
4/26/16	

1	

Mul$dimensional	Arrays	

Prof.	Tudor	Dumitraș	
Assistant	Professor,	ECE	
University	of	Maryland,	College	Park	

ENEE	140	

h>p://ter.ps/enee140	

Today’s	Lecture	

• Where	we’ve	been	
–  Scalar	data	types	(int,	long,	float,	double,	char)	
–  Basic	control	flow	(while	and	if)	
–  FuncPons	
–  Random	number	generaPon	

–  Arrays	and	strings	

• Where	we’re	going	today	
– MulPdimensional	arrays	

• Where	we’re	going	next	
–  SorPng	

2	

4/26/16	

2	

Nested	Loops	
• You	can	nest	loops	

for	(i=1;	i<=3;	i++)	{	
	for	(j=1;	j<=3;	j++)	{	
	 	printf("%dx%d=%2d\t",	i,	j,	i*j);	
	}	
	printf("\n");	 	//	ready	for	next	line	

}	

• Output	
1x1=	1 	1x2=	2	 	1x3=	3		
2x1=	2 	2x2=	4	 	2x3=	6		
3x1=	3 	3x2=	6	 	3x3=	9		

3	

Mul$-Dimensional	Arrays	
•  Two-dimensional	arrays	

int		a[3][4];	 	int	array	with	3	rows	and	4	columns	(12	elements)	
–  Think	of	this	as	3	arrays	with	4	elements	each	

• Working	with	2D	arrays	
a[0][0]	=	0;	 	access	element	on	first	row	and	first	column	
a[1][2]	=	0;	 	access	element	on	row	1	and	column	2	
a[0][4]	=	0;	 	error:	index	out	of	bounds	
a[3][0]	=	0;	 	error:	index	out	of	bounds	
–  Use	2D	arrays	to	represent	matrices	

•  Arrays	with	3,	4,	5,	etc.	dimensions	
int		a[2][3][4];	 	3D	array	with	24	elements	
	

4	

4/26/16	

3	

Incremental	Maintenance	of	Aggregates	

• SomePmes,	you	must	compute	values	that	summarize	mulPple	
numbers	(aggregates)	
–  Examples:	count,	maximum,	average	

–  You	can	compute	many	aggregates	incrementally,	by	updaPng	a	variable	at	
each	iteraPon	of	a	loop	

int	a,	count	=	0,	max	=	INT_MIN; 	must	iniPalize	the	aggregates	
while	(scanf(“%d”,	&a)	>	0)	{ 	 		

	count++;	 	 	 	 	increment	count	 		

		 	 	 	 	 	update	max	
	 		 		

} 	 	 	 		

• How	should	you	ini$alize	the	aggregate?	 5	

if	(max	<	a)	 		
	max	=	a;	

Backtracking	

• General	problem	solving	strategy	

• Works	on	problems	where:		
–  You	must	search	a	large	space	of	possible	soluPons	

–  You	can	build	the	soluPon	incrementally	
–  You	can	check	if	the	current	parPal	soluPon	is	invalid	(cannot	possibly	lead	
to	a	complete	soluPon)	
• Typically,	because	it	violates	some	constraints	of	the	problem	

–  You	can	enumerate	all	possible	values	for	the	current	level	(the	current	
stage	of	the	parPal	soluPon)	

6	

4/26/16	

4	

Backtracking:	Key	Idea		
•  Define	four	tests	
–  all_solved:	 	 	all	levels	have	a	soluPon	
–  none_solved: 	none	of	the	levels	have	a	soluPon	
–  end_values: 	 	have	exhausted	all	possible	values	for	current	level		
–  is_valid:	 	 	the	current	parPal	soluPon	doesn’t	violate	any	constraints	

•  Solve	the	problem	incrementally	
–  Start	by	assigning	the	first	possible	value	to	the	first	level	
–  On	each	level,	try	all	the	possible	values,	in	order	
–  If	the	soluPon	is	valid	(is_valid),	advance	to	the	next	level;	otherwise,	try	the	next	
value	on	the	current	level	

–  If	you	cannot	find	any	suitable	value	for	the	current	level	(end_values)	return	to	
the	previous	level	(backtrack)	and	try	the	next	value	there	

–  The	search	ends	when	all	levels	have	a	soluPon	(all_solved)	–	complete	soluPon	
–  The	search	also	ends	when	you	have	backtracked	unPl	no	levels	have	a	soluPon	
(none_solved).	This	means	that	the	problem	cannot	be	solved.		 7	

Example:	The	Eight	Queens	Puzzle	

• Place	8	queens	on	a	chess	board	so	that	no	queen	threatens	
another	queen	
–  4,426,165,368	possible	posiPons,	92	soluPons	

–  Levels:	 	 	rows	on	the	chess	board	(cannot	have	more	than		
	 	 	one	queen	on	a	row)	

–  ParPal	soluPon:	 	k	queens	placed	on	the	first	k	rows	of	the	board	so		
	 	 	that	they	don’t	threaten	each	other	(k<8)	

–  all_solved:	 	 	have	placed	8	queens	

–  none_solved: 	have	not	placed	any	queen		
–  end_values:	 	have	exhausted	all	possible	columns	for	current	row	

–  is_valid:	 	 	no	two	queens	on	the	same	column	or	diagonal	

8	

4/26/16	

5	

Backtracking:	General	Design	
	IniPalize	posiPon	array	
	While	(!	all_solved)	
	 	If	(end_values)	
	 	 	Return	to	previous	level	(backtrack)	
	 	 	If	(!	none_solved)	

	 	 	 	Retrieve	stored	posiPon	and	move	to	next	one	
	 	 	Else		
	 	 	 	Exit	loop	(no	more	soluPons	to	search)	
	 	Else	

	 	 	If	(is_valid)	
	 	 	 	Store	posiPon	on	current	level	
	 	 	 	Advance	to	next	level	
	 	 	Else	

	 	 	 	Move	to	next	posiPon	on	current	level	 9	

Review	of	Lecture	
• What	did	we	learn?	
–  Nested	loops	
–  MulPdimensional	arrays	
–  Incremental	maintenance	of	aggregates	

•  Next	week	
–  SorPng	

•  Assignments	for	this	week	
–  Try	to	understand	how	the	shellsort	implementaPon	from	K&R	Chapter	3.5	
works;	read	Chapter	5.11	for	how	to	use	the	library	funcPon	qsort()	

–  Weekly	challenge:	selec$on_sort.c		
–  Homework:	lab12.pdf	(on	h>p://ter.ps/enee140),	due	on	Friday	at	11:59	
pm	

10	

