techniques	

3	

WINE	

ENEE	657	in	a	Nutshell	

• ENEE	657	is	a	graduate-level	security	course	
–  Learn	by	reading,	explaining	and	doing	
–  Project	oriented:	develop	to	a	degree	that	would	merit	publicaKon	in	one	
of	the	workshops	associated	with	the	USENIX	Security	Symposium	2018	

• Aims	to	prepare	you	for	research	in	security	
–  Not	a	tutorial	or	comprehensive	course	on	these	topics	
–  Instead,	exploring	a	range	of	topics	to	illustrate	some	of	the	current	
research	challenges	

–  Targeted	at	students	who	want	to	conduct	research	in	the	area	or	who	
are	more	generally	interested	in	security	or	distributed	systems	

4	

8/31/17	

3	

Who	Can	You	Trust?	

WorkstaWon	

O/S	

ApplicaWon	 NFS	Server	

O/S	

Server	
Network	
channel	

Request	I	wonder	
what	Tudor’s	
SSN	is	…	

Keyboard/display	
channel	

• Where	is	the	request	“from”?	
–  The	user?		The	workstaWon?		The	applicaWon?	The	network	channel?		
All	of	the	above?	

– Which	of	these	actors	do	you	trust?	 5	

Ken	Thompson	

ACM	Turing	Award,	1983	
6	

8/31/17	

4	

“ReflecKons	on	TrusKng	Trust”	

• What	sojware	can	we	trust?	

• Example:	any	operaWng	system	includes	a	program		
checking	whether	users	are	allowed	to	log	in	
–  "login"	or	"su"	in	Unix	
–  Is	the	login	binary	from	Windows/Mac	OS/Ubuntu/etc.	trustworthy?	
–  Does	it	send	your	password	to	someone?	
–  Does	it	have	backdoor	for	a	“special”	remote	user?	

• Can't	trust	the	binary,	so	check	source	code	or	write	your	own,	
recompile	

• Does	this	solve	problem?	
7	

“ReflecKons	on	TrusKng	Trust”	–	cont’d		

• Who	wrote	the	compiler?	

• Compiler	looks	for	source	code	that	looks	like	the	login	
process,	inserts	backdoor	into	it	

• Ok,	inspect	the	source	code	of	the	compiler…		Looks	good?		
Recompile	the	compiler!	

• Does	this	solve	the	problem?	

8	

8/31/17	

5	

“ReflecKons	on	TrusKng	Trust”	–	cont’d		

• The	UNIX	login	program	is	compiled	by	a	C	compiler	
–  The	C	compiler	was	also	compiled	by	an	(older)	C	compiler	

• Aside:	how	does	the	compiler	handle	special	characters?		
…	
c	=	next();		
if(c	!=	'\\')		

	return(c);		
c	=	next();		
if(c	==	'\\')		

	return('\\');		
if(c==	'n')		

	return('\n');		
if(c	==	'v')		

	return(11);		
…	

…	
c	=	next();		
if(c	!=	'\\')		

	return(c);		
c	=	next();		
if(c	==	'\\')		

	return('\\');		
if(c==	'n')		

	return('\n');		
if(c	==	'v')		

	return('\v');		
…	

When	adding	a	new	special	character	to	the		
C	language,	must	specify	the	character	code	

In	future	versions	of		
the	compiler:	use		
the	special	character	

9	

“ReflecKons	on	TrusKng	Trust”	–	cont’d		

• The	compiler	is	wrinen	in	C	…	
	compiler(S)	{	
						if	(match(S,	"login-pattern"))	{	

												compile	(login-backdoor)	

												return	

						}	

						if	(match(S,	"compiler-pattern"))	{	

												compile	(compiler-backdoor)	

												return	

						}	

						/*	compile	as	usual	*/	

			}	

In	future	versions	of		
the	compiler:	the		
backdoor	no	longer		
appears	in	the	source		
code	

10	

8/31/17	

6	

	
	

	

“The	moral	is	obvious.	You	can't	trust	code	that		

you	did	not	totally	create	yourself.	(Especially		

code	from	companies	that	employ	people	like	me.)”	

“ReflecKons	on	TrusKng	Trust”	–	cont’d	

11	

What	Can	A[ackers	Do?	

