
ENEE 657 – Security Analytics Homework

Homework Due: 20 September 2017 at 11:59 pm.

Submission Instructions: Write one Python program, following the instructions below. Sub-
mit it from the GRACE machines, along with the corresponding output files, using the following
commands:

submit 2017 fall ENEE 657 0101 2 spark_problem.zip

1 Homework overview

The learning objective of this homework is for students to gain first-hand experience with some data
analytics techniques that are commonly used to solve security problems. Locality sensitive hashing
(LSH) is a technique for approximate clustering and nearest-neighbor search. For example, locality
sensitive hashing may be applied to streaming Twitter posts to identify posts that are similar to
a corpus of documents containing exploit code. The Spark data analytics platform allows you to
perform some of these operations efficiently at scale.

2 Initial setup

Use the new Ubuntu VM available for Homework 2. The VM includes all the tools you
need for this homework. You need to download the upgraded VM again, you can find it here:

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall17/homeworks.html

This is the machine we will use for testing your submissions. It has openjdk− 7 and spark− 1.4.0
installed. If your submission doesn’t work on that machine, you will get no points. It makes no
difference if your submission works on another Ubuntu version (or another OS).

You can find links to several tutorials at the address above; read these documents if youre stuck. I
also encourage you to ask questions on our Piazza message board.

Starter files. Starter files are available on the class web page:

http://www.umiacs.umd.edu/~tdumitra/courses/ENEE657/Fall17/homeworks.html
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3 Task 1: Evaluating document similarity in real time

The materials you need for this task are provided in the starter files, under the
locality_sensitive_hashing directory.

In this task, you are given a pre-existing model built from a set of documents of interest (e.g. tweets
that refer to the ShellShock vulnerability), and you must check, in real time, which of the documents
from an incoming stream of data are most similar to the documents of interest. A document D is
represented as a set of the words WD = {w1, w2, ...} that appear in the document.

Locality Sensitive Hashing. A standard measure of the similarity between two documents D1

and D2 is the Jaccard index J(D1, D2) =
|WD1

∩WD2 |
|WD1

∪WD2
| ∈ [0, 1]. The Jaccard index of two documents

is 1 if the documents are identical and 0 if they don’t have any words in common. However, the
set intersection and union needed to compute the Jaccard are expensive operations, which makes
it difficult to use this similarity measure when dealing with large data sets.

Instead, it is possible to approximate the Jaccard index with MinHashing. Given the set W of all
possible words that may appear in the documents, this technique requires a random permutation
function h : W 7→ {1, ..., |W |}. In other words, h(w) assigns a unique rank to word w; in practice,
you can use a collision-resistant hash function for h. The MinHash of a document D is first word
from WD in the ranking given by h: MinHashh(D) = arg minw∈Wd

h(w). For two documents
D1 and D2, the probability of their MinHashes being the same is equal to their Jaccard index
J(D1, D2).

The MinHash is often not enough to conclude whether two documents are similar. The idea behind
locality sensitive hashing (LSH) is to compute multiple hashes and map documents into buckets;
similar documents are likely to be mapped to the same bucket. With LSH, you need n = b × r
different hash functions and you compute n MinHashes for each document. You then arrange these
MinHashes into b bands, each band having r rows. Table ?? illustrates LSH for three documents,
D1, D2, and D3. We compute six MinHashes, partitioned in three bands with two rows per band.
Each band has its own buckets (clusters). Two documents are in the same bucket if their MinHash
values match for all the rows in the band (recall that in this case the MinHash of a document is a
word). In our example, the MinHashes for documents D1 and D2 match in both Bands 1 and 2, so
they are in the same bucket in those bands, while in Band 3 documents D1 and D2 are in the same
bucket. Two documents are considered similar if they appear together in at least one bucket; the
documents have b chances of appearing in the same bucket. The probability that two documents
D and D′ are considered similar, when using LSH, is 1− (1− J(D,D′)r)b.

Matching an LSH model. Your task is to write a program to find the candidate subset of
documents (tweets that might refer to the ShellShock vulnerability) that match the content of a
pre-built model (tweets that are known to talk about ShellShock) using LSH. All operations must
be implemented in Spark, using parallel collections (RDDs). Your program should load documents
from disk and distribute them amongst the Spark workers. Each worker is responsible for doing
text normalization (removal of multiple white spaces & non-ASCII characters, lowercase conversion,
etc.). The workers then compute the LSH for each of the documents and check the content match
against a set of documents in the model. The interface returns None for documents with no match;
these entries should be filtered out before saving the results to the output folder. The final list
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Table 1: Locality Sensitive Hashing Example

h D1 D2 D3 Buckets

Band 1
MinHashh1 w1 w1 w1 [D1, D2] [D3]MinHashh2 w1 w1 w2

Band 2
MinHashh3 w5 w5 w3 [D1, D2] [D3]MinHashh4 w8 w8 w4

Band 3
MinHashh5 w1 w7 w7 [D1] [D2, D3]MinHashh6 w6 w6 w6

should contain the ids of the tweets that are considered candidate matches and can be further
verified using an exact match algorithm. Your program should save this list to disk.

Starter files. The starter files include a partially completed Python program, located at
/homework/minhash_homework.py. Complete this program by adding the appropriate code to
replace all the None values in the __main__ function. The section where you need to add your
code is delimited by comments; you must complete 7 steps, in order (each step depends on the
completion of the previous steps). The data files are in the data subdirectory. Invoke the program
like this:

$ cd /home/seed/Documents/spark/bin/

$ ./spark-submit homework/minhash_homework.py > data/solution.out

You can also find these files in the VM, under /home/seed/Documents/spark/bin. The output of
your program will be located in data/output_folder. The output folder must be deleted between
consecutive runs:

$ rm -r data/output_folder/

Submitting.

Make sure you un-comment the print instructions after completing each step. Note that the
output could get quite verbose. The program’s stdout will be evaluated as part of your
grade. Create an archive, called spark_problem.zip, which contains the data\output_folder,
the data\solution.out and your completed minhash_homework.py script. The starter files
include a shell script, called pack_files.sh, that will create this archive for you (run
chmod +x pack_files.sh if you can’t execute it). Submit the spark_problem.zip file as de-
scribed at the beginning of this handout.

Extra notes.

This part is not graded. In order to make the task more practical we would need to address some
additional concerns.

The task requires you to retrieve the documents that match at least some tweet from the ground
truth. The LSH model for this homework is prebuilt. Could you build the model yourself from the
model original files?

How would you modify the code in order to retrieve the ids of tweets that were matched in the
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ground truth?

The homework runs on the VM and it creates a worker thread that gets to perform matching
on the entire input set of tweets. However, for large datasets, we would need to spawn multiple
workers, each responsible for a partition of the dataset. How could you create additional workers
and distribute the input among them?
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