• A[ack	targets:	clients,	servers,	networks,	applicaWons,	users	

• Example	a[ack	methods:	
–  End-hosts	(or	devices):	install	malware	

–  LAN:	read,	replay,	insert,	delete,	block	messages	
–  Internet:	send	spam,	conduct	distributed	denial	of	service	anacks	

–  ApplicaKons:	exploit	vulnerabiliWes	
–  Data:	steal/corrupt	secret	data,	plant	invalid	data	
–  Users:	conduct	social	engineering	anacks	

12	

8/31/17	

7	

Aside:	Is	Hardware	Secure?		

• Malicious	device	firmware	
–  Some	HW	funcWonality	is	actually	implemented	in	SW	

–  Do	you	trust	device	firmware	to	come	from	legiWmate	vendor?	

–  Is	firmware	free	of	vulnerabiliWes?		

• Malicious	hardware	
–  HW	is	as	complex	as	SW	and	is	designed	using	SW	tools	
–  Do	you	know	where	each	HW	component	comes	from?	

–  Can	you	authenWcate	your	HW?	

–  Could	the	CAD	tools	have	introduced	a	backdoor	(HW	trojan)?	

13	

Network	Stack	

people	

applicaWon	

session	

transport	

network	

data	link	

physical	

IPv4	/	IPv6	

TCP	

email,	Web,	NFS	

RPC	

802.11	

Sendmail,	FTP,	NFS	bugs,	chosen-
protocol	and	version-rollback	anacks	

SYN	flooding,	RIP	anacks,	
sequence	number	predicWon	

IP	smurfing	and	other	
address	spoofing	anacks	

RPC	worms,	portmapper	exploits	

WEP	anacks	

Only	as	secure	as	the	single	weakest	layer	(or	interconnecWon	between	layers)	

RF	
RF	fingerprinWng,	DoS	

Phishing	anacks,	usability	

Network	stack	

14	

8/31/17	

8	

Network	Defenses	

Cryptographic	primiWves	

Protocols	and	policies	

ImplementaWons	

Building	
blocks	

Blueprints	

Systems	

RSA,	DSS,	SHA-1…	

TLS,	IPsec,	access	
control…	

Firewalls,	intrusion	
detec=on…	

All	defense	mechanisms	must	work	correctly	and	securely	

End	uses	People	 Password	managers,		
company	policies…	

15	

A[ack	Method	Examples	
• Malware	(malicious	sojware/firmware):		
–  rootkits	
–  bots	
–  trojan	horses	
–  spyware	
–  worms	
–  viruses		
–  backdoors	…	

• Malware-inserKon	methods	
–  User	InteracWon/Social	Engineering	
–  Incorrect	OS/ApplicaWon	ConfiguraWon	
–  Compromised	OS/ApplicaWon	&	Vulnerability	ExploitaWon	

16	

8/31/17	

9	

Analysis	reported	in	the	Microsod	Intelligence	Report,	vol.	11,	2011	

			User	
InteracKon	
	Required	

Autorun	
			USB	

Autorun	
Network	

			File	
InfecKon	

		Exploit		
		Update	

Long	(>1	yr)	
Available	

Password	
Guessing		
Brute		
Force	

Office	
Macros	

	Exploit		
	Update	
Available	

Zero-day	
Exploit	

45		-	
	

40		-	
	

35		-	
	

30		-	
	

25		-	
	

20		-	
	

15		-	
	

10		-	
	

5				-	
	
0	

Pe
rc
en

ta
ge
	o
f	A

[
ac
ks
	A
na

ly
ze
d	

44.8%	

26.0%	

17.2%	

4.4%	 3.2%	 2.4%	 1.7%	 0.3%	 ≈	0.0%	

Malware	InserKon	Methods	

17	

Cybercrime	in	the	Real	World	

• Botnets		
– Worker	bots	running	in	the	background	on	millions	of	compromised	hosts	

–  Bot	master	sending	instrucWons	to	worker	bots	via	command	&	control	nodes		

–  Possible	instrucWons:	propagate,	send	spam,	conduct	DDoS,	mine	Bitcoin	

• Pay-per-Install	(PPI)	
–  “Affiliate”	programs	rewarding	miscreants	for	installing	malware	on	end-hosts	
–  Useful	for	bootstrapping	botnets,	sending	spam,	staging	denial	of	service	
anacks,	performing	click	fraud,	hosWng	scam	websites	

• Distributed	Denial	of	Service	(DDoS)	
–  Instruct	a	botnet	to	direct	a	large	amount	of	traffic	to	the	target	

–  Leverage	protocols	that	can	amplify	traffic	(e.g.	NTP,	DNS)	
18	

8/31/17	

10	

Example:	Stormbot	Spam	Architecture	

• Spam	templates	
–  Custom	macro	language	

–  Polymorphic	content	

• DicWonaries	
–  Email	addresses	

–  Subject	lines	

• Worker	bots	generate	unique	
messages	for	each	address,	try	to	
deliver,	report	results	to	proxies	

[Kanich,	Kreibich,	Levchenko	et	al.]	

Infrastructure	for	measuring	the		
acWvity	of	the	Storm	botnet	

Example:	The	Pay-Per-Install	Business	Model	

ined PPI services in a top-down manner, by becoming
affiliates of particular services [7, 29]. Our study is in-
stead based on infiltrating PPI services in a bottom-up
manner, by creating custom programs that can continu-
ously download malware specimens that the PPI services
distribute, enabling us to track the infiltrated PPI services
over time.

We harvested over a million client executables us-
ing vantage points spread across 15 countries. The
month of August 2010 yielded 57 malware families, in-
cluding many of the most prevalent infections at the
time. They include spam bots (Rustock, Grum), fake
antivirus (Securitysuite, Securityessential), information-
stealing trojans (Zbot, Spyeye), rootkits (Tdss), DDoS
bots (Russkill, Canahom), clickers (Gleishug), and ad-
ware (SmartAdsSolutions).

Using our geo-diverse vantage points, we measure dif-
ferences in the geographical preferences of the different
malware families. We identify families that exclusively
target the US, the UK, and a variety of European coun-
tries. We also analyze the rate at which malware authors
repack their wares to evade hash-based signatures. On
average, they repack specimens every 11 days, and some
malware families repack up to twice daily. We track the
dynamics of campaigns during which a service dissem-
inates a given malware family in an ongoing push, ob-
serving a wide temporal range, from specimens that are
continually distributed over weeks, to pointwise efforts
lasting only a few hours. We also analyze the particulars
of how different PPI services interact with their affili-
ates, including surprising evidence suggesting that some
affiliates who sell installs to a particular PPI service not
only buy installs from rival PPI services, but also from
the very service to which they sell installs—apparently
to exploit arbitrage.

2 An Overview of Pay-Per-Install

The PPI market, as depicted in Figure 1, consists of three
main actors: clients, PPI providers (or services), and
affiliates. We begin with an overview of these actors,
followed by discussion of the transactions they perform
(Section 2.1) and the means and importance of evading
detection (Section 2.2).

Clients are entities that want to install programs onto a
number of target hosts. They wish to buy installs of their
programs. The PPI provider receives money from clients
for the service of installing their programs onto the target
hosts, where installation comprises distributing the pro-

Figure 1: The typical transactions in the PPI market. PPI
clients provide software they want to have installed, and
pay a PPI service to distribute the software (). The PPI
service conducts downloader infections itself or employs
affiliates that install the PPI’s downloader on victim ma-
chines(À). The PPI service pushes out the client’s exe-
cutables (Ã). Affiliates receive commission for any suc-
cessful installations they facilitated (Õ).

grams to the target hosts, executing the client programs,
and tracking successful executions for accounting.

The PPI provider develops a program, called a down-
loader, that retrieves and runs client’s executables upon
installation. The PPI provider may conduct the instal-
lation of the downloader itself or may outsource distri-
bution to third parties called affiliates. When a provider
has affiliates, the provider acts as a middle man that sells
installs to the clients while buying installs from affili-
ates that specialize in some specific distribution method
(e.g., bundling malware with a benign program and dis-
tributing the bundle via file-sharing networks; drive-by-
download exploits; or social engineering). PPI providers
pay affiliates for each target host on which they execute
the provider’s downloader program. Once the down-
loader runs, it connects to the PPI provider to download
the client programs. If the PPI provider does the distri-
bution itself, we call the service a direct PPI service. If
the PPI provider runs an affiliate program, we call it an
affiliate PPI service.

In general, both reputable and not-so-reputable enti-
ties use PPI services. In this paper we focus on the use
of PPI services as a distribution mechanism for malware,
e.g., bots, trojans, fake AV software, and spyware. To

1.  PPI	clients	provide	sojware	
they	want	installed	

2.  The	PPI	service	finds	affiliates	
able	to	provide	this	service		

3.  The	PPI	service	pushes	the	
client’s	executable	

4.  The	affiliates	receive	
commission	for	successful	
installaWons	

[Cabalero,	Grier,	Kreibich,	Paxson]	

8/31/17	

11	

Example:	DDoS	A[ack	on	Spamhaus	

• Spamhaus	provides	data	on		
spam-related	acWviWes	

•  In	March	2013,	it	was	targeted	by	a	
massive	DDoS	anack	
–  85–120	Gbps	on	average,	over	4	days	
–  300	Gbps	peak	

• Anack	mechanism	
–  Anacker	sends	query	for	large	DNS	record	
to	several	open	DNS	resolvers	

–  Spoofs	IP	address,	so	that	replies	are	sent	to		
the	target	

–  request	<<	reply	 	=>	 	traffic	is	amplified	
21	

Adversary	

~100K	open	DNS	
resolvers	

`	
Anycast	

A[ack	traffic	
.	.	.		

Desirable	Security	ProperKes	

• AuthenWcity	
• ConfidenWality	
•  Integrity	
• Availability	
• Accountability	and	non-repudiaWon	
• Access	control	
• Privacy	
…	

22	

8/31/17	

12	

Correctness	versus	Security	

• System	correctness:	system	saWsfies	specificaWon	
–  For	reasonable	input,	get	reasonable	output	

• System	security:	system	properWes	preserved	in	face	of	anack	
–  For	unreasonable	input,	output	not	completely	disastrous	

• Main	difference:	intelligent	adversary	trying	to	subvert	system	
and	to	evade	defensive	techniques		

23	

ENEE	657	In	A	Nutshell	

• Course	objecWves	
–  Understand	a[acks	and	defenses	in	distributed	systems		
• To	create	effecWve	security	mechanisms,	you	must	understand	the	capabiliWes	of	
real-world	a[ackers	

–  Prepare	you	to	collaborate	with	security	researchers	
• Learn	how	to	discuss	security	topics	intelligently	
• Gain	thorough	grounding	in	the	techniques	for	defending	against	anacks	on	
distributed	systems	and	networks	

• What	ENEE	657	is	not	
–  A	course	on	cryptography	
–  A	course	on	theoreWcal	security	

24	

8/31/17	

13	

ENEE	657	Course	Content	
•  Topics	
–  Design	and	implementaWon	of	protecKon	mechanisms	

• Vulnerability	exploits	and	defenses	against	exploitaWon	
•  Privilege	separaWon	
• Confinement	
•  Trust	and	reputaWon	
• …	

–  Security	analyWcs	(e.g.	measure	effecWveness	of	defenses,	infer	malicious	acWvity)	
• Cybercrime	measurements	(spam,	zero-day	anacks)	
• Cyber	conflict	
•  PredicWng	security	events	
• …	

•  This	is	a	systems-oriented	course	
–  Semester-long	project:	substanWal	programming	component	
–  Project	goal:	depth	and	quality	adequate	for	publicaKon	in	a	workshop	
associated	with	USENIX	Security	

25	

This	is	a	Graduate	Course	

•  Learning	the	material	in	this	course	requires	parWcipaWon		
–  This	is	not	a	sit-back-and-listen	kind	of	course	
–  Understanding	the	assigned	readings	is	required	for	understanding	the	topics	
–  In-class	discussions	are	part	of	your	grade	

• You	are	responsible	for	holding	up	your	end	of	the	educaWonal	
bargain	
–  I	expect	you	to	anend	classes	and	to	complete	reading	assignments	
–  I	expect	you	to	try	things	out	for	yourself	
–  I	expect	you	to	know	how	to	find	research	literature	on	security	topics	
• The	required	readings	provide	starWng	points	

–  I	expect	you	to	manage	your	Wme	
•  In	general	there	will	be	assignments	due	before	each	lecture	

26	

8/31/17	

14	

Homeworks	

• Two	homeworks	to	refresh	background	material	
–  Buffer	overflow	
–  Data	analyWcs	

• First	homework		
– Will	introduce	the	material	on	Wednesday	

–  Homework	will	be	due	on	September	6th		

27	

Reading	Assignments	
•  Readings:	1-2	papers	before	each	lecture	
–  Not	light	reading	–	some	papers	require	several	readings	to	understand	
–  Check	course	web	page	(sWll	in	flux)	for	next	readings	and	links	to	papers	

•  Paper	criWques:	criWque	the	papers	you	read	using	a	defined	template	
–  More	on	this	later	

•  In-class	paper	discussions:	debate	contribuWons	and	weaknesses	of	each	paper	
–  Structured	discussion,	inspired	by	compeWWve	debaWng	

•  Ahead	of	each	lecture,	I	will	select	4	students	to	parWcipate	in	the	debate	
–  Open	discussion	with	whole	class	ajerward	
–  More	on	this	later	

•  Discussion	summaries:	edit	a	Google	doc	collaboraWvely,	to	capture	the	key	
issues	in	the	research	area	discussed	
–  AcWvity	done	during	or	ajer	the	debate	
–  More	on	this	later	

28	

8/31/17	

15	

Course	Projects	

• Pilot	project:	two-week	individual	projects	
–  Goal	is	to	create	a	proof	of	concept	
• Some	ideas	are	available	on	the	web	page	

–  Propose	projects	by	September	11th	

–  Submit	report	by	September	25th		

–  Peer	reviews:	review	at	least	2	project	reports	from	other	students	

• Group	project:	ten-week	group	project	
–  Deeper	invesWgaWon	of	promising	approaches	

–  Submit	wrinen	report	and	present	findings	during	last	week	of	class	
• 2	checkpoints	along	the	way	(schedule	on	the	course	web	page)	

–  Form	teams	and	propose	projects	by	October	2nd			

29	

Pre-Requisite	Knowledge	

• Good	programming	skills		

• Ability	to	come	up	to	speed	on	advanced	security	topics	
–  Basic	knowledge	of	security	(CMSC	414,	ENEE	457	or	equivalent)	is	a	plus	
• The	first	module	(‘Fundamental	principles’)	will	provide	some	basic	background	

–  The	assigned	readings	provide	the	content	of	interest	

• Ability	to	come	up	to	speed	on	data	analyWcs	
–  Several	readings	will	provide	good	examples	of	measurement	studies	
• Understand	these	techniques	and	apply	them	in	your	projects!	

30	

8/31/17	

16	

Policies	

•  “Showing	up	is	80%	of	life”	–	Woody	Allen	
–  You	can	get	an	“A”	with	a	few	missed	assignments,	but	reserve	these	for	
emergencies	(conference	trips,	waking	up	sick,	etc.)	

–  NoWfy	the	instructor	if	you	need	to	miss	a	class,	and	submit	your	
assignment	on	Wme	

• UMD’s	Code	of	Academic	Integrity	applies,	modified	as	follows:	
–  Complete	your	criWques	enWrely	on	your	own.	Ader	you	hand	in	your	
criWques,	you	are	welcome	(and	encouraged)	to	discuss	them	with	others	

–  Discuss	the	problems	and	concepts	involved	in	the	project	and	
homeworks,	but	produce	your	own	implementaWons	
• Group	projects	are	the	result	of	team	work	
• You	can	post	code	snippets	on	Piazza	(e.g.	to	ask	a	quesWon),	but	don’t	post	the	
whole	program	lisWng	

• See	class	web	site	for	the	official	version	 31	

Grading	Criteria	

• Components	of	the	grade	
–  5%	Background	homework	

–  25%	Wrinen	paper	criWques		

–  30%	ParWcipaWon	(in-class	discussion,	contribuWons	to	topic	summaries)	
–  40%	Projects	
–  10%	PotenWal	bonus	points	

• ExpectaWons	
–  You	must	do	all	the	required	readings	
–  You	can	explain	the	contribuKons	and	weaknesses	of	the	papers	you	read		
–  You	produce	a	working	implementaKon	for	your	project,	and	you	must	
understand	how	the	implementaWon	works	

32	

8/31/17	

17	

Review	of	Lecture	
• What	did	we	learn?	
–  Determining	whether	we	can	trust	sojware	is	a	tricky	business	
– Methods	and	moWvaWons	of	anackers	
–  Examples	of	distributed	systems	used	by	cybercriminals	

• Sources	
–  Various	slides	from	Vitaly	ShmaWkov,	Virgil	Gligor	and	Mike	Reiter	

•  I	want	to	emphasize	
–  This	is	systems	course,	not	a	not	a	pen-and-paper	course			
–  You	will	be	expected	to	build	a	real,	working,	system	

• What’s	next?	
– Memory	corrupWon	and	vulnerability	exploits	 33	